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.. tlBRARY

PREFACE.

rjlHE opportunity of a new edition has enabled the author

-*- to make numerous additions to both the volumes of this

treatise. To make room for these some less important matter

has been omitted. Many of these additions have already appeared

in the German translation of this work and this is particularly

the case with the additions made to the second volume. In the

seven or eight years which have elapsed since the translation was

published the progress of the science has not been slow. Much

new matter therefore has been introduced into both the volumes

and this has been arranged either as new theorems or as examples

according to their importance.

The dynamical principles of the subject are given in this volume

together with the more elementary applications, while the more

difficult theories and problems appear in the second. Sometimes

one case of a problem supplies an example sufficiently elementary

to appear in this volume while the general theory is given in the

next. For example, the small oscillations of a vertical top and

the motion of a sphere on a rough plane are partly discussed

here, but they are more fully treated of in the second volume.

In order that the plan of the book may be understood, a short

summary of the next volume has been added to the table of

contents.

Each chapter has been made as far as possible complete in

itself This arrangement is convenient for those who are already

acquainted with dynamics, as it enables them to direct their

attention to those parts in which they may feel most interested.

It also enables the student to select his own order of reading.



Vlll PREFACE.

The student who is just beginning dynamics may not wish to be

delayed by a chapter of preliminary analysis before he enters

on the real subject of the book. He may therefore begin with

D'Alembert's Principle and read only those parts of chapter I.

to which reference is made. Others may wish to pass on as

soon as possible to the principles of Angular Momentum and

Vis Viva. Though a different order may be found advisable for

some readers, I have ventured to indicate a list of Articles to

which those who are beginning dynamics should first turn their

attention.

As in the previous editions a chapter has been devoted to the

discussion of Motion in Two Dimensions. This course has been

adopted because it seemed expedient to separate the difficulties

of dynamics from those of solid geometry.

Throughout each chapter there will be found numerous ex-

amples, many being very easy, while others are intended for the

more advanced student. In order to obtain as great a variety

of problems as possible, a collection has been added at the end

of each chapter, taken from the Examination Papers which have

been set in the University and in the Colleges. As these problems

have been constructed by many different examiners, it is hoped

that this selection will enable the student to acquire facility in

solving all kinds of dynamical problems.

There are many useful instruments and important experimental

researches whose theories require only a knowledge of dynamics

and which can be easily understood without any long or intricate

description. It will be seen that many of these have been selected

as useful examples.

Historical sketches have been attempted whenever they could

be briefly given. Such notices, if not carried too far, add greatly

to the interest of the subject. It is chiefly with the memoirs

written since the early part of the last century that we are here

concerned, and the number of these is so great that anything more

than a slight notice of some of them is impossible.



PREFACE. IX

A useful theorem is many times discovered and probably each

itime with variations. It is thus often difficult to ascertain who is

I the real author. It has therefore been found necessary to correct

[some of the references given in the former editions and to add

references where there were none before.

The use of dots and accents for differential coefficients with

regard to the time has been continued whenever a short notation

was desirable. One objection to this notation is that the mean-

ing of the symbol may be greatly changed by a slight error in the

number of the dots or accents. As this might increase the

difficulties of the subject to a beginner, the use of dots in the

earlier chapters has been restricted chiefly to the working of

examples, and care has been taken that the results should be

clearly stated.

EDWARD J. ROUTH.

Peterhouse,

August 1905.
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The following subjects will be treated of in the second volume.

Theory of moving axes, Clairaut's theorem, motion relative to the earth, and

gyroscopes.

Theory of small oscillations with several degrees of freedom both about a

position of equilibrium and about a state of steady motion.

Motion of a body about a fixed point under no forces.

Motion of a body under any forces, top, sphere, solid of revolution, any solid.

Linear equations, conditions (1) for the absence of powers' of the time, and

(2) for stability.

Theory of free and forced oscillations.

Methods of Isolation and of Multipliers.

Applications of the calculus of finite differences, chain and network of particles

Applications of the calculus of variations, Hamilton, Jacobi, Lagrange, (fee.

Precession and Nutation.

Motion of the Moon about its centre.

Motion of a string or chain, (1) loose, (2) tight.

Impact and Vibrations of elastic rods.

Motion of a membrane (1) homogeneous, (2) heterogeneous.

Conjugate functions applied to vortex motion.

The student, to whom the subject is entirely new, is advised to read first the

following articles : Chap. I. 1—25, 33—36, 47—52. Chap. II. 66—87. Chap. III.

88—93, 98—104, 110, 112—118. Chap. IV. 130—164, 168—174, 179—186, 199.

Chap. V. 214—245, 248—256, 261—269. Chap. VI. 282—285, 287—295, 299—304,
306—309. Chap. VII. 332—373. Chap. VIII. 395—409. Chap. IX. 432—4G3,
467—476. Chap. X. 483, 488—499.

EKRATUM IN VOL. IL

Page 458, line 23. For "To these oscillations we add the complementary
function" read "with these oscillations we compare those of the unloaded
membrane."



CHAPTER I.

MOMENTS OF INERTIA.

1. In the subsequent pages of this work it will be found
that certain integrals continually recur. It is therefore convenient
to collect these into a preliminary chapter for reference. Though
their bearing on dynamics may not be obvious beforehand, yet

the student may be assured that it is as useful to be able to

write down moments of inertia with facility as it is to be able

to quote the centres of gravity of the elementary bodies.

In addition however to these necessary propositions there are

many others which are useful as giving a more complete view of

the arrangement of the axes of inertia in a body. These also

have been included in this chapter though they are not of the

same importance as the former.

2. All the integrals used in dynamics as well as those used
in statics and some other branches of mixed mathematics are

included in the one form

jjjccf'y^zydxdydz,

where {a, /3, 7) have particular values. In statics two of these

three exponents are usually zero, and the third is either unity
or zero, according as we wish to find the numerator or denomi-
nator of a coordinate of the centre of gravity. In dynamics
of the three exponents one is zero, and the sum of the other two
is usually equal to 2. The integral in all its generality has not

yet been fully discussed, probably because only certain cases have
any real utility. In the case in which the body considered is

a homogeneous ellipsoid the value of the general integral has

been found in gamma functions by Lejeune Dirichlet in Vol. iv.

of Liouvilles Journal. His results were afterwards extended by
Liouville in the same volume to the case of a heterogeneous

ellipsoid in which the strata of uniform density are similar

ellipsoids.

In this treatise, it is intended chiefly to restrict ourselves to

the consideration of moments and products of inertia, as being the

only cases of the integral which are useful in dynamics.



2 MOMENTS OF INERTIA. [CHAP. I.

3. Definitions. If the mass of every particle of a material

system is multiplied by the square of its distance from a straight

line, the sum of the products so formed is called the moment of
inertia of the system about that line.

If M be the mass of a system and k be such a quantity that

Mk^ is its moment of inertia about a given straight line, then k
is called the radius of gyration of the system about that line.

The term "moment of inertia" was introduced by Euler, and
has now come into general use wherever Rigid Dynamics is studied.

It will be convenient for us to use the following additional terms.

If the mass of every particle of a material system is multi-

plied by the square of its distance from a given plane or from
a given point, the sum of the products so formed is called the

moment of inertia of the system with reference to that plane or

that point.

If two straight lines Ox, Oy be taken as axes, and if the mass
of every particle of the system be multiplied by its two co-

ordinates X, y, the sum of the products so formed is called the

product of inertia of the system about those two axes.

This might, perhaps more conveniently, be called the product

of inertia of the system with reference to the two coordinate

planes xz, yz.

The term moment of inertia with regard to a plane seems to have been first used

by M. Binet in the Journal Poly technique, 1813.

4. Let a body be referred to any rectangular axes Ox, Oy, Oz
meeting in a point 0, and let x, y, z be the coordinates of any
particle m, then according to these definitions the moments of

inertia about the axes of x, y, z respectively will be

A = tm{y^ + z% B==^X7n(z^-\-a^X G = tm(x^ + y^).

The moments of inertia with regard to the planes yz, zx, xy,

respectively, will be

A' = Xmx^, B' = l^my", C = l,mz\

The products of inertia with regard to the axes yz, zx, xy^ will

D — ^myz, E = "Xmzx, F= Imixy,

Lastly, the moment of inertia with regard to the origin will

H^^m ix^ + 2/' + z^ = Xmr\

where r is the distance of the particle m from the origin.

5. Elementary Propositions. The following propositions
may be established without difficulty, and will serve as illustrationj

of the preceding definitions.
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(1) The three moments of inertia J., B, G about three
rectangular axes are such that the sum of any two of them is

greater than the third. For A + B - C =2'Zmz'^ and is positive.

(2) The sum of the moments of inertia about any three
rectangular axes meeting at a given point is always the same;
and is equal to twice the moment of inertia with respect to that

point. For A+B+G= 2^711 {x^ + y'^+ z^) = 1'Lmr^, and is therefore independent
of the directions of the axes.

(3) The sum of the moments of inertia of a system with

reference to any plane through a given point and its normal at

that point is constant and equal to the moment of inertia of the

system with reference to that point. Take the given point as origin and
the plane as the plane of xy, then C" + C= 27?ir2, which is independent of the

directions of the axes.

Hence we infer that

A' = \{B-\-G-A\ B' = i(C + A-B), and C =^i{A+B-C).

(4) Any product of inertia as D cannot numerically be so

great as ^A.

(5) li A, B, F are the moments and product of inertia of a

lamina about two rectangular axes in its plane, then AB is greater

than F\ If t be any quantity we have At^ + 2Ft +B= 'Lm{yt + x)^=& positive

quantity. Hence the roots of the quadratic At^ + 2Ft+B= are imaginary, and

therefore AB>F'^.

(6) Prove that for any body

{A-\-B-G){B + G-A)> 4>E\

{A + B - G) {B + G - A){G +A- B)> SDEF.

(7) The moment of inertia of the surface of a sphere of

radius a and mass M about any diameter is M^a^. Since every element

is equally distant from the centre its moment of inertia about the centre is Ma^.

Hence by (2) the result follows.

(8) The moment of inertia of the surface of a hemisphere

of radius a and mass M about every diameter is M|a^. Xhis follows

immediately from (7) by completing the sphere, writing 2M for M and halving the

result.

6. It is clear that the process of finding moments and products

of inertia is merely that of integration. We may illustrate this

by the following example.

To find the moment of inertia of a uniform triangular plate

about an axis in its plane passing through one angular point

Let ABG be the triangle, Ay the axis about which the moment
is required. Draw Ax perpendicular to Ay and produce BG to

meet Ay in D. The given triangle ABG may be regarded as the

1—2
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difference of the triangles ABD, AGD. Let us then first find the

moment of inertia of ABD. Let

PQP'Q' be an elementary area whose

sides PQ, P'Q' are parallel to the

base AD, and let PQ cut Ax in M.
Let yS be the distance of the angular

point B from the axis Ay, AM = x
and AD = l.

Then the elementary area PQP'Q

is clearly I^—q— dx, and its moment

B — X
of inertia about Ay is fil —^ dx . x-,

where /m is the mass per unit of

area. Hence the moment of inertia

of the triangle ABD

1 - ^a^dx =
-^Ij{ ij^m

Similarly if 7 be the distance of the angular point G from the

axis Ay, the moment of inertia of the triangle AGD is yV/^^T-
Hence the moment of inertia of the given triangle ABG is

j\/jLl(l3^ — rf). Now ^1/3 and ^^7 are the areas of the triangles

ABD, AGD. Hence if M be the mass of the triangle ABG, the

moment of inertia of the triangle about the axis Ay is

iif(;6^ + y87 + y).

Ex. If each element of the mass of the triangle be multiplied by the wth power

of its distance from the straight line through the angle A, then it may be proved in

the same way that the sum of the products is
2M ^+1 _ -^n+l

(w + l)(n+ 2) /3-7

7. When the body is a lamina the 7noment of inertia about an
aoois perpendicular to its plane is equal to the sum of the momenta

of inertia about any two rectangular axes in its plane drawn from
the point where theformer axis meets the plane.

For let the axis of z be taken normal to the plane, then, if

A, B, G are the moments of inertia about the axes, we have,

A = lmy% B = 'Lmx\ G = l^m (x^ + y'),

and therefore G = A -\- B.

We may apply this theorem to the case of the triangle. Letj

^\ y be the distances of the points B, G from the axis Ax. Thet
the moment of inertia of the triangle about a normal to the plane

of the triangle through the point A is

iM(fi' + ^7 + y + ^'2 ^^Y + ^2),
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Ex. Prove that the moment of inertia of the perimeter of a circle of radius

a and mass WI about any diameter is ^Ma?.

Since every element is equally distant from the axis of the circle, the moment of

inertia about that axis is G= Ma^. Since A=B, the result follows at once.

8. Reference Table. The following moments of inertia

occur so frequently that they have been collected together for

reference. The reader is advised to commit to men5ory the follow-

ing table :

The moment of inertia of

(1) A rectangle whose sides are 2a and 26

about an axis through its centre in its plane per-]
__

a^

pendicular to the side 2a
J

~ ™^^^ 3"

»

about an axis through its centre perpendicu-] _ a^ {•¥
lar to its plane

J

~ ^^^^ ~s~ '

(2) An ellipse semi-axes a and h

about the major axis o. = mass2-

,

about the minor axis b = mass —
,

about an axis perpendicular to its plane) _ a^-\-¥

through the centre
J

~ ^^^^ ~T~ '

In the particular case of a circle of radius a, the moment of

inertia about a diameter = mass -r-, and that about a perpen-

dicular to its plane through the centre = mass -^

.

(3) An ellipsoid semi-axes a, b, c

X. ..u • ^' + ^'

about the axis a = mass—=—

.

5

In the particular case of a sphere of radius a the moment of

2
inertia about a diameter = mass - a^.

5

(4) A right solid whose sides are 2a, 2b, 2c

about an axis through its centre perpendicular! _ 6^ + c^

to the plane containing the sides b and c
J

3 *

These results may be all included in one rule, which the author

has long used as an assistance to the memory.

Moment of inertia] (sum of squares of perpendicular

about an axis I semi-axes)
= mass

of symmetry
) 3, 4 or 5

The denominator is to be 3, 4 or 5, according as the body is

ectangular, elliptical or ellipsoidal.
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Thus, if we require the moment of inertia of a circle of radius

a about a diameter, we notice that the perpendicular semi-axis in

its plane is the radius a, and that the semi-axis perpendicular to its

plane is zero, the moment of inertia required is therefore M —

,

if M be the, mass. If we require the moment about a per-

pendicular to its plane through the centre, we notice that the

perpendicular semi-axes are each equal to a and the moment

required is therefore M CL' + a

4 =^2
9. As the process for determining these moments of inertia is very nearly the

same for all these cases, it will be sufficient to consider only two instances.

To determine the moment of inertia of an ellipse about the minor axis.

Let the equation of the ellipse be

y — -sjd^-x'^. Take any elementary area

PQ parallel to the axis of y, then clearly

the moment of inertia is

[a b fa
i/x j x^ydx= 4kfi-

I
x^sja^-x^dx,

Jo ^ J

where fi is the mass of a unit of area.

To integrate this, put a: = a sin 0, and the integral becomes

w rr

a^ I cos2 8m2 0d0=aM ^

—

^ ^0 = ;

.". the moment of inertia= u7ra& — = mass —

.

4 4

In the same way we may show that the product of inertia of an elliptic quadrant

about its axis = mass k— .

2ir

To determine the moment of inertia of an ellipsoid about a principal diameter.

Let the equation of the ellipsoid

, a;2 ^2 ,^2

^^ ^^ + P + -2 = 1- Take any ele-

mentary area PNQ parallel to the

plane of yz. Its area is evidently

ttPN.QN. Now PN is the value

of z when y= 0, and QN the value

of y when z= 0, as obtained from

the equation of the ellipsoid

;

.-. PN=~Jar^\
a ^

QN= - Ja^ - x^
a^

.'. the area of the element

:

irbc
(a^-x^).
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Let /* be the mass of the unit of volume, then the whole moment of inertia

=M l_^-2 («'-^') f-^^-d«= /"4^2 /_^(« -^)—^2-(« -^')^^

4 , 62+^2 62+ c2= fi-Trabc —3— =ma88

—

^— ,do 5

In the same way we may show that the product of inertia of the octant of an

ellipsoid about the axes of {x, y) = mass -— .

OTT

Ex. 1. The moment of inertia of an arc of a circle whose radius is a and which

subtends an angle 2a at the centre about an axis

(a) through its centre perpendicular to its plane= iTfa^,

(6) through its middle point perpendicular to its plane= 21f (1
j
a^,

(c) about the diameter which bisects the arc=M (1
^
—

j
^

.

Ex. 2. The moment of inertia of the part of the area of a parabola cut off by

any ordinate at a distance x from the vertex is ^Mx^ about the tangent at the

vertex, and ^My^ about the principal diameter, where y is the ordinate corre-

sponding to x.

Ex. 3. The moment of inertia of the area of the lemniscate r^= a^ co82d about

a line through the origin in its plane and perpendicular to its axis is iW"a2(37r + 8)/48.

Ex. 4. A lamina is bounded by four rectangular hyperbolas, two of them have

the axes of coordinates for asymptotes, and the other two have the axes for

principal diameters. Prove that the sum of the moments of inertia of the lamina

about the coordinate axes is ^ (a^ - a'^) (/S^ - jS'^), where a, a' ; j3, j3' are the semi-

major axes of the hyperbolas.

Take the equations xy = ii, x^-y^= v, then the two moments of inertia are

B= jjx^Jdudv and A=jjy'^Jdudv, where IjJ is the Jacobian of (w, v) with regard

to {x, y). This gives at once A-\-B= ^l\dudv, where the limits are clearly u= \a^

to u= ^a"\ v=§^ to v = ^'^.

Ex. 5. A lamina is bounded on two sides by two similar ellipses, the ratio of

the axes in each being m, and on the other two sides by two similar hyperbolas, the

ratio of the axes in each being n. These four curves have their principal diameters

along the coordinate axes. Prove that the product of inertia about the coordinate

(a2 _ g/2\ lo'Z _ 0'2\

axes is '^—

7

, L ». > where a, a' ; B, B' are the semi-major axes of the curves.

Ex. 6. If da- is an element of the surface of a sphere referred to any rect-

angular axes meeting at the centre, prove that j x^"'d<r= ^ r r^^+^, where r is the

radius of the sphere and n is integral.

Ex. 7. Taking the same axes as in the last example, prove that

j '' 2n + l L{?i)

where n=/+ <; -j- h and L (/) stands for the quotient of the product of all the natural

numbers up to 2/ by the product of the same numbers up to /, both included.

To prove this, we notice that by the last example we have

r 47rr2"+2
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Expand both sides and equate the coefficients of X^ffi^^p^K

If we multiply the result by Ddr we have the value of the integral for any

homogeneous shell of density D and thickness dr. Regarding D as a function of r,

and integrating with regard to r, we can find the value of the integral for any

heterogeneous sphere in which the strata of equal density are concentric spheres.

Ex. 8. If da- is an element of the surface of an ellipsoid referred to its principal

diameters, and if p is the perpendicular from the centre on the tangent plane, prove

[x^fr^z^^pda =^ L {f)Lig)Lih)
^,,^,^,^,^,,^,

J
^ 2n+ l L{n)

where a, h, c are the semi-axes and the rest of the notation is the same as before.

This result follows at once from the corresponding one for a spherical shell by

the method of projections. The corresponding integral when the indices of x, y, z

are any quantities and the integration extends over an octant of the surface is given

by Dirichlet's theorem in gamma functions.

Ex. 9. Show that the volume V, the surface S, and the moment of inertia I

with regard to the plane perpendicular to the coordinate x^ , of the sphere in space

of n dimensions, whose equation is x-i^+ X2^+ ...+x^=r^, are given by

F=r»(rOTr(in+i), s=^r, i=v^.
These results follow easily from Dirichlet's theorem. See also Art. 5 (2).

10. Method of Differentiation. Many moments of inertia

may be deduced from those given in Art. 8 by the method of differen-

tiation. Thus the moment of inertia of a solid ellipsoid of uniform
4 6^ 4- c^

density p about the axis of a is known to be ^ irabcp —-—
. Let

the ellipsoid increase indefinitely little in size, then the moment of

inertia of the enclosed shell is c? -j^ irahcp -^—\

,

This differentiation can be effected as soon as the law according

to which the ellipsoid alters is given. Suppose the bounding
ellipsoids to be similar, and let the ratio of the axes in each be
given by 6 = pa, c = qa. Then

moment of inertia of solid ellipsoid = ^irp'pq^ g
^°

>

.'. moment of inertia of shell = ^Trppq (p^ + q^) a'^da.

In the same way the mass of solid ellipsoid = ^irppqa^
;

.*. mass of shell ^A^irppqa^da.

Hence the moment of inertia of an indefinitely thin ellipsoidal

shell of mass M bounded by similar ellipsoids is ^M {If + c%

By reference to Art. 8, it will be seen that this is the same as
the moment of inertia of the circumscribing right solid of equal
mass. These two bodies therefore have equal moments of inertia
about their axes of symmetry at the centre of gravity.
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11. The moments of inertia of a heterogeneous body whose

boundary is a surface of uniform density may sometimes be found

1)V the method of differentiation. Suppose the moment of inertia

of a homogeneous body of density D, bounded by any surface of

uniform density, to be known. Let this when expressed in terms

of some parameter a be </> (a) D. Then the moment of inertia of a

stratum of density D will be
(f>

{a) Dda. Replacing D by the

variable density p, the moment of inertia required will heJp(j>Xa) da.

Ex. 1. Show that the moment of inertia of a heterogeneous ellipsoid about the

major axis, the strata of uniform density being similar concentric ellipsoids, and

the density along the major axis varying as the distance from the centre, is

Ex. 2. The moment of inertia of a heterogeneous ellipse about the minor axis,

the strata of uniform density being confocal ellipses and the density along the

,,;,., , ,, , . 3M4a5 + c5-5a3c2
minor axis varying as the distance from the centre, is -^rp- -7^-5 o

—it-v

12. Other methods of finding moments of inertia. The
moments of inertia given in the table in Art. 8 are only a few of

those in continual use. The moments of inertia of an ellipse, for

example, about its principal axes are there given, but we shall

also frequently want its moments of inertia about other axes. It

is of course possible to find these in each separate case by integra-

tion. But this is a tedious process, and it may be often avoided

by the use of the two following propositions.

The moments of inertia of a body about certain axes through
its centre of gravity, which we may take as axes of reference, are

regarded as given in the table. In order to find the moment of

inertia of that body about any other axi» we shall investigate:

(1) A method of comparing the required moment of inertia

with that about a parallel axis through the centre of gravity. This

is the theorem of parallel axes.

(2) A method of determining the moment of inertia about
this parallel axis in terms of the given moments of inertia about
the axes of reference. This is the theorem of the six constants of

a body.

13. Theorem of Parallel Axes. Given the moments and
products of inertia about all axes through the centre of gravity of a
body, to deduce the momeiits and products about all parallel axes.

The moment of inertia of a system of bodies about any axis is

equal to the moment of inertia about a parallel axis through the

centre of gravity plus the moment of inertia of the whole mass
collected at the centre of gravity about the original axis.

The product of inertia about any two axes is equal to the

product of inertia about two parallel axes through the centre of
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gravity plus the product of inertia of the whole mass collected at

the centre of gravity about the original axes.

Firstly, take the axis about which the moment of inertia is

required as the axis of z. Let m be the mass of any particle of

the body, which generally will be any small element. Let x, y, z

be the coordinates of m, x, y, z those of the centre of gravity

G of the whole system of bodies, x\ y, z' those of m referred to

a system of parallel axes through the centre of gravity.

Then since -;^^— , ^ ,
-^^^— are the coordinates of the

Zm 2,m 2,711

centre of gravity of the system referred to the centre of gravity

as the origin, it follows that ^mx' = 0, ^my = 0, 2m/ = 0.

The moment of inertia of the system about the axis of z is

. =^m[{x+xj^-{y + y')%

= Sm (x'' + 2/') + Sm (^'2 + 1/'2) + 2x . l^mx' + 2y . l^my'.
\

Now ^m(x'^ + y^) is the moment of inertia of a mass 2m
collected at the centre of gravity, and 1m(x''^-\- y"^) is the moment
of inertia of the system about an axis through G, also "^mx' = 0,

y,my =
; whence the proposition is proved. J

It follows from this theorem, that, of all axes parallel to ai
given straight line that one has the least moment of inertia which

passes through the centre of gravity.

Secondly, take the axes of x, y as the axes about which the

product of inertia is requited. The product required is

= 2m xy = 2m (x 4- x') {y + y'),

= xy . Xm + ^mxy' + x%my' + y%moc

,

= xyXm + ^mx'y'.

Now xy . 2m is the product of inertia of a mass 2m collected

at G and ^mx'y' is the product of the whole system about axes

through G ; whence the proposition is proved.

Let there be two parallel axes A and B at distances a and h

from the centre of gravity of the body. Then, if M be the mass
of the material system.

moment of inertia]
^ _ jnioment of inertia ^,

^

about A ) \ about B
Hence when the moment of inertia of a body about one ax

is known, that about any other parallel axis may be found. It is'

obvious that a similar proposition holds with regard to the pro-

ducts of inertia.
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14. The preceding proposition may he generalized as follows.

Let any system be in motion, and let oo, y, z, be the coordinates at

the time t of any particle of mass m. Let also x, y, z\ x, y, z be
the resolved velocities and accelerations of the same particle,

where the dots represent as usual differentiations with regard to

the time. Suppose

V = tm(j> {x, X, X, y, y, y, z, i, z)

to be a given function depending on the structure and motion of

the system, the summation extending throughout the system.

Also let (j) be an algebraic function of the first or second order.

Thus
<f)
may consist of such terms as

axi^ + bxy + cz^ + eyz -hfx +
where a, b, c, &c. are some constants. Then the following

general principle will hold.

The value of V for any system of coordinates is equal to the

value of V obtained for a parallel system of coordinates with the

centre of gravity for origin plus the value of Vfor the whole mass
collected at the centre of gravity with reference to the first system of
coordinates.

For let X, y, z be the coordinates of the centre of gravity, and
let x = x-\- x\ &c., . '. x — x-\-x\ &c.

Now since is an algebraic function of the second order of

X, X, X
; y, &c. it is evident that on making the above sub-

stitution and expanding, the process of squaring &c. will lead to

three sets of terms, those containing only x, x, x, &c., those

containing the products of x, x, &c., and lastly those containing

only X, X, &c. The first of these will on the whole make up
(j) (x, X, &c.), and the last (j) (x, x, &c.).

Hence F= Xm</) (x, 5. . .) 4- S?/z(/) (x, x -\- ...)

+ Sm (Axx' + Bxx + Cxy - ...),

where A, B, C, &c. are some constants.

Now the term ^m{xx) is the same as x^mx\ and this

vanishes. For since ^mx = 0, it follows that ^mx = 0. Simi-

larly all the other terms in the second line vanish.

Hence the value of V is reduced to two terms. But the first

of these is the value of V for the whole mass collected at the

centre of gravity, and the second of these the value of V for

the whole system referred to the centre of gravity as origin.

Hence the proposition is proved.

The proposition would obviously be true if x, y, z, or any
higher differential coefficients were also present in the func-

tion V.
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15. Theorem of the six constants of a body. Given the

moments and products of inertia about three straight lines at right

angles meeting in a point, to deduce the moments and products of
inertia about all other axes meeting in that point

Take these three straight lines as the axes of coordinates.

Let A, B, G he the moments of inertia about the axes of x, y, z\

D, E, F the products of inertia about the axes of yz, zx, xy. Let
a, fi, 7 be the direction-cosines of any straight line through the

origin, then the moment of inertia / of the body about that line

will be given by the equation

I^Aoe-yB^-V Gi" - 2i)/37 - 2£^7a - IFol^,

Let P be any point of the body at which a mass m is situated,

and let x, i/, z be the coordinates of P.

Let ON be the line whose direction-

cosines are a, y8, 7, draw FN perpendicular

to ON.

Since ON is the projection of OF, it is

clearly =xa-\-y^-{- zy, also

OF' ^ay' + y' + z^ and 1 = a^ +^H^.
The moment of inertia / about ON = XmFN^

=^l,m{x' + y'-{-z'-{oLx-\- ^y+yzf} ^
= Im {{x^ + y'-\- z') (a^ + ^2 ^. y)-^''(a^ + /3y 4- yzf] ^

= Sm (?/- -i- z") a" -\- Sm (z' +x')l3' + Xm (x'' + y') y' ^
— 2Xmyz . I3y — 2'2mzx . 7a — 2Xmxy . a^

= ^a^ -f B/3' -f Gy' - 2D/3y - 2EyoL - 2Fa0. y^

It may be shown in exactly the same manner that if A! , B', G'

be the moments of inertia with regard to the planes yz, zx, xy^

that the moment of inertia with regard to the plane whose
direction-cosines are a, /S, 7 is

I' = A'a' + B'^' + ay + 2D^y + 2EyoL -f 2Fa^.

It should be remarked that this formula differs from that

giving the moment of inertia about a straight line in the signs

of the three last terms.

16. When three straight lines at right angles and meeting in

a given point are such that if they be taken as axes of coordinates

all the products Xmxy, '^myz, %mzx vanish, these are said to be

Frincipal Axes at the given point.

The three planes which pass each through two principal axes

are called the Frincipal Flanes at the given point.

The moments of inertia about the principal axes at any point

are called the Frincipal moments of inertia at that point.
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The fundamental formula in Art. 15 may be much simplified

if the axes of coordinates can be chosen so as to be principal

Mxes at the origin. In this case the expression takes the simple

A method will presently be given by which we can always.

find these axes, but in some simpler cases we may determine

tlieir position by inspection. Let the body be symmetrical about

the plane of xy. Then for every element m on one side of the

plane whose coordinates are {x, y, z) there is another element of

equal mass on the other side whose coordinates are {x, y, — z).

Hence for such a body ^mxz = and %myz = 0. If the body be

a lamina in the plane of xy, then the z of every element is zero,

and we have again Xmxz = 0, Xmyz = 0.

Recurring to the table in Art. 8, we see that in every case the

axes, about which the moments of inertia are given, are principal

axes. Thus in the case of the ellipsoid, the three principal

sections are all planes of symmetry, and therefore, by what has

just been said, the principal diameters are principal axes of

inertia. In applying the fundamental formula of Art. 15 to any
body mentioned in the table, we may therefore always use the

modified form given in this article.

17. Examples. Let us now consider how the two important propositions of

Arts. 13 and 15 are to be applied in practice.

Ex. 1. Suppose we want the moment of inertia of an elliptic area of mass M
and semi-axes a and h about a diameter making an angle d with the major axis. The

moments of inertia about the axes of a and h respectively are ^Mb'^ and ^Ma^.

By Art. 16 the moment of inertia about the diameter is ^Mb'^coB^d + ^Ma^sin^d.

If r be the length of the diameter this is known from the equation of the ellipse to.

M a^b^
be the same as — —2" » which is a very convenient form in practice.

Ex. 2. Suppose we want the moment of inertia of the same ellipse about

a tangent. Let p be the perpendicular from the centre on the tangent, then by

Art. 13, the required moment is equal to the moment of inertia about a parallel.

axis through the centre together with Mp'^ = -j —5- +Mp^=—p^, since pr= ab.

Ex. 3. As an example of a different kind, let us find the moment of inertia of

an ellipsoid of mass M and semi-axes (a, b, c) with regard to a diametral plane whose

direction-cosines referred to the principal planes are (a, j8, 7). By Art. 8, the moments

of inertia with regard to the principal axes are lM{b'^ + c^), ^M{c^ + a^), ^M{a^+ b'^).

Hence by Art. 5, the moments of inertia with regard to the principal planes are

iMa^, iMb^, \Mc\ Hence the required moment of inertia is IM {a^a^ + b^^'^ + c^y^).

If p be the perpendicular on the parallel tangent plane, we know by solid geometry

that this is the same as ^Mp^.

Ex. 4. The moment of inertia of a rectangle whose sides are 2a, 26 about

, . 2M a-b^
a diagonal IS ^ ^^^ •
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Ex. 5. If /cj, /Cg be the radii of gyration of an elliptic lamina about two

conjugate diameters, then 7r2 + Tr2 = ^(~2 + ^)'

Ex. 6. The sum of the moments of inertia of an elliptic area about any two

tangents at right angles is always the same.

Ex. 7. If M be the mass of a right cone, a its altitude and b the radius of the

base, then the moment of inertia about the axis is il^b"^; that about a straight

line through the vertex perpendicular to the axis is M% (a^+ ^b^), that about a slant

side M— -^—-T^ ; that about a perpendicular to the axis through the centre of

gravity is ilf^{a2 + 462).

Ex. 8. If a be the altitude of a right cylinder, 6 the radius of the base, then

the moment of inertia about the axis is ^ Mb^ and that about a straight line through

the centre of gravity perpendicular to the axis is lM{^a^+ b^).

Ex. 9. The moment of inertia of a body of mass M about a straight line whose

equation is —- = -—- = referred to any rectangular axes meeting at the
I m n

centre of gravity is

Al^ + Bm^+ Cn^ - 2Dmn - 2Enl - 2Flm+M {f^ + g^+h^-{fl+gm + hnf},

where {I, m, n) are the direction-cosines of the straight line.

Ex. 10. The moment of inertia of an elliptic disc whose equation is

ax^ + 2bxy + cy"^ + 2dx + 2ey + l= 0,

about a diameter parallel to the axis of «, is — .
, ^„-„ , whereM is the mass and

4 (ac-b^)^

H is the determinant ac-b^ + 2bed - ae^ - cd\ usually called the discriminant.

Ex. 11. The moment of inertia of the elliptic disc whose equation in areal

coordinates is <p{x, y, z)=0 about a diameter parallel to the side a is

where A is the area, H the discriminant and K the bordered discriminant.

18. Method of transformation of axes. The method used in Art. 15 to

find the moment of inertia about the straight line ON is really equivalent to a

change of coordinate axes in which this straight line is taken as a new axis, say,

of ^, those of 7} and f not being required. We may now generalize this into a

method which is often of great practical use.

Let us suppose that <p (^, t/, f) is any quadratic function, say

and that it is required to find Sj?i0(^, rj, f) the summation extending throughout

any body.

> s. Select some convenient set of axes which we may call x, y, z

having the same origin such that the six constants of the body,

" P 7^ viz. Zmx^, 'Lmy'^, ^mz'^, "Lmxy, "Lmyz, Smzx, are all known or can

**//
// "^ ff

^^ easily found. Let the direction-cosines of these axes be given
°- P y by the diagram in the margin.

We then have ^= ax+ a'y + a"z, 'q= ^x+ ^'y + p"z
,
^=yx + y'y + y"z. Substitut-

ing these values and expanding we obtain an expression for Sm0 (^, rj, f) in terms

of the six known constants of the body.
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The result may appear at first sight to be rather compHcated, but if the new

axes be properly chosen it reduces in most cases to a few terms. Thus if the axes

of {x, y, z) are principal axes all the terms 'Zmxy, Hmyz, liVizx are zero. Supposing

this choice to be made, the formula reduces to the convenient form

2m0(^, 77, r) = 0(a. ^, 7)2ma;2 + 0(a', ^', y')'Lmy' + <t>[a" ,
/3", y")'Z.mz^...{l).

In using this formula, the coefficient of 'Zmx^ is obtained by substituting for

(^» '?» r) ill (f> '?> f) the direction-cosines of the new axis of x, i.e. the cosines in

the row of the diagram marked x. The coefficient of Zmy" may be obtained by

substituting the direction-cosines of the new axis of y, i.e. the cosines in the row

marked y, and so on.

If it be required to change the origin of coordinates also, this may be done by

an application of the theorem in Art. 14.

If the body is a triangular area or a tetrahedral volume, the value of the integral

Sm0 may be written down at sight when the coordinates of the corners of the body

are given. We have merely to replace the body by any convenient system of equi-

momental points, see Art. 36.

Ex. 1. The coordinates of the centre of an elliptic area are (/, g, h) and the

direction-cosines of its axes are (a, /3, 7) (a', /3', 7'), prove that

Zwf^ = M {h^ + ia^y^ + ib^y'^).

Ex. 2. Let Ox, Oy, Oz be the principal axes at the origin, prove that the

product of inertia F'= 'Em^rj about two rectangular axes 0^, Orj whose directions

are (a, a, a") (/3, j3', j3") is given by either of the formulae

Sw^t;= a^'Zmx^ + a^'Xmy^ + o!'^' ^mz^

= - a/34 - a'p'B - a"/3"C.

The first result is seen at once to be true by substituting the values of

I, 7/ given above ; and the second result follows immediately from the first since

a^+a'^ + a"^"=0. These are vei-y simple formulae to find products of inertia.

Ex. 3. Let {7, 7', y") be the direction-cosines of a fixed axis Of. Then as

Of, Orj turn round Of, prove that both I)''^+ E'^ and A'B' -F''^ are constant where

A', B', C, D', E', F' are the moments and products of inertia of the body referred

I to these moving axes.

For by Ex.2, -D'= A^y -f B^'y' + C^"y", -E'=Aay + Ba'y' + Cal'y"
;

.-. Z>'2 + E'-'= A^y^ (a2 + /32) + 2AByy' {aa' + ^^') + &G.
;

since a? + ^^=l-y'^= y"^ + y"'^ and aa' + ^^'=-yy' we have

D'2 ^E"'= {A~BY {yy'f + {B- Cf {y'y"f + {G-Af (7"7)2.

Similarly A'B' -F'-^= BGy' + CAy'^ + ABy"^.

19. The Ellipsoids of Inertia. The expression which has

been found in Art. 15 for the moment of inertia / about a straight

line whose direction-cosines are (a, y8, 7).

I = Aa' + Bff' + Gy' - 2Dl3y - 2Eya - 2Fal3,

admits of a very useful geometrical interpretation.

Let a radius vector OQ move in any manner about the given

point 0, and be of such length that the moment of inertia about

OQ may be proportional to the inverse square of the length. Then
if R represent the length of the radius vector whose direction-
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cosines are (a, ^, 7), we have / = Me^/R^, where e is some constant

introduced to keep the dimensions correct, and M is the mass.

We shall sometimes abbreviate Me* into the single symbol K.
^

Hence the polar equation of the locus of Q is

^ = Aci' + B/3' + Cy' - 2D^y - 2Eya - 2Fa0.

Transforming to Cartesian coordinates, we have

K=AX'' + BY'+CZ'-2DYZ-2EZX-2FXY,
which is the equation of a quadric. Thus to every point of

a material body there is a corresponding quadric which possesses

the property that the moment of inertia about any radius vector

is represented by the inverse square of that radius vector. The
convenience of this construction is, that the relations which exist

between the moments of inertia about straight lines meeting at

any given point may be discovered by help of the known properties

of a quadric.

Since a moment of inertia is essentially positive, being by
definition the sum of a number of squares, it is clear that every

radius vector R must be real. Hence the quadric is always an
ellipsoid. It is called the momental ellipsoid, and was first used

by Cauchy, Exercices de Math. Vol. 1 1.

So much has been written on the ellipsoids of inertia that it is difficult to deter-

mine what is really due to each of the various authors. The reader will find much
information on these points in Prof. Cayley's report to the British Association on

the Special Problems of Dynamics, 1862.

20. The Invariants. The momental ellipsoid is defined by
a geometrical property, viz. that any radius vector is equal to some
constant divided by the square root of the moment of inertia

about that radius vector. Hence whatever coordinate axes are

taken, we must always arrive at the same ellipsoid. If therefore

the momental ellipsoid be referred to any set of rectangular axes,

the coefficients of X^ Y\ Z^, -2YZ, - 2ZX, -2Z7 in its equa-

tion will still represent the moments and products of inertia about
these axes.

Since the discriminating cubic determines the lengths of the

axes of the ellipsoid, it follows that its coefficients are unaltered
by a transformation of axes. But these coefficients are

A-\-B-]-G,

AB-\-BG+GA-D'-E'-F\
ABC - 2DEF- AD'' - BE' - GF\

Hence for all rectangular axes having the same origin, these are
invariable and all are greater than zero.
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^2 y^ /I 1

21. It should be noticed that the constant e is arbitrary,

though when once chosen it cannot be altered. Thus we have
a series of similar and similarly situated ellipsoids, any one of
which may be used as a momental ellipsoid.

When the body is a plane lamina, a section of the ellipsoid

corresponding to any point in the lamina by the plane of the
lamina, is called a momental ellipse at that point.

If principal axes at any point of a body be taken as axes of
coordinates, the equation of the momental ellipsoid takes the
simple form AX"" +BV + GZ^^ = Me^ where M is the mass and e*

any constant. Let us now apply this to some simple cases.

Ex. 1. To Jind the momental ellipsoid at the centre of a material elliptic disc.

Taking the same notation as before, we have A = ^Ml)^, B = ^Ma'^, C= lM{a^-{-h'^).

Hence the ellipsoid is 1 3Ib'^X^ + 1 Ma^ Y-^ +^M (a^ + h'^) Z'^= 3h\

Since e is any constant, this may be written „ + tt + ( -<
a^ b^ '\a'

When Z= 0, this becomes an ellipse similar to the boundary of given disc. Hence
we infer that the momental ellipse at the centre of an elliptic area is any similar

and similarly situated ellipse. This also follows from Art. 17, Ex. 1.

Ex. 2. To find the momental ellipsoid at any point O of a material straight rod

AB of mass M and length 2a. Let the straight line OAB be the axis of x, O the

origin, G the middle point of AB, OG= c. If the material line can be regarded

as indefinitely thin, ^=0, B =M {^a^ + c^) = G, hence the momental ellipsoid is

Y^ + Z'= €'^, where e' is any constant. The momental ellipsoid is therefore an

longated spheroid, which becomes a right cylinder having the straight line for

,xis, when the rod becomes indefinitely thin.

Ex. 3. The momental ellipsoid at the centre of a material ellipsoid is

(Z>2 + c2) Z2 + {c2 + a-) T' + {a" + h") Z'= e^

where e is any constant. It should be noticed that the longest and shortest axes of

he momental ellipsoid coincide in direction with the longest and shortest axes

•espectively of the material ellipsoid.

22. Conversely, we may show that any ellipsoid being given, a real material

body can be found of which it is the momental ellipsoid provided the sum of the

Jtquares of the reciprocals of any two of its axes is greater than the square of

'he reciprocal of the third.

For let the moments of inertia about the principal diameters be A=Kla^,
B = Kjb^, C= Klc^, then by Art. 5 it is necessary that the sum of any two of the

ihree A, B, C should be greater than the third. Again, this condition is sufficient,

'or if we place two particles on each principal diameter, at such distances from the

)rigin, ±jp, ±g, ±?-, and of such masses, m, m\ m", that

4.mp'^=B + G-A, 4mq^-=G + A-B, 4mr-= A + B-C,
hese six particles will have the principal diameters for principal axes, and the

ven quantities. A, B, G for their principal moments of inertia.

23. Elementary Properties of Principal Axes. By a
sonsideration of some simple properties of ellipsoids, the following

ropositions are evident

:

R. D. 2
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I. Of the moments of inertia of a body about axes meeting at

a given point, the moment of inertia about one of the principal axes

is greatest and about another least

For, in the momental ellipsoid, the moment of inertia about

a radius vector from the centre is least when that radius vector

is greatest and vice versa. And it is evident that the greatest and
least radii vectores are two of the principal diameters.

It follows by Art. 5 that of the moments of inertia with regard

to all planes passing through a given point, that with regard to

one principal plane is greatest and with regard to another is least.

II. If the three principal moments at any point are equal

to each other, the ellipsoid becomes a sphere. Every diameter is

then a principal diameter, and the radii vectores are all equal.

Hence every straight line through is a principal axis at 0, and
the moments of inertia about them a,re all equal.

For example, the perpendiculars from the centre of gravity of

a cube on the three faces are principal axes ; for, the body being
referred to them as axes, we clearly have ^mxy = 0, ^myz = 0,

^mzx = 0. Also the three moments of inertia about them are by
symmetry equal. Hence every axis through the centre of gravity

of a cube is a principal axis, and the moments of inertia about
them are all equal.

Next suppose the body to be a regular solid. Consider two
planes drawn through the centre of gravity each parallel to a face

of the solid. The relations of these two planes to the solid are

in all respects the same. Hence also the momental ellipsoid at

the centre of gravity must be similarly situated with regard to

each of these planes, and the same is true for planes parallel to all

the faces. Hence the ellipsoid must be a sphere and the moment
of inertia will be the same about every axis.

Ex. 1. Three equal particles A, B, C are placed at the corners of an equilateral

triangle
;
prove that the momental ellipse at their centre of gravity G is a circle.

By symmetry the diameters GA, GB, GG of the momental ellipse at G must be

equal. The ellipse is therefore a circle.

Ex. 2. Four equal particles are placed at the corners of a tetrahedron. If the

momental ellipsoid at their centre of gravity is a sphere, prove that the tetrahedra

is regular.

Ex. 3. Any point in a body being given and any plane drawn through i

prove that two straight lines at right angles can be drawn in this plane through
such that the product of inertia about them is zero.

These are the axes of the section of the momental ellipsoid at the point

formed by the given plane.

24. At every point of a material system there are always thri

principal axes at right angles to each other.

Construct the momental ellipsoid at the given point. Then
has been shown that the products of inertia about the axes art

i
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half the coefficients of - XF, - YZ, — ZX in the equation of

the momental ellipsoid referred to these straight lines as axes of

coordinates. Now if an ellipsoid be referred to its principal

diameters as axes, these coefficients vanish. Hence the principal

diameters of the ellipsoid are the principal axes of the system.

But every ellipsoid has at least three principal diameters, hence
every material system has at least three principal axes.

25. Ex. 1. The principal axes at the centre of gravity being the axes of

reference, prove that the momental ellipsoid at the point [p, q, r) is

(4+5' + »'') -^+ (§ +»"'+^') Y' + (jj+P^+ Q'') ^'

-

2?'-Fif - 2rpZX-2pqXY=e\

when referred to its centre as origin.

Ex. 2. Show that the cubic equation to find the three principal moments of

inertia at any point {p, q, r) may be written in the form of a determinant

I-A
^ q--r^ pq rp

PQ
j^[

-r--p- qr-r--p-

I-C

= 0.

m=0,\

•n=oi

n= 0.)

If (I, m, n) be proportional to the direction-cosines of the axes corresponding to

any one of the values of 7, theii' values may be found from the equations

{I-{A+3Iq^+ Mr^) } I + Mpqm + Mipn

=

0,

Mpql +\I-{B + Mr^+ Mp^) } m +Mqm -

Mrpl + Mqrm+ {I - (C+ iHp^ + Mq'^)

)

Thus {I, m, n) are proportional to the minors of the constituents of any row of the

determinant.

Ex. 3. If S^ = be the equation to the momental ellipsoid at the centre of

gravity referred to any rectangular axes written in the form given in Art. 19,

hen the momental ellipsoid at the point P whose coordinates are {p, q, r) is

S+ M{p'^ + q^+ r^){X-^+Y-^ + Z^)-M{pX + qY-rfZf~= 0.

lence show (1) that the conjugate planes of the straight line OP in the momental
llipsoids at O and P are parallel and (2) that the sections perpendicular to OP
lave their axes parallel.

26. Ellipsoid of Gyration. The reciprocal surface of the
nomental ellipsoid is another ellipsoid, which has also been em-
>loyed to represent, geometrically, the positions of the principal

ixes and the moment of inertia about any line.

We shall require the following elementary proposition. The reciprocal surface

>f the ellipsoid -^ +^ + -^ = 1 is the ellipsoid a^x^+ bhj-+ c^z-= €*.

Let ON be the perpendicular from the origin O on the tangent plane at any
int P of the first ellipsoid, and let I, m, n be the direction-cosines of ON, then

}N^= a^l^+b-^m^+c^n'^. Produce ON to Q so that OQ= e^jON, then Q is a point

n the reciprocal surface. Let OQ = R., :. €^ = {arP-+b'^m'^ + c-n^)R^. Changing
his to rectangular coordinates, we get e'^=d^x'^ +}}^y^+ c^z^.

'1 9
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To each point of a material body there corresponds a series

of similar momental ellipsoids. If we reciprocate these we get

another series of similar ellipsoids coaxial with the first, and such

that the moments of inertia of the body about the perpendiculars

on the tangent planes to any one ellipsoid are proportional to

the squares of those perpendiculars. It is, however, convenient

to call that particular ellipsoid the ellipsoid of gyration which

makes the moment of inertia about a perpendicular on a tangent

plane equal to the product of the mass into the squai'e of that

perpendicular. If M be the mass of the body and A, B, G the

principal moments, the equation of the ellipsoid of gyration is

~A'^ B'^ G ~
M'

It is clear that the constant on the right-hand side must be

IjM, for when Y and Z are put equal to zero, MX"^ must by
definition be A.

27. Conversely, the series of momental ellipsoids at any point

of a body may be regarded as the reciprocals, with different con-

stants, of the ellipsoid of gyration at that point. They are all of

an opposite shape to the ellipsoid of gyration, having their longest

axes in the direction of the shortest axis and their shortest axes

in the direction of the longest axis of the ellipsoid of gyration.

The momental ellipsoids however resemble the general shape of

the body more nearly than the ellipsoid of gyration. They are

protuberant where the body is protuberant and compressed where
the body is compressed. The exact reverse of this is the case in

the ellipsoid of gyration. See Art. 22, Ex. 3.

28. Ex, 1. To find the ellipsoid of gyration at the centre of a material elliptic

disc. Taking the values of A, B, C given in Art. 22, Ex. 1, we see that the

ellipsoid of gyration is -j^ + —. + -^ ,0 = 7.

Ex. 2. The ellipsoid of gyration at any point of a material rod AB is

-r- + T-T,
—

-o + ,- > 0=1, taking the notation of Art. 21, Ex. 2. It is thus a very
^a^ + c^ ^a^-\-c^

flat spheroid which, when the rod is indefinitely thin, becomes a circular area, whose

centre is at 0, whose radius is J^ a^ + c^ and whose plane is perpendicular to the rod.

Ex. 3. It may be shown that the general equation of the ellipsoid of gyration

referred to any set of rectangular axes meeting at the given point of the body is

A -F -E MX 1=0,

-F B -D 3IY

-E -D C MZ
MX MY MZ M

or, when expanded,

{BG - D2) A'2+ (C^ - £2) Y^ + {AB - F'^) Z-^ + 2{AD + EF) YZ + 2 (BE + FD) ZX

+ 2{CF+ DE) XY=~{ABC -AD^- BE'- - GF^-2DEF).

The right-hand side, when multiplied by 31, is the discriminant obtained by

leaving out the last row and the last column, and the coefficients of A'^, Y^, Z'-,

2ZX, 2XY, 2YZ are the minors of this discriminant.

_J
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29. The use of the ellipsoid whose equation referred to the

principal axes at the centre of gravity is

z^ J[!_ _Z!_^1
^mx^ ^my"- Sm^'-* if'

has been suggested by Legendre in his Fonctions ElUptiques.

This ellipsoid is to be regarded as a homogeneous solid of such

density that its mass is equal to that of the body. By Art. 8,

Ex. 3, it possesses the property that its moments of inertia with

regard to its principal axes, and therefore by Art. 15 its moments
of inertia with regard to all planes and axes, are the same as

those of the body. We may call this ellipsoid the equimomental

ellipsoid or Legendre s ellipsoid.

Ex. If a plane move so that the moment of inertia with regard to it is always

proportional to the square of the perpendicular from the centre of gravity on the

plane, then this plane envelopes an ellipsoid similar to Legendre's ellipsoid.

30. There is another ellipsoid which is sometimes used. By Art. 15 the

moment of inertia with reference to a plane whose direction-cosines are (a, /3, 7) is

r= Sma;2 . a^+ Swi?/^ . ^2 ^ 2»i22 ^ ^2^ 21^myz . ,87 + 11.mzx . 7a+ 2'2vixy . a^.

Hence, as in Art. 19, we may construct the ellipsoid

2ma;2 . Z^+ Sm?/2 . 72+ Sm^^ . ^2 + 2Smt/2 . YZ + 2^mzx . ZX+22mxy . XY= K.

Then the moment of .inertia with regard to any plane through the centre is repre-

sented by the inverse square of the radius vector perpendicular to that plane.

If we compare the equation of the momental ellipsoid with that of this ellipsoid,

we see that one may be obtained from the other by subtracting the same quantity

from each of the coefficients of Z^, y^, Z^. Hence the two ellipsoids have their

circular sections coincident in direction.

This ellipsoid may also be used to find the moments of inertia about any

straight line through the origin. For we may deduce from Art. 15 that the moment
of inertia about any radius vector is represented by the difference between the

inverse square of that radius vector and the sum of the inverse squares of the

semi-axes. This ellipsoid is a reciprocal of Legendre's ellipsoid. All these ellipsoids

have their principal diameters coincident in direction, and any one of them may be

used to determine the directions of the principal axes at any point.

31. When the body considered is a lamina, the section of the ellipsoid of

gyration at any point of the lamina by the plane of the lamina is called the ellipse

of gyration. If the plane of the lamina be the plane of xy, we have 'Zmz^= 0.

The section of the fourth ellipsoid is then clearly the same as an ellipse of gyration

at the point. If any momental ellipse be turned round its centre through a right

angle it evidently becomes similar and similarly situated to the ellipse of gyration.

Thus, in the case of a lamina, any one of these ellipses may be easily changed

into the others.

32. Equimomental Cone. A straight line passes through a fixed point and

moves about it in such a nuinner that the moment of inertia about the line is alioays

the same and equal to a given quantity I. To find the equation of the cone generated

by the straight line.

Let the principal axes at O be taken as the axes of coordinates, and let (a, j3, 7)

be the direction-cosines of the straight line in any position. Then by Art. 16 we

have Aa^-irB^-+Cy-= I. Hence the equation of the locus is
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or, transforming to Cartesian coordinates,

{A - I)x^+{B - I)y^+ {C - 1) z^= 0.

It appears from this equation that the principal diameters of the cone are the

principal axes of the body at the given point.

The given quantity I must be less that the greatest and greater than the least

of the moments A, B, C. Let A, B, C he arranged in descending order of magni-

tude ; then if I be less than B, the cone has its concavity turned towards the axis

C, if I be greater than B the concavity is turned towards the axis ^, if I=B the

cone becomes two planes which are coincident with the central circular sections of

the momental ellipsoid at the point 0.

The geometrical peculiarity of this cone is that its circular sections in all cases

are coincident in direction with the circular sections of the momental ellipsoid at

the vertex.

This cone is called an equimoviental cone at the point at which its vertex is

situated.

33. On Equimomental Bodies. Two bodies or systems of

bodies are said to be equimomental when their moments of inertia

about all straight lines are equal each to each.

34. If two systems have the same centre of gravity, the same
mass, the same principal axes and principal moments at the centre

of gravity, it follows from the two fundamental propositions of

Arts. 13 and 15 that their moments of inertia about all straight

lines are equal, each to each.

The converse theorem is also true. If the two bodies have

equal moments of inertia about every straight line, it is evident

that the axes of maxima and minima moments are the same in

the two bodies. Of all straight lines having a given direction

that one has the least moment of inertia for either body which
passes through the centre of gravity of that body (Art. 13).

Consider any direction perpendicular to the straight line joining

the two centres of gravity G, G'. The minimum for one body
passes through G and for the other through G'. They cannot

be the same unless G, G' coincide.

Next consider all the directions which pass through the

common centre of gravity. The axes of greatest and least

moments of inertia for each body are two of the principal axes

of that body (Art. 23). These must therefore coincide in the

two bodies. The third axis in each body is perpendicular to

these two, and they also must coincide.

Lastly, consider two parallel axes at a distance p apart, one
passing through the common centre of gravity. By the theorem
of parallel axes, the difference of the moments of inertia about
these for either body is Mpr, where M is the mass of that body.

But both the moments of inertia and the distance p are the same
for each body. Hence the masses are also equal.

It is easy to see that two equimomental systems must have
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the same momental ellipsoid, and therefore the same principal

axes at every point.

35. Case of a Triangle. To find the moments and products

of inertia of a triangle about any axes whatever.

If y8 and 7 be the distances of the angular points B, G, of a

triangle ABC from any straight line AX drawn through the

angle A^ in the plane of the triangle, it is known that the moment
of inertia of the triangle about AX is ^M{^'^-\- ^^ + 'y-\ where

M is the mass of the triangle.

Let three equal particles, the mass of each being \M, be placed

at the middle points of the three sides. Then it is easily seen,

that the moment of inertia of the three particles about AX is

ftm-©-©'
which is the same as that of the triangle. The three particles,

treated as one system, and the triangle have the same centre of

gravity. Let this point be called 0. Draw any straight line OX'
through the common centre of gravity parallel to AX, then it

is evident that the moments of inertia of the two systems about

OX' are also equal.

Since this equality exists for all straight lines through in

the plane of the triangle, it will be true for two straight lines

OX', OV at right angles, and therefore also for a straight line

OZ' perpendicular to the plane of the triangle.

One of the principal axes at of the triangle, and of the

systems of three particles, is normal to the plane, and therefore the

same for the two systems. The principal axes at in the plane,

are those two straight lines about which the moments of inertia

are greatest and least, and therefore by what precedes these axes

are the same for the two systems. If at any point two systems

have the same principal axes and principal moments, they have

also the same moments of inertia about all axes through that

point, and the same products of inertia about any two straight

lines meeting in that point. And if this point be the centre of

gravity of both systems, the same thing will also be true for any

other point.

If then a particle whose mass is one-third that of the triangle

he placed at the middle point of each side, the moment of inertia

of the triangle about any straight line, is the same as that of the

system of particles, and the product of inertia about any two

straight lines meeting one another, is the same as that of the

system of particles.

36. The existence of equimomental points is of the greatest

utility in finding the moments and products of inertia of a body

about any axes. They may also be used for more general integra-
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tioti^. Thus suppose any given body to be equimomental to three

particles whose coordinates are (a?,, y^, z^), (a?2, 3/3, 2^2), (x^, y^, 2-3).

Since the masses placed at these points may not in all cases

be equal, let these masses be respectively M^, M.., M^, where of

course the sum is equal to the mass of the body. Let (^(a*, y, z)

be any function of 00, y, z which does not contain any power higher
than the second. Let it be required to find the value of the

integral or sum ^m<^ {x, y, z) taken throughout the body, where
m is an element of the mass. The required integral is evidently

equal to M,(f> {a;,, y,, Zj) + Mo<t> (x^, y.,, -s-o) + J\l,(j) {x.„ y,, z^).

By properly choosing the equivalent points we may use a
similar rule in which <^ is any cubic or qiiartic function of x, y, z,

but as these cases are not wanted in rigid dynamics we shall

merely state a few results a little farther on.

The same body may be equimomental to several systems of

points, and some of these sets may be more convenient than the
others. In order that a set of equimomental points may be useful

it is necessary (1) that the points should be so conveniently placed

in the body that their coordinates can be easily found with regard

to any given axes, (2) that the number of points employed in the

set should be as small as possible. Of these two requisites the
first is by far the more important.

Equimomental points have another use besides that of shorten-

ing integrations which may otherwise be troublesome. It will be
presently seen that they have a dynamical importance.

37. A motut'iital ellipsoid at the centre of gravity of any triangle may he found
as follows.

Let an ellipse be inscribed in the triangle touching two of the sides AB, BG
in their middle points F, D. Then, by Carnot's theorem, it touches the third side

CA in its middle point E. Since DF is parallel to CA the tangent at E, the straight

line joining E to the middle point N of DF passes through the centre, and therefore

the centre of the conic is at the centre of gravity of the triangle.

This conic may be shown to be a momental ellipse of the triangle at 0. To
prove this, let us find the moment of inertia of the triangle about OE. Let

OE— r, and let /' be the semi-conjugate diameter, and w the angle between r and r'.

Now ON=^r, and hence from the equation of the ellipse i«W2= |r'=^,

therefore moment of ) .,,, ,« . o M A'^

inertia about 0£ \
= n^ .^r^sm^u,, =^.:^,'.

where A' is the area of the ellipse, so that the moments of inertia of the system

about OE, OF, OD are proportional inversely to OE'^, OF^, 0D'\ If we take a

momental ellipse of the right dimensions, it will cut the inscribed conic in E, F,

and D, and therefore also at the opposite ends of the diameters through these

points. But two conies cannot cut each other in six points unless they are iden-

tical. Hence this conic is a momental ellipse at O of the triangle.

A normal at O to the plane of the triangle is a principal axis of the triangle

(Art. 16). Hence a momental ellipsoid of the triangle has the inscribed conic for

one principal section. If 2a and 26 be the lengths of the axes of this conic, 2c that

of the axis of the ellipsoid which is perpendicular to the plane of the lamina, we
have, by Arts. 7 and 19, l/c2=l/a2+l/62.
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If the triangle be an equilateral triangle, the momental ellipsoid becomes a

spheroid, and every axis through the centre of gravity in the plane of the triangle

is a principal axis.

Since any similar and similarly situated ellipse is also a momental ellipse, we

may take the ellipse circumscribing the triangle, and having its centre at the centre

of gravity, as the momental ellipse of the triangle.

88. Ex. 1. A momental ellipse at an angular point of a triangular area touches

tlie opposite side at its middle point and bisects the adjacent sides.

Ex. 2. A momental ellipse at the middle point F of the side AB of a triangular

lamina ABC circumscribes the triangle and has FG, FB for conjugate diameters.

Prove also that another momental ellipse at the same point F touches the sides ACy

BC at their middle points.

Ex. 3. The principal radii of gyration at the centre of gravity of a triangle

d^ + b^ + c'^ A^
are the roots of the equation x* o6' ^^+ T7:o= ^>

where A is the area of the triangle.

Ex. 4. The direction of the principal axes at the centre of gravity O of a

triangle may be constructed thus. Draw at the middle point D of any side BG

lengths DH =— , BH' — ~~- along the perpendicular, where p is the perpendicular

from A on BG and /o, k' are the principal radii of gyration found by the last

example. Then OH, OH' are the directions of the principal axes at O, whose

moments of inertia are respectively Mk^ and Mk'^.

Ex. 5. The directions of the principal axes and the principal moments at the

centre of gravity may also be determined thus. Draw at the middle point D of any

side BG a perpendicular DK=BGI2iJS. Describe a circle on OK as diameter and

join D to the middle point of OK by a line cutting the circle in R and S, then OR, OS
are the directions of the principal axes, and the moments of inertia about them are

respectively p/. DS'^ and ^M.DR'K

Ex. 6. Let four particles each one-sixth of the mass of the area of a parallelo-

gram be placed at the middle points of the sides and a fifth particle one-third of the

same mass at the centre of gravity, then these five particles and the area of the

parallelogram are equirnomental systems.

Ex. 7. Let particles each equal to one-twelfth of the mass of a quadrilateral

area be placed at each corner and let a fifth particle of negative mass but also one-

twelfth be placed at the intersection of the diagonals. Then the centre of gravity of

the quadrilateral area is the centre of gravity of these five particles. Let a sixth

particle equal to three-quarters of the mass of the quadrilateral be placed at the

centre of gravity thus found. Prove that these six particles are equirnomental to the

quadrilateral area.

Ex. 8. Let particles each equal to one-quarter of the mass of an elliptic area be

placed at the middle points of the chords joining the extremities of any pair of con-

jugate diameters. Prove that these four particles are equirnomental to the elliptic area.

Ex. 9. Let a tenth of the mass of a solid homogeneous ellipsoid be placed at

each of the six extremities of a set of conjugate diameters and two-fifths of the

mass at the centre, prove that this system of particles is equimomental to the ellipsoid.

Ex. 10. Any sphere of radius a and mass M is equimomental to a system of

\ four particles each of mass ^ ( } placed so that their distances from the centre

! make equal angles with each other and are each equal to r, and a fifth particle equal

i to the remainder of the mass of the sphere placed at the centre.
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39. Case of a Tetrahedron. To find the moments and pro-

ducts of inertia of a tetrahedron about any axes whatever, i.e. to

find a system of equimomental particles.

Let ABCD be the tetrahedron. Through one angular point

D draw any plane and let it be taken as the plane of xy. Let D
be the area of the base ABC, a, y8, 7 the distances of its angular

points from the plane of xy, and p the length of the perpendicular

from D on the base ABC.

Let PQR be any section parallel to the base ABC and of

thickness du, where u is the perpendicular from D on PQE. The

moment of inertia of the triangle PQR with respect to the plane

of xy is the same as that of three equal particles, each one-third

its mass, placed at the middle points of its sides. The volume of

the element PQR = -^ J^du. The ordinates of the middle points of

the sides AB, BC, GA are respectively ^ (a + 0), i (^ + 7)^ i (7 + «)•

Hence, by similar triangles, the ordinates of the middle points of

PQ, QR, RP are i (« + ^) Wp. i (^ + 7) ^IP> i (7 + «) ^/P-

The moment of inertia of the triangle PQR with regard to the

plane xy is therefore

Integrating from u = to u=p, we have the moment of

inertia of the tetrahedron with regard to the plane xy

= TV^{«'+/52 + 7'+/37 + 7a + a^},

where V is the volume.

If particles each one-twentieth of the mass of the tetrahedron

were placed at each of the angular points and the rest of the

mass, viz. four-fifths, were collected at the centre of gravity, the

moment of inertia of these five particles with regard to the plane

of .2/ would be = f|(«+|±-^J + J«^+ £^^ + £-yS

which is the same as that of the tetrahedron.

The centre of gravity of these five particles is the centre of

gravity of the tetrahedron, and together they make up the mass
of the tetrahedron. Hence, by Art. 13, the moments of inertia of

the two systems with regard to any plane through the centre of

gravity are the same, and by the same article this equality will

exist for all planes whatever. It follows, by Art. 5, that the

moments of inertia about any straight line are also equal. The
two systems are therefore equimomental.

40. Theory of Projections. If the distance of every point

in a given figure in space from some fixed plane be increased in a
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fixed ratio, the figure thus altered is called the projection of the

given figure. By projecting a figure from three planes at right

angles as base planes in succession, the figure may be often much
implified. Thus an ellipsoid can always be projected into a

sphere, and any tetrahedron into a regular tetrahedron.

It is clear that if the base plane from which the figure is

projected be moved parallel to itself into a position distant D
from its former position, no change of form is produced in the

projected figure. If n be the fixed ratio of projection the pro-

ected figure has merely been moved through a space nD perpen-

dicular to the base plane. We may therefore suppose the base

lane to pass through any given point which may be convenient.

41. If two bodies are equimomental, their projections are also

Bquimomental.

Let the origin be the common centre of gravity, then the

two bodies are such that 1m = Sm' ; 2m^ = 0, 2mV = 0, &c.,

Sm^- = 2mV'^, Imyz = 1my'z, &;c., unaccented letters referring

to one body and accented letters to the other. Let both the

bodies be projected from the plane of xy in the fixed ratio 1 : n.

Then any point whose coordinates are (x, y, z) is transferred to

X, y, nz) and {x\ y\ z') to {x\ y\ nz). Also the elements of mass
Im, ni' become m/tand nm. It is evident that the above equalities

are not affected by these changes, and that therefore the projected

bodies are equimomental.

The projection of a momental ellipse of a plane area is a
niomental ellipse of the projection.

Let the figure be projected from the axis of x as base line,

so that any point (x, y) is transferred to {x, y) where y' — ny, and
any element of area m becomes m where m! = nm. Then

Imx^ = - %m'x^, '%mxy = -^ ^m'xy', ^my'^ = — Im'y"^.

The momental ellipses of the primitive and the projection are

l^my^X^ - 21mxyXY+ Imx' Y^ = Me',

Im'y'^X'^ - 2Xm'xy'X'Y' + l^m'x'Y' = M'e\

To project the former we put X'=X, Y' = nY. Its equation
becomes identical with the latter by virtue of the above equalities

when we put e'^ = €'n\

42. Ex. 1. A momental ellipse of the area of a square at its centre of gravity

is easily seen to be the inscribed circle. By projecting this figure first with one side

base line, and secondly with a diagonal as base, the square becomes successively

a rectangle and a parallelogram. Hence one momental ellipse at the centre of gravity

of a parallelogram is the inscribed conic touching the sides at their middle points.

Ex. 2. By projecting an equilateral triangle into any triangle, we may infer the

results of some of the previous articles, but the method will be best explained by its

application to a tetrahedron.
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Ex. 3. Since any ellipsoid may be obtained by projecting a sphere, we infer by

Art. 38, Ex. 10, that any solid ellipsoid of mass M is equimomental to a system of

four particles each of mass ^ -^ placed on a similar ellipsoid whose linear dimen-

sions are n times as great as those of the material ellipsoid, so that the eccentric

lines of the particles make equal angles with each other, and a fifth particle equal to

the remainder of the mass of the ellipsoid placed at the centre of gravity.

If this material ellipsoid be the Legendre's ellipsoid of any given body, we

see that any body whatever is equimomental to a system of five particles placed as

above described on an ellipsoid similar to the Legendre's ellipsoid of the body.

Ex. 4. Show that a solid oblique cone on an elliptic base is equimomental to a

system of three particles each one-tenth of the mass of the cone placed on the cir-

cumference of the base so that the differences of their eccentric angles are equal, a

fourth particle equal to three-tenths of the cone placed at the middle point of

the straight line joining the vertex to the centre of gravity of the base, and a

fifth particle to make up the mass of the cone placed at the centre of gravity of the

volume.

43. To find an ellipsoid equimomental to any tetrahedron. The moments of

inertia of a regular tetrahedron with regard to all planes through the centre of

gravity are equal by Art. 23. If r be the radius of the inscribed sphere, the

moment with regard to a plane parallel to one face is easily seen by Art. 39 to be

M _ . If then we describe a sphere of radius p= JSr, with its centre at the centre
5

of gravity, and its mass equal to that of the tetrahedron, this sphere and the tetra-

hedron will be equimomental. Since the centre of gravity of any face projects into

the centre of gravity of the projected face, we infer that the ellipsoid to which any
tetrahedron is equimomental is similar and similarly situated to that inscribed in

the tetrahedron and touching each face in its centre of gravity, but has its linear

dimensions greater in the ratio 1 : ^J'd. It may also be easily seen that the sphere

whose radius is p= iJSr, touches each edge of the regular tetrahedron at its middle

point. Hence we infer that the ellipsoid equimomental to any tetrahedron touches

each edge at its middle point and has its centre at the centre of gravity of the volume.

Ex. 1. If £2 be the sum of the squares of the edges of a tetrahedron, F- the

sum of the squares of the areas of the faces and V the volume, show that the semi-

axes of the ellipsoid inscribed in the .tetrahedron, touching each face in the centre

of gravity and having its centre at the centre of gravity of the tetrahedron, are the

roots of 6__^ 4 Z! 2_Z!_-n
^ 2^. 3 '^ "^24.32^ 26. 3~'

and that, if the roots be ^Pi, ±p.2' ^P3» *^6 moments of inertia with regard to the

principal planes of the tetrahedron are M-~ , M -^ , M ~~ .

o o o

Ex. 2. If a perpendicular EP be drawn at the centre of gravity E of any!
face = 4p2/2), where p is the perpendicular from the opposite corner of the tetrahedron

"

on that face, then P is a point on the principal plane corresponding to the root p of

the cubic.

44. Four particles of equal mass can always be found lohich are equimomental to

any yiven solid body.

Let O be the centre of gravity of the body, Ox, Oy, Oz, the principal axes at 0.

Let the moments of inertia with regard to the coordinate planes be Ma^, 31^^, and
My"^. By Art. 34, the mass of each particle must be ^M. Let (x-^yiZ^) &c. {.x^y^z^)
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bo the required coordinates of these four points. Then these twelve coordinates

must satisfy the nine equations

Now if we write .T-^^ = a^-^, .x-2= a^2 &c. yi^^Vi^ Vi^^V^ *c. ^i==7^i &c. we have

nine equations to find the twelve coordinates (Ii7;i^i) &c. (^47/4^4) which differ from

those just written down only in having a"^, ^^, y^ each replaced by unity. These

modified equations express that the momental ellipsoid at O of the four particles

must be a sphere. The equations are therefore satisfied if the four points, whose

coordinates are represented by the Greek letters, are the corners of a regular tetra-

hedron. (See also Art. 23, Ex. 2.) This tetrahedron may be regarded as inscribed

in a sphere whose radius is ,^3. If we project this sphere into an ellipsoid whose

semi-axes are a, ]8, 7 the regular tetrahedron will be deformed into an oblique tetra-

hedron. The corners of this oblique tetrahedron are the required equimomental

points.

In the same way we may prove that three particles of equal mass can always be

found which are equimomental to any plane area. If 3Ia'^, M^^, and zero are the

moments of inertia of the area about the principal planes at the centre of gravity,

the result is that these particles must lie on the ellipse ^-x^' + a^y^= 2a^^". It also

follows that, if one of these points, as I>, be taken anywhere on this ellipse, the

other two points, E and F, are at the opposite extremities of that chord which is

bisected in some point N by the produced radius DO so that ON=1^01).

45. Moments with Higher Powers. These moments are

not often wanted in dynamics though they are useful in other

subjects. It will therefore be sufficient to state here some general

results and to sketch the proofs in a note at the end of this

volume. Some generalisations will also be added.

Let da and dv be any elementary area and volume as the case

may be. Let z be its ordinate referred to any plane of xy. Our
object is to find the integral jz'^do- or jzMv for a triangle, quadri-

lateral, tetrahedron, &c.

Let the coordinates of the corners of the body be {x-^^yiZ^),

(x^y^z^, &c. Let SniziZ^, &c.) represent the sum of the different

homogeneous products of n dimensions of as many of the ^'s as

are included in the bracket.

Then for a triangle of area A,

For a quadrilateral of area A
1 2 A

where z^ is the ordinate of the intersection of the diagonals.

For a tetrahedron of volume V

^^"*
= or+ !)(,!+% fa +3) ^" (""^»"'>-
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For two tetrahedra joined together, whose united volume is V

where / is the ordinate of the point of intersection of the common
base with the straight line joining the two vertices.

We notice that, except for the factor A or F representing the

area or volume, these four expressions are functions of the ordinates

only of the corners and are not functions of the differences of the

abscissae.

When the value of jz^'da- is known that of n\xz'^-^d<T can be found by performing

the operation x^-t-+x^^-^ ... on the former result. The value of n {n - Vjlx'^z'^-'^da

can be found by repeating the operation and so on.

Lastly, it may be shown that when two bodies are such that the values of Jz" do-

are equal, each to each, for all planes of xy these bodies are equimomental.

Ex. 1. If (p {x, y, z) be a function not higher than the third degree the value of

j(pd<r for any triangle can be found by using seven equivalent or equimomental

points. We collect one-tioentieth of the mass of the area at each corner, tico-

Jifteenths at the middle point of each side, and the rest, viz. nine-txcentieths, at the

centre of gravity.

Ex, 2. If (f){x, y, z) be not higher than the third degree the value of j(f>dv for

a tetrahedron can be represented by eight equivalent points. We collect nine-

fortieths of the volume at the centre of gravity of each face and one-fortieth at each

corner. Other examples may he found in No. 83 Quarterly Journal of Mathematics,

1886.

46. Theory of Inversion. To explain how the theory of
invey^sion can he applied to find moments of inertia.

Let a radius vector drawn from some fixed origin O to any point P of a figure be

produced to P', where the rectangle OP .OP' = k^, k being some given quantity.

Then as P travels all over the given figure, P' traces out another which is called

the inverse of the given figure.

Let {x, y, z) be the coordinates of P, {x', y\ z') those of P'; r, r' the radii vectores,

dv, dv' corresponding polar elements of volume; p, p', dm, dm' their respective

densities and masses. Let dw be the solid angle subtended at by either dv

or dv'. Then dv'= r'^d(j)dr' =i-\ r^du}dr=l~\ dv,

x' X //c\^^
and since — = - we have x''^dv'=[ - \ x^dv. Now dm= pdv, dm' = p'dv'. If then

p' /r\^*'
we take ?- = (

J
we have l,x''^dm'=z'SiX^dm, with similar equalities in the case of

all th^ other moments and products of inertia.

When the body is an area or an arc the ratio of dv' to dv is different. We have

dv' ^k\* /k\^
in these cases respectively — = ( -

j or ( -
J

. Similar results however follow

which may be all summed up in the following theorem.
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Theor. I. Let any body be changed into another by inversion loith regard to

\any point 0. If the densities at corresponding points be denoted by p, p' and their

\ distances from by r, r', let p' = p{-A . Then these two bodies have the same

moments of inertia with regard to all straight lines through 0. Here n = 10, 8 or 6

I

according as the body is a volume, an area or an arc.

It also follows that the two bodies have the same principal axes at the point O,

and the same ellipsoids of gyration.

We may also obtain the following theorem by the use of Kelvin's method of

finding the potentials of attracting bodies by Inversion.

Theob. II. Let any body be changed into another body by inversion with regard

to any point 0. If the densities at corresponding points P, P' be denoted by p, p',

and their distances from by r, r', let p'= p(—,\ . Then the moment of inertia of

the second body with regard to any point C is equal to that of the first body with

-regard to the corresponding point G multiplied by either of the equal quantities

or I
^'

7Tn
' -^^^^ w= 8, 6 or 4 according as the body is a volume, area, or arc.

To prove this, consider the case in which the body is a volume. By similar

triangles CP . r'= C'P' . OG. We then find pdv {GPf (-^j =p'dv' {G'P'f, by pro-

ceeding as before. This being true for every element the theorem follows at once.

Ex. The density of a solid sphere varies inversely as the tenth power of the

distance from an external point 0. Prove that its moment of inertia about any

straight line through is the same as if the sphere were homogeneous and its

density equal to that of the heterogeneous sphere at a point where the tangent from O
meets the sphere. Prove that if the density had varied inversely as the sixth power

of the distance from O, the masses of the two spheres would have been equal. What
is the condition that they should have a common centre of gravity ? [Math. Tripos.

47. Centre of Pressure. If a plane lamina is immersed in

a homogeneous fluid it is proved in treatises on hydrostatics that

the pressures on the elements of area act normally to the plane

and are proportional to the product of the area of the element

by the depth below a fixed horizontal plane often called "the
effective surface." It easily follows from statical principles that

the centre of these parallel forces lies in the plane of the lamina

and is the same however the forces are turned round their points

of application provided they remain parallel. This point is called

in hydrostatics the centre ofpressure.

Let the intersection of the lamina with the effective surface

be taken as the axis of x and let the axis of y be in the plane of

the lamina, the axes being rectangular. Then by the common
formulae for the centre of parallel forces

^ _ Product of inertia about Osc, Oy
moment of the area about Ox '

^ _ Moment of inertia about Qx
~~ moment of the area about Ox

'
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Let the given area be equimomental to particles whose masses

are 7?ii, m^ &c. and let (^i, 3/1), {x.2, y^, &c. be the coordinates of

these particles. Then X = =i , F= v.; .^ Zmy zmy
But these are the formulae to find the centre of gravity of particles

whose masses are proportional to m^y^, in^y2 &c. having the same
coordinates as before. Hence this rule,

If any area he equimomental to a series of particles, the centime

ofpressure of the area is the centre of gravity of the same particles

with their masses increased in the ratio of their depths.

For example, the centre of pressure of a triangle wholly im-

mersed is the centre of gravity of three weights placed at the middle

points of the sides and each proportional to the depth of the point at

which it is placed.

In this article we confine our attention to the hydrostatical

properties of the point, but we may notice that the coordinates

X and Y are so useful that in dynamics also names have been

given to them. It follows from the formulae (5) of the next article

that X is the abscissa of the principal point of the axis of x, so

that the projection of the centre of pressure of any area on its

intersection with the effective surface is the principal point of that

intersection. It will also be shown in Chap. ill. that the ordinate

Y is equal to the distance of the centime of oscillation from the axis

of suspension. In this way we can translate our hydrostatical

results into dynamics, and conversely.

Since the coordinates X, Y depend only on the ratio of the

moments and products of inertia to the mass and on the position

of the centre of gravity, it is clear that two equimomental areas

have the same centre of pressure.

Ex. 1. If p, q, r be the depths of the corners of a triangular area wholly

immersed in a fluid, prove that the areal coordinates of its centre of pressure

referred to the sides of the triangle itself are ill+i?/*), i(l + ql^), i {! + ?'/«), where

s =p rq + r.

This may be proved by replacing the triangle by three weights situated at the

middle points of the sides proportional to their depths, and taking moments about

the sides in succession to find their centre of gravity.

Ex, 2. Let any vertical area be referred to Cartesian rectangular axes Ox, Oy,

with the origin at the centre of gravity. Let the depth of the centre of gravity

be h, and let the intersection of the area with the surface of the fluid make an
angle with the axis of x, and let this intersection in the standard case cut the

positive side of the axis of y. Let A, B and F be the moments and product of

inertia of the area about the axes. Then by taking moments about Ox, Oy we see

that the coordinates of the centre of pressure are

B Bin 6 - F Qo^ e „ Fsmd-AaoQd
""

where a is the area.
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Ex. 3. If the area turn round its centre of gravity in its own plane the locus

of its centre of pressure in the area is an ellipse and in space is a circle. The
ellipse has its principal diameters coincident in direction with the principal axes

of the area at the centre of gravity. The circle has its centre in the vertical through

the centre of gravity.

Ex. 4. In a heterogeneous fluid the pressure at any point P referred to a unit

of area is given by p=:d + hz^ where z is the depth of P. Prove that the depth of

tlie centre of pressure of any triangular area wholly immersed at any inclination

to tlie horizon is — ~\
,

,""^^
, where H„ is the arithmetic mean of the different

aH^ + hH^
iiomogeneous products of n dimensions of the depths z-^, z.^, z^ of the three corners

of the triangle.

Ex. 5. In rotating fluids the pressure at any point P is given by p = a + bz + cr^

where r is the distance of P from the axis of z which is vertical. Show that the

pressure on any part of the area of the containing vessel is given by

(1) whole pressure = j{a + bz + cr'^) da= {a + bz) o- + ccrk^

^/'here a is the area of the part pressed, z the depth of its centre of gravity, and ak^

;he moment of inertia about the axis of z.

(2) Vertical ^ressuYe= jj{a + bz + cr^)dxdy = aP+bV+cPk"^
vhere P is the projection of <r on the plane of xy, V the volume between a and its

Hojection and Pk'^ the moment of inertia of the projection P about the axis of z.

It is evident that in all these cases the values of the integrals can in general be

oritten doicn by the rules given in this chapter ; so that actual integrations are for

he most part unnecessary.

48. The Principal Axes of a system. A stt^aight line

eing given it is required to find at what point in its length it is a
wincipal axis of the system, and if any such point exist to find the

ther two principal axes at that point. This point may be con-

eniently called the principal point of the straight line.

Take the straight line as axis of z, and any point in it as

rigin. Let G be the point at which it is a principal axis, and
st Cx\ Cy' be the other two principal axes.

Let CO = h, 6 = angle between Cx and Ox. Then

oo' = X cos ^ + y sin 6\

y' = — x sin -\- y cos ^ >

.

z =z—h
J

[ence '%mx'z = cos Q^mxz + sin 6^myz\ _ ^
-h{cose^mx + ^\iieXmy)]~^ ^^^'

^my'z' = — sin 6%mxz + cos 62myz[ _ „ .

-h{ — sm 62mx + cos 6Smy)
J

^ ^'

^mx'y' = 2m (y^ — x^)— h l^mxy cos 2^ = (3).

The last equation shows that

tan2^ =^^f^^=/^ (4).^m{x^-y^) B-A ^ ^

)rding to the previous notation.

R. D. 3
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The equations (1) and (2) must be satisfied by the same value

of h. Eliminating h we get ^mxz^my ^Xmyz^mx as the con-

dition that the axis of z should be a principal axis at some point

in its length. Substituting in (1) we have

, Xmyz 1,mxz ,^.h= ^-^ =-^^ (o).
z^my zmx

The equation (5) expresses the condition that the axis of z

should he a principal axis at some point in its length; and the

value of h gives the position of this point.

If ^mxz = and ^myz = 0, the equations (1) and (2) are

both satisfied by h — 0. These are therefore the sufficient and
necessary conditions that the axis of z shoidd he a principal axis

at the origin.

If the system be a plane lamina and the axis of ^ be a normal

to the plane at any point, we have z = 0. Hence the conditions

^mxz = and ^myz = are satisfied. Therefore one of the

principal axes at any point of a plane lamina is a normal to the

plane at that point.

In the case of a surface of revolution bounded by planes

perpendicular to the axis, the axis is a principal axis at any
point of its length.

Again, equation (4) enables us, when one principal axis is

given, to find the other two. If 6 = a be the first value of 0, all

the others are included in 6 = a + in7r; hence all these values give

only the same axes over again.

49. Since (4) does not contain h, it appears that if the axis

of ^ be a principal axis at more than one point, the principal axes

at those points are parallel. Again, in that case (5) must be

satisfied by more than one value of h. But, since h enters only

in the first power, this cannot be unless

^mx — 0, l.my = 0, ^mxz = 0, Xmyz — ;

so that the axis must pass through the centre of gravity and be

a principal axis at the origin, and therefore (since the origin is

arbitrary) a principal axis at every point in its length.

If the principal axes at the centre of gravity be taken as the

axes of X, y, z, (1) and (2) are satisfied for all values of h. Hence,
if a straight line be a principal axis at the centre of gravity, it is

a principal axis at every point in its length.

If the given straight line is parallel to a principal axis at the

centre of gravity G, it is easy to see that the given line is a

principal axis at the projection of G on itself. For let the origin

be taken at the projection, and let dff, Gri, G^ be a parallel

system of axes, then since S^iff, ^my^ and z are zero, it follows

from Art. 13 that Xmxz and Xmyz are also zero.

50. Let the system be projected on a plane perpendicular to

the given straight line, so that the ratios of the elements of mass
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to each other are unaltered. The given straight line, which has

been taken as the axis of z, cuts this plane in 0, and will be a

principal axis of the projection at 0, because, the projected system
being a plane lamina, the conditions ^mxz = 0, %myz = are both
satis tied. Since z does not appear in equation (4), it follows that,

if the given straight line be a principal axis at some point G in

its length, the other two principal axes at G will be parallel to

the prhicipal axes of the projected system at 0. These last may
often be conveniently found by the next proposition.

51. Ex. 1. The principal axes of a right-angled triangle at the right angle

are, one perpendicular to the plane and two others inclined to its sides at the

angles - tan~i -^r—
, „ , where a and h are the sides of the triangle adjacent to the

2 a- - 6^

[right angle.

We have tan 26 = ^^'
. , Art. 48, and by Art. 35, ^ = ill ^, B = J\A, F=M^.

Ex. 2. The principal axes of a quadrant of an ellipse at the centre are, one

fperpendicular to the plane and two others inclined to the principal diameters at the

angles - tan~i - —^——,
, where a and h are the semi-axes of the ellipse.

Ex. 3. The principal axes of a cube at any point P are, the straight line

^joining P to the centre of gravity of the cube, and any two straight lines at P
fperpendicular to PO, and perpendicular to each other.

; Ex. 4. Prove that the locus of a point P at which one of the principal axes is

I

parallel to a given straight line is a rectangular hyperbola in the plane of which the

' centre of gravity of the body lies, and one of whose asymptotes is parallel to the

given straight line. But if the given straight line be parallel to one of the principal

axes at the centre of gravity, the locus of P is that principal axis or the perpen-

:ilicular principal plane.

Take the origin at the centre of gravity, and one axis of coordinates parallel

to the given straight line.

Ex. 5. The principal point of any side AB of a triangular area ABC bisects

ithe distance between the middle point of that side and the foot of the perpendicular

tfrom the opposite corner on the side.

Ex. 6. An edge of a tetrahedron will be a principal axis at some point in its

length only when it is perpendicular to the opposite edge. [Jullien.

Conversely, if this condition be satisfied, the edge will be a principal axis at

ii point C, such that OC= ^ON, where N is the middle point of the edge and is

he foot of the perpendicular distance between it and the opposite edge.

Ex. 7. The axes Ox, Oij are so placed that the product of inertia F or Sm-rr/

s zero. If A and B are the moments of inertia about these axes, prove that the

iOroduct of inertia about two perpendicular axes Ox', Oy' in the plane xy is

F' = ^{A-B)Qin2d

where 6 is the angle xOx' measured in the positive direction from Ox,

52. Foci of Inertia. Given^the positions of the principal

axes Ox, Oy, Oz at the centre of gravity 0, and the moments of
Inertia about them, to find the positions of the principal axes at any
ooint P in the plane of xy, and the moments of inertia about them.

3—2
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Let the mass of the body be M, and let A, B be the moments

of inertia about the axes Ox, Oy, of which we shall suppose A
the greater. Let S, H be two points in the axis of greate^mo-

/ A -^ Ti

ment, one on each side of the origin so that 0S= OH =^ "^^•

These may he called the foci of inertia for that principal plane.

Because these points are in one of the principal axes at the

centre of gravity, the principal axes at 8 and H are parallel to the

axes of coordinates, and the moments of inertia about those in

the plane of xy are respectively J. and B + M.OS''=-A. These

being equal, any straight line through S or H in the plane of xy

is a principal axis at that point, and the moment of inertia about

it is equal to A. See Arts. 16 and 23.

If P be any point in the plane of xy, then one of the principal

axes at P will be perpendicular to the plane xy. For, if p, q be

the coordinates of P, the conditions that this line should be a

principal axis are Sm (x-p)z = 0, 2m (y-q)2 = 0,

which are obviously satisfied, because the centre of gravity is the

origin, and the principal axes the axes, of coordinates.

The other two principal axes may be found thus. If two
straight lines meeting

at a pointP be such that

the moments of inertia

about them are equal,

then, provided they are

in a principal plane, the

principal axes at P bi-

sect the angles between
these two straight lines.

For, if with centre P
we describe the mo-
mental ellipse, the axes

of this ellipse bisect the angles between any two equal radii

vectores.

Join SP and HP ; the moments of inertia about SP, HP are

each equal to A. Hence, if PG and PT are the internal and
external bisectors of the angle SPH, PG, PT are the principal

axes at P. If therefore with S and H as fOci we describe any
ellipse or hyperbola, the tangent and normal at any point are the

principal axes at that point.

53. Take any straight line MN ^through the origin, making an angle 6 with

the axis of x. Draw SM, HN perpendiculars on MN. The moment of inertia

about 3IN is =Acos'^e + Bsin^ d = A - {A -B)sm^

d

=A-M.{OS sin ef=A-M. S]\P.

I
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Through P draw FT parallel to MN, and let SY and HZ be the perpendiculars

from S and H on it. The moment of inertia about PT is then

^ moment about MN+M . MY'^

I =A +M{MY- SM) {MY+SM)
I =A + M.SY.HZ.

In the same way it may be proved that the moment of inertia about a line PG
passing between H and S is less than A by the mass into the product of the perpen-

diculars from S and H on PG.

I

If therefore with S and H as foci we describe any ellipse or hyperbola, the moment

j of inertia about any tangent to either of these curves is constant.

It follows from this that the moments of inertia about the principal axes at P
are equal to B + ^M {SP a.HP)^

For if a and b be the axes of the ellipse we have a^-b'^ = 0S^= {A-B)IM,

and hence
A +M . SY . HZ= A + Mb'^= B + Ma^=B + IM {SP + HP)^,

and the hyperbola may be treated in a similar manner.

54. This reasoning may be extended to points lying in any given plane passing

through the centre of gravity of the body. Let Ox, Oy be the axes in the given

plane such that the product of inertia about them is zero (Art. 23). Construct the

points S and H as before, so that OS'^ and OH'^ are each equal to the difference of

the moments of inertia about Ox and Oy divided by the mass. Draw Sy' a parallel

through S to the axis of y, the product of inertia about Sx, Sy' is equal to that

about Ox, Oy together with the product of inertia of the whole mass collected

at O. Both these are zero, hence the section of the momental ellipsoid at S is a

circle, and the moment of inertia about every straight line through >S^ in the plane

xOy is the same and equal to that about Ox. We can then show that the moments

of inertia about PH and PS are equal ; so that PG, PT, the internal and external

bisectors of the angle SPH, are the principal diameters of the section of the mo-

mental ellipsoid at P by the given plane. And it also follows that the moments of

inertia about the tangents to a conic whose foci are S and H are the same.

55. Ex. 1. To find the foci of inertia of an elliptic area. The moments of

inertia about the major and minor axes are ^Mb^ and |Ma-. Hence the minor axis

is the axis of greatest moment. The foci of inertia therefore lie in the minor axis

at a distance from the centre = ^ fja- - f^, i.e. half the distance of the geometrical

foci from the centre.

Ex. 2. Two particles each of mass m are placed at the extremities of the minor

. axis of an elliptic area of mass M. Prove that the principal axes at any point of

I

the circumference of the ellipse will be the tangent and normal to the ellipse, pro-

m 5 e^
vided that M 8 1

, Ex. 3. At the points which have been called foci of inertia tico of the principal

[ moments are equal. Show that it is not in general true that a point exists such

that the moments of inertia about all axes through it are the same, and find the

conditions that there may be such a point. Such points when they exist in a solid

\ body may be called the spherical points of inertia of that solid.

[
Refer the body to the principal axes at the centre of gravity. Let P be the point

i required, {x, y, z) its coordinates. Since the momental ellipsoid at P is to be a

* sphere, the products of inertia about all rectangular axes meeting at P are zero,

i Hence, by Art. 13, xy = 0, yz — 0^ zx— 0. It follows that two of the three x, y, z
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must be zero, so that the point must be on one of the principal axes at the centre

of gravity. Let this be called the axis of z. Since the moments of inertia about

three axes at P parallel to the coordinate axes are A+3Iz^, B + Mz"^ and C, we see

that these cannot be equal unless A=B and each is less than C. There are then

two points on the axis of unequal moment which are equimomental for all axes.

[Poisson and Binet.

Ex. 4. The spherical points of a hemispherical surface are the centre and a

point on the surface. Find also the spherical points of a solid hemisphere.

By Art. 5, Ex. 8, the moments of inertia about every axis througVi the centre are

the same. Hence the centre is one spherical point. Since the centre of gravity

bisects the distance between the points the position of the other follows at once.

56. Arrangement of Principal Axes. Given the positions

of the principal axes at the centre of gravity and the moments

of inertia about them, to find the positions of the principal axes*

and the principal moments at any other point P.

Let the body be referred to its principal axes at the centre of

gravity 0, let A, B, C be its principal moments, the mass of the

body being taken as unity. Construct a quadric confocal with

the ellipsoid of gyration, and let the squares of its semi-axes be

a^ = A -j-\, ¥ = B + \ c^ = G -\-X. Let us find the moment of

inertia with regard to any tangent plane.

Let (a, /S, 7) be the direction angles of the perpendicular to any
tangent plane. The moment of inertia, with regard to a parallel

plane through 0, is i(A+B-\- G)-{A cos^ a-\-B cos^ /3 + cos" 7).

The moment of inertia, with regard to the tangent plane, is found
by adding the square of the perpendicular distance between the

planes, viz. (A + X) cos^ a + (i^ + X) cos- /3 -{-(G + X) cos^ 7. We get

moment of inertia with)
ti r'\ \

regard to a tangent plane] - 2 {^ + B -{- C) + \

= ^(B-\-G-A)-\-a\

Thus the moments of inei^tia with regard to all tangent planes to

any one quadric confocal with the ellipsoid ofgyration are the same.

These planes are all principal planes at the point of contact.

For draw any plane through the point of contact P, then in the
case in which the confocal is an ellipsoid, the tangent plane
parallel to this plane is more remote from the origin than this

plane. Therefore, the moment of inertia with regard to any plane
through P is less than the moment of inertia with regard to a

tangent plane to the confocal ellipsoid through P. That is, the

tangent plane to the ellipsoid is the principal plane of greatest

moment. In the same way the tangent plane to the confocal

* Some of the following theorems were given by Lord Kelvin and Mr Townsend,
in two articles which appeared at the same time in the Mathematical Journal, 1846.

Their demonstrations are different from those given in this treatise. The theorem
that the principal axes at P are normals to the three confocals is now ascribed in

Thomson and Tait's Treatise on Natural Philosophy to Binet, Journal de VEcole

Polytechnique, 1811.
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hyperboloid of two sheets through P is the principal plane of

least moment. It follows that the tangent plane to the confocal

hyperboloid of one sheet is the principal plane of mean moment.

Through a given point P, three confocals can he drawn, and the

normals to these confocals are the principal axes at P. By Art. 5,

Ex. 3, the pi'incipal axis of least moment is normal to the confocal

ellipsoid and that of greatest moment normal to the confocal hyper-

boloid of two sheets.

57. The moment of inertia with regard to the point P is,

by Art. 14, i (J. + 5 + 0) + 0P\ Hence, by Art. 5, Ex. 3, the

moments of inertia about the normals to the three confocals

through P whose parameters are Xi, X.2» ^3 are respectively

0P^-\^, OP'--X,, OP2-X3.

58. If we describe any other confocal and draw a tangent cone

to it whose vertex is P, the axes of this cone are known to be the

normals to three confocals through P. This gives another con-

struction for the principal axes at P.

If the confocal diminish without limit, until it becomes a focal

conic, we see that the principal axes of the system at P are

the principal diameters of a cone whose vertex is P and base a

focal conic of the ellipsoid of gyration at the centre of gravity.

Ex. Prove that the moment of inertia about any generator of the cone, vertex

P, reciprocal to the tangent cone drawn from P to the ellipsoid of gyration is the

same. [Math. Tripos, 1895.

59. If we wish to use only one quadric, w^e may consider the

confocal ellipsoid through P. We know* that the normals to the

other two confocals are tangents to the lines of curvature on the

ellipsoid, and are also parallel to the principal diameters of the

diametral section made by a plane parallel to the tangent plane at

P. And if A 5 A be these principal semi-diameters, we know that

A2 = Xi — JJi , X3 = Xi — -L/2".

Hence, if through any point P we describe the quadric

x^ y^ z^

A +X 5+X C+X
the axes of coordinates being the principal axes at the centre

of gravity, then the principal axes at P are the normal to this

quadric, and parallels to the axes of the diametral section made
by a plane parallel to the tangent plane at P. And if these axes

are 2i)i and 21)3, the principal moments at P are

0P'^-\, OP^-\^-D,\ OP'-\ + D,\

* A geometrical proof of the propositions required for this article was given in

the former editions, but these results are now too well known to render this necessary.
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Ex. If two bodies have the same centre of gravity, the same principal axes at

the centre of gravity and the differences of their j^rincipal moments equal, each to

each, then these bodies have the same principal axes at all points.

60. Condition that a line should be a principal axis.

The axes of coordinates being the principal axes at the centre of

gravity it is required to express the condition that any given straight

line may be a principal axis at some point in its length and to find

that point. Let the equations of the given straight line be

^-f^y-9 ^^-^'
(1)^

I m n

then it must be a normal to some quadric

0^ y'^ z^

at the point at which the straight line is a principal axis.

Hence comparing the equation of the normal to (2) with (1), we

^^''^ Z^ = ^^' 5TX='^"'' CT"X = '''' ^^^-

These six equations must be satisfied by the same values of x, y, z,

\ and fjL. Substituting for x, y, z from (3) in (1), we get

'^
I m n

Equating the values oi fi given by these equations we have

f_9_ 1_^ ^_/
I m _7n V _n I ...

A^rB-T^'TTTA ^
^'

This clearly amounts to only one equation, and is the required

condition that the straight line should be a principal axis at some
point in its length.

Substituting for x, y, z from (8) in (2), we have

\ (l- + m- + n-) = -^-{Al^-\- Bm' + Cn-),

which gives one value only to X. The values of X and fi having
been found, equations (3) will determine x, y, z the coordinates of

the point at which the straight line is a principal axis.

The geometrical meaning of this condition may be found by the following

considerations, which were given by Townsend in the Mathematical Jownal. The
normal and tangent plane at every point of a quadric will meet any principal

plane in a point and a straight line, which are pole and polar with regard to the

focal conic in that plane. Hence, to find whether any assumed straight line is

a principal axis or not, draw any plane perpendicular to the straight line and

produce both the straight line and the plane to meet any principal plane at the

centre of gravity. If the line of intersection of the plane be parallel to the polar
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line of the point of intersection of the straight line with respect to the focal conic,

the straight line will be a principal axis, if otherwise it will not be so. And the

point at which it is a principal axis may be found by drawing a plane through the

polar line perpendicular to the straight line. The point of intersection is the

required point.

The analytical condition (4) exactly expresses the fact that the polar line is

jparallel to the intersection of the plane.

61. Ex. 1. Show that the straight line a{x-a) = b{y -b)=c [z -c) is at some

point in its length a principal axis of an ellipsoid whose semi-axes are a, b, c.

Ex. 2. Show that any straight line drawn on a lamina is a principal axis of

that lamina at some point. Where is this point if the straight line pass through

the centre of gravity?

Ex. 3. Given a iplane fx + gy + hz -1 = 0, there is always some point in it at

iwhich it is a principal plane. Also this point is its intersection with the straight

iline xlf-A=ylg-B = zlh-G.

Ex. 4. Let two points P, Q be so situated that a principal axis at P intersects a

principal axis at Q. Then if two planes be drawn at P and Q perpendicular to

these principal axes, their intersection will be a principal axis at the point where it

is cut by the plane containing the principal axes at P and Q. [Townsend.

For let the principal axes at P, Q meet any principal plane at the centre of

(gravity in _p, q, and let the perpendicular planes cut the same principal plane in

LN, MN. Also let the perpendicular planes intersect each other in RN. Then
RN is perpendicular to the plane containing the points P, Q, p, q. Also since the

polars of ^ and q are LN, MN, it follows that pq is the polar of the point N, Hence

the straight line RN satisfies the criterion of the last Article.

Ex. 5. If P be any point in a principal plane at the centre of gravity, then

every axis which passes through P, and is a principal axis at some point, lies in one

of two perpendicular planes. One of these planes is the principal plane at the

centre of gravity, and the other is a plane perpendicular to the polar line of P with

regard to the focal conic. Also the locus of all the points Q at which QP is a prin-

cipal axis is a circle passing through P and having its centre in the principal plane.

[Townsend.

Ex. 6. The edge of regression of the developable surface which is the envelope

of the normal planes of any line of curvature drawn on a confocal quadric is a

curve such that all its tangents are principal axes at some point in each.

62. Locus of equal Moments. To find the locus of the

points at which two principal moments of inertia are equal to each

other.

The principal moments at any point P are

If we equate I^ and I2 we have A = 0, and the point P must
lie on the elliptic focal conic of the ellipsoid of gyration.

If we equate /g and Is we have i)i = A, so that P is an um-
bilicus of any ellipsoid confocal with the ellipsoid of gyration.

The locus of these umbilici is the hyperbolic focal conic.

In the first of these cases we have X = — C, and Do is the semi-
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diameter of the focal conic conjugate to OP. Hence D^ -{ 0F^ =
sum of squares of semi-axes = A — G-\-B—G. The three principal

moments are therefore I^ = 1^= OP'^ -{- C, 1^= A + B - C, and the

axis of unequal moment is a tangent to the focal conic.

The second case may be treated in the same way by using

a confocal hyperboloid, we therefore have Jg = /g = OP- + i?,

I^ = A -\- C— B, and the axis of unequal moment is a tangent

to the focal conic.

These results follow also by combining Arts. 57 and 58. The cone which

envelopes the ellipsoid of gyration and has its vertex at P must by these articles be

a right cone if two principal moments at P are equal. But we know from solid

geometry that this only happens when the vertex lies on a focal conic, and the un-

equal axis is then a tangent to that conic.

63. To find the curves on any confocal quadric at which a principal moment of

inertia is equal to a given quantity I.

Firstly. The moment of inertia about a normal to a confocal quadric is

OP'^-X. If this be constant, we have OP constant, and therefore the required

curve is the intersection of that quadric with a concentric sphere. Such a curve is

a sphero-conic.

Secondly. Let us consider those points at which the moment of inertia about a

tangent is constant.

Construct any two confocals whose semi-major axes are a and a'. Draw any

two tangent planes to these which cut each other at right angles. The moment of

inertia about their intersection is the sum of the moments of inertia with regard to

the two planes, and is therefore B -\- C - A + a'^ + a'^. Thus the moments of inertia

about the intersections ofperpendicular tangent planes to the same confocals are equal

to each other.

Let a, a', a" be the semi-major axes of the three confocals which meet at any

point P, then since confocals cut at right angles the moment of inertia about a

tangent to the intersection of the confocals a', a" is I-^=:B + C - A-\-a''^-\-a"'^.

The intersection of these two confocals is a line of curvature on either. Henc

the moments of inertia about the tangents to any line of curvature are equal to o

another; and these tangents are principal axes at the point of contact.

On the quadric a draw a tangent PT making angles and ^tt -
(f>

with the

tangents to the lines of curvature at the point of contact P. If I^, Ig be the

moments about the tangents to these lines of curvature, the moment of inertia

about the tangent Pr=l2cos2 0-f l3sin-0

=^B + C -A + (a"2 -f a^) cos^ + {a- + a'-) sin^ 0.

But, along a geodesic on the quadric a, a'^ sin^ + a"^ cos'-^ is constant. Hence the

moments of inertia about the tangents to any geodesic on tht quadric are equal to

each other.

64. Ex. 1. If a straight line touch any two confocals whose semi-major axes

are a, a', the moment of inertia about it is 7i + C - ^ + a- + a"^.

Ex. 2. When a body is referred to its principal axes at the centre of gravity,

show how to find the coordinates of the point P at which the three principal

moments are equal to the three given quantities 1-^,1^,1.^. [Jullien's Problem.

a
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The elliptic coordinates of P are evidently a'^ = \{I^ + I^-I^-B-C + A), &c.

;

II id the coordinates [x^ y, z) may then be found by Salmon's formulae,

Ex. 3. Let two planes at right angles touch two confocals whose semi-major

ixes are a, a' ; and let a, a' be the values of a, a' for confocals touching the inter-

section of the planes; then a^ + a'^= ar + a.''-, and the product of inertia with regard

;o the two planes is (a-a'^-a^a'^)^.

65. Equixnomental Surface. The locus of all those points at which one of

;he principal moments of inertia of the body is equal to a given quantity is called

m equimomental surface.

To find the equation to such a surface we have only to put I^ constant, this

,'ives \= r'^-I. Substituting in the equation of the confocal quadric, the equation

)f the surface becomes

r2 ?;2

+ r +
x^ + y'^ + z- +A-I x^ + y- + z^ +B-I x^ + y^ + z'^+C -

1

Through any point P on an equimomental surface describe a confocal quadric

<uch that the, principal axis is a tangent to a line of curvature on the quadric. By
tivt. 63, one of the intersections of the equimomental surface and this quadric is the

ine of curvature. Hence the principal axis at P about which the moment of inertia

IS I is a tangent to the equimomental surface.

Again, construct the confocal quadric through P such that the principal axis is

I normal at P, then one of the intersections of the momental surface and this

luadric is the sphero-conic through P. The normal to the quadric, being the

principal axis, has just been shown to be a tangent to the surface. Hence the

;au<Tent plane to the equimomental surface is the plane which contains the normal

;o the quadric and the tangent to the sphero-conic.

To draw a perpendicular from the centre on this tangent plane we may follow

Euclid's rule. Take PP' a tangent to the sphero-conic, drop a perpendicular from

on PP', this is the radius vector OP, because PP' is a tangent to the sphere. At

P in the tangent plane draw a perpendicular to PP', this is the normal PQ to the

ijuadric. From drop a perpendicular OQ on this normal, then OQ is a normal to

the tangent plane. Hence this construction :

If P he any point on an equimomental surface lohose -parameter is I, and OQ
7 perpendicular from the centre on the tangent plane, then PQ is the principal

ixis at P about which the moment of inertia is I.

The equimomental surface becomes Fresnel's wave surface when I is greater

than the greatest principal moment of inertia at the centre of gravity. The general

form of the surface is too well known to need a minute discussion here. It consists

of two sheets, which become a concentric sphere and a spheroid when two of the

principal moments at the centre of gravity are equal. When the principal moments

•are unequal, there are two singularities in the surface.

(1) The two sheets meet at a point P in the plane of the greatest and least

moments. At P there is a tangent cone to the surface. Draw any tangent plane

to this cone, and let OQ be a perpendicular from the centre of gravity on this

tangent plane. Then PQ is a principal axis at P. Thus there are an infinite

number of principal axes at P because an infinite number of tangent planes can be

drawn to the cone. But at any given point there cannot be more than three

principal axes unless two of the principal axes be equal, and then the locus of the
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principal axes is a plane. Hence the point P is situated on a focal conic, and the

locus of all the lines PQ is a normal plane to the conic. The point Q lies on
a sphere whose diameter is OP, hence the locus of Q is a circle.

(2) The two sheets have a common tangent plane which touches the surface

along a curve. This curve is a circle whose plane is perpendicular to the plane of

greatest and least moments. Let OP' be a perpendicular from on the plane

of the circle, then P' is a point on the circle. If R be any other point on the circle

the principal axis at R is RP'. Thus there is a circular ring of points, at each of

which the principal axis passes through the same point, and the moments of inertia

about these principal axes are all equal.

The equation to the equimomental surface may also be used for the purpose

of finding the three principal moments at any point whose coordinates {x, y, z) are

given. If we clear the equation of fractions, we have to determine I a cubic whose
roots are the three principal moments.

Thus let it be required to find the locus of all those points at which any

symmetrical function of the three principal moments is equal to a given quantity.

We may express this symmetrical function in terms of the coefficients of the cubic

by the usual rules, and the equation of the locus is found.

Ex. 1. If an equimomental surface cut a quadric confocal with the ellipsoid

of gyration at the centre of gravity, then the intersections are a sphero-conic and a

line of curvature. But, if the quadric be an ellipsoid, these cannot be both real.

For if the surface cut the ellipsoid in both, let P be a point on the line of curva-

ture, and P' a point on the sphero-conic, then by Art. 59, OP'^-^D-^^=OP'^, which

is less than ^ + \. Bxxi OP'^ + I>;^ +B^= A+B-\-G + ^\ therefore D^^>B + C + 1\,

which is >^ + 2\. Hence D<^> the greatest radius vector of the ellipsoid, which
is impossible.

Ex. 2. Find the locus of all those points in a body at which

(1) the sum of the principal moments is equal to a given quantity I,

(2) the sum of the products of the principal moments taken two and two
together is equal to I^, (3) the product of the principal moments is equal to I^.

The results are (1) by Art. 13, a sphere whose radius is {{I- A -B- C)IM}^,

(2) by Art. 65, the surface

{x' + y^ + z')'^ + {A+B + C){x' + y^ + z^) + Ax'^ + By^+Cz^ +AB +BC + CA = r\

(3) the surface A'B'C - A'lfz'^ - B'z-x'^ - C'x'^y^ - 2xhfz^= r'^,

where A'= A + rj^ + z'^, with similar expressions for B', C,



CHAPTEH II.

D'ALEMBERT'S PRINCIPLE, ETC.

66. The principles, by which the motion of a single particle

under the action of given forces can be determined, will be found

discussed in any treatise on dynamics of a particle. These prin-

ciples are called the three laws of motion. It is shown that if

{a:, y, z) be the coordinates of the particle at any time t referred

to three rectangular axes fixed in space, m its mass, X, F, Z the

forces resolved parallel to the axes, the motion may be found by
,'ing the simultaneous equations,SOIV

™di^=^' ™^=^' '"d«i=^-

If we regard a rigid body as a collection of material particles

connected by invariable relations, we may write down the equa-

tions of the several particles in accordance with the principles just

stated. The forces on each particle are however no longer known,
some of them being due to the mutual actions of the particles.

We assume (1) that the action between two particles is along

the line which joins them, (2) that the action and reaction between
any two are equal and opposite. Suppose there are n particles,

then there will be 'in equations, and, as shown in any treatise

on statics, Zn — 6 unknown reactions. To find the motion it will

be necessary to eliminate these unknown quantities. We shall

thus obtain six resulting equations, and these will be shown,

a little further on, to be sufficient to determine the motion of

the body.

When there are several rigid bodies which mutually act and
react on each other the problem becomes still more complicated.

But it is unnecessary for us to consider in detail either this or the

preceding case, for D'Alembert has proposed a method by which
: all the necessary equations may be obtained without writing down
tthe equations of motion of the several particles, and without

making any assumption as to the nature of the mutual actions

i except the following, which may be regarded as a natural conse-

fquence of the laws of motion :

The internal actions and reactions of any system of ligid bodies

in motion are in equilibrium amongst themselves.
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67. To explain D'Alembert's principle.

In the application of this principle it will be convenient to

use the term effective force, which may be defined as follows.

When a particle is moving as part of a rigid body, it is acted

on by the external impressed forces and also by the molecular

reactions of the other particles. If we consider this particle to

be separated from the rest of the body, and all these forces re-

moved, there is some one force which, under the same initial

conditions, would make it move in the same way as before.

This force is called the effective force on the particle. It is

evidently the resultant of the impressed and molecular forces

on the particle.

Let m be the mass of the particle, (x, y, z) its coordinates

referred to any fixed rectangular axes at the time t. The accele-

rations of the particle are -^-^ , -~ and -^ . Let / be the

resultant of these, then, as explained in dynamics of a particle,

the effective force is measured by mf.

Let F be the resultant of the impressed forces, R the resultant

of the molecular forces on the particle. Then 7w/ is the resultant

of F and R. Hence if mf be reversed, the three F, R and mf are

in equilibrium.

We may apply the same reasoning to every particle of each

body of the system. We thus have a group of forces similar to R,

a group similar to F, and a group similar to mf the three groups

forming a system of forces in equilibrium. Now by D'Alembert's
principle the group R will itself form a system of forces in equili-

brium. Whence it follows that the group F will be in equilibrium

with the group mf Hence

Ifforces equal to the effectiveforces hut acting in exactly opposite

directions were applied at each point of the system these would he in

equilibrium with the impressed forces.

By this principle the solution of a dynamical problem is

reduced to that of a problem in statics. The process is as

follows. We first choose some quantities by means of which the

position of the system in space may be determined. We then
express the effective forces on each element in terms of these quan-
tities. These, when reversed, will be in equilibrium with the given
impressed forces. Lastly, the equations of motion for each body
may be formed, as is usually done in statics, by resolving in three

directions and taking moments about three straight lines.

68. Before the publication of D'Alembert's principle a vast number of dynamical
problems had been solved. These may be found scattered through the early

volumes of the Memoirs of St Petersburg, Berlin and Paris, in the works of John
Bernoulli and the Opuscula of Euler. They require for the most part the determi-
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iKition of the motions of several bodies with or without weight which push or pull

each other by means of threads or levers to which they are fastened or along which

they can glide, and which having a certain impulse given them at first are then left

to themselves or are compelled to move in given lines or surfaces.

The postulate of Huyghens, " that if any weights are put in motion by the force

of gravity they cannot move so that the centre of gravity of them all shall rise

higher than the place from which it descended," was generally one of the principles

of the solution : but other principles were always needed in addition to this, and
it required the exercise of ingenuity and skill to detect the most suitable in each

case. Such problems were for some time a sort of trial of strength among mathe-

maticians. The Traite de dynamique published by D'Alembert in 1743 put an end

to this kind of challenge by supplying a direct and general method of resolving, or

at least throwing into equations, any imaginable problem. The mechanical diffi-

culties were in this way reduced to difficulties of pure mathematics. See Montucla,

Vol. III. page 615, or Whewell's version in his History of the Inductive Sciences.

D'Alembert uses the following words :
—" Soient A, B, C, &c. les corps qui com-

posent le systeme, et supposons qu'on leur ait imprim^ les mouvemens, a, b, c, &c.

qu'ils soient forces, a cause de leur action mutuelle, de changer dans les mouvemens

a, b, c, &c. II est clair qu'on pent regarder le mouvement a imprime au corps A
comme compose du mouvement a, qu'il a pris, et d'un autre mouvement a

;
qu'on

pent de meme regarder les mouvemens b, c, &c. comme composes des mouvemens

b, /3; c, 7 ; &c., d'ou il s'ensuit que le mouvement des corps A, B, C, &g. entr'eux

auroit ete le meme, si au lieu de leur donner les impulsions a, b, c, on leur eut

donne a-la-fois les doubles impulsions a, a ; b, ^ ; &c. Or par la supposition les

corps A, B, C, &c. ont pris d'eux-memes les mouvemens a, b, c, &c. done les mouve-

mens o, j8, 7, &c. doivent §tre tels qu'ils ne derangent rien dans les mouvemens
a, b, c, &c. c'est-a-dire que si les corps n'avoient re(?u que les mouvemens a, /3, y,

&c. ces mouvemens auroient du se detruire mutuellement, et le systeme demeurer

en repos. De la resulte le principe suivant pour trouver le mouvement de plusieurs

corps qui agissent les uns sur les autres. Decomposez les mouvemens a, b, c, &c.

imprimes a chaque corps, chacun en deux autres a, a ; b, /3 ; c, 7 ; &c. qui soient

tels que si Ton n'eut imprime aux corps que les mouvemens a, b, c, &c. ils eussent

pu conserver les mouvemens sans se nuire reciproquement ; et que si on ne leur eut

imprime que les mouvemens a, ^, 7, &c. le systeme fut demeure en repos ; il est

clair que a, b, c, &c. seront les mouvemens que ces corps prendront en vertu de leur

action. Ce qu'il falloit trouver."

69. The following remarks on D'Alembert's principle have
been supplied by Sir G. Airy:

I have seen some statements of or remarks on this principle which appear

to me to be erroneous. The principle itself is not a new physical principle, nor

any addition to existing physical principles ; but is a convenient principle of

combination of mechanical considerations, which results in a comprehensive

process of great elegance.

The tacit idea, which dominates through the investigation, is this :—That every

mass of matter in any complex mechanical combination may be conceived as

containing in itself two distinct properties :—one that of connexion in itself, of

susceptibility to pressure-force, and of connexion with other such masses, but not

of inertia nor of impressions of momentum :—the other that of discrete molecules

of matter, held in their places by the connexion-frame, susceptible to externally

impressed momentum, and possessing inertia. The unioii produces an imponderable

skeleton, carrying ponderable particles of matter.

I
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Now the action of external momentum-forces on any one particle tends to

produce a certain momentum-acceleration in that particle, which (generally) is

not allowed to produce its full effect. And what prevents it from producing its

full effect? It is the pressure of the skeleton-frame, which pressure will be

measured by the difference between the impressed momentum-acceleration and

the actual momentum-acceleration for the same. Thus every part of the skeleton

sustains a pressure-force depending on that difference of momenta. And the

whole mechanical system, however complicated, may now be conceived as a system

of skeletons, each sustaining pressure-forces, and (by virtue of their combination)

each impressing forces on the others.

And what will be the laws of movement resulting from this connexion ? The

forces are pressure-forces, acting on imponderable skeletons, and they must balance

according to the laws of statical equihbrium. For if they did not, there would

be instantaneous change from the understood motion, which change would be

accompanied with instantaneous change of momentum-acceleration of the mole-

cules, that would produce different pressures corresponding to equilibrium. (It

is to be remarked that momentum cannot be changed instantaneously, but

momentum-acceleration can be changed instantaneously.)

We come thus to the conclusion that, taking for every rnolecule the dif-

ference between the impressed momentum-acceleration and the actual momentum-

acceleration, those differences through the entire machine will statically balance.

And—combining in one group all the impressed momentum-accelerations, and in

another group all the actual momentum-accelerations—it is the same as saying that

the impressed momentum-accelerations through the entire machine will balance the

actual momentum-accelerations through the entire machine. This is the usual

expression of D'Alembert's principle.

70. The ordinar}^ notation for the successive differential co-

efficients of a function is very convenient when we are not always

using the same independent variable. In a treatise on dynamics
the time is usually the independent variable, and it is unnecessary

to be continually calling attention to that fact. For this reason

it is usual to represent the successive differential coefficients with

regard to the time by accents or dots or some other marks placed

over the dependent variable. It will be convenient to restrict the

dot notation to represent differentiations with regard to the time
dx dj~ 00

solely, thus x and x will be simply abbreviations for -^ and -5—

.

Dots will never be used to represent differentiations with regard to

any quantity other than the time. When any other abbreviations

are used for differential coefficients they will be preceded by an
explanation.

This abbreviated notation is very convenient in working
examples or w^henever mistakes cannot be produced by an
occasional error in the dots. But in stating results to which
reference has afterwards to be made, or in which it is important
that there should be no misconception as to the meaning, it will

be found better to use the more extended notation.

71. Example of D^Alembert^s principle. A light rod
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OAB can turn freely in a vertical plane about a smooth fixed hinge

at 0. Two heavy particles whose masses are m and m! are attached

to the rod at A and B and oscillate with it. It is required to

find the motion.

The oscillatory motion of a single particle is usually discussed

in treatises on elementary dynamics. It is proved that the time
3f a small oscillation is proportional to the square root of the

radius of the circle described. In our problem we have two
particles describing circular arcs of different radii in the same
3ime. Each particle must therefore modify the motion of the
3ther. The particle with the shorter radius hastens the motion
3f the other and is itself retarded by the slower motion of that

)ther. Our object is to find the resulting motion.

By using D'Alembert's principle we are able to change this

iynamical problem into an ordinary statical question, which when
solved by the rules of statics gives the differential equations of

3he motion.

Let OA = a, OB = b, and let the angle the rod OAB makes
vith the vertical O2 be 6. The particle A describes a circular arc,

lence its effective forces are known by elementary dynamics to

)e mad and ma6'\ the former being directed along a tangent to the
'jrcular arc in the direction in which 6 increases and the latter

blong the radius AO inwards. Similarly the effective forces of

he particle B are m^bd and mfbv'^ along its tangent and radius

espectively. The directions of these effective forces are represented
n figure 1 by the double-headed arrows, while the single-headed

Fig. (1). Fig. (2) Kg. (3)

rrows indicate the directions of the weights mg and m'g of the
•articles.

By D'Alembert's principle the four effective forces when
versed are in equilibrium with the weights of the particles.

o avoid introducing the unknown reaction at and those

j^etween the particles and the rod, let us take moments for the

Vhole system about 0. The forces maQ"^ and m'bO'^ being directed

'long BAO have no moments. The moments of the other two

re ma? 6 and m'b'^d. Reversing these and adding the moments of

he weights we have

{ma^ + mb")d -\- {ma -{ m'b)gsm6 = (1).

K. D. 4
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This is the dififerential equation of motion. When it has been

solved and the two arbitrary constants determined by the initial

conditions we shall have 6 expressed as a function of the time.

But without entering here into the analytical solution we may
shortly obtain the result.

We notice that if we put m' = and write I for a, the equation

(1) must give the motion of a single particle oscillating in a circle

of radius l. This motion is therefore given by

W+gsme = (2).

This is of the same form as the equation (1). Hence the rod

OAB oscillates as if the two particles were joined together into

a single particle and placed at a distance I = t^ from the
° ^ ^ ma -^ mb

hinge 0.

As a variation on this problem, let us find the motion when the

rod OAB moves round the vertical as a conical pendidum with

uniform angular velocity, the angle 6 which OAB makes with the

vertical being constant.

In this problem also the particles describe circles, but their

planes are horizontal and their centres are at E and F as repre-

sented in fig. 2. The motion round the vertical being uniform,

the effective force of A resolved along the tangent to its path is

zero, while the effective force along its radius AE inwards is

m.a sin 64>^, </> being the angle made by the plane zOA with any
fixed plane passing through Oz. Similarly the whole effective force

on B is directed along its radius BF and is equal to m'6sin d<j>^.

The directions of these effective forces are represented by
the double-headed arrows in fig. 2. Reversing these and taking
moments as before about 0, we have

— {ma^ -f- m¥) sin 6 cos 6^'^ -H {ma + m'b)g sin ^ = 0.

Hence the angular velocity cj) of the plane zOA round the vertical

is given by
. ^ (ma-\-m'b)g
^ (7na' + m'b^)cose ^ ^'

except when the rod is vertical.

In this case again the result shows that the motion of the rod

OAB round the vertical is the same as if the particles were
collected into a single particle and placed at the same distance

from as in the first problem.

In these problems we have followed the rule given in Art. 67.

We first express the effective forces by using the results given in

treatises on dynamics of a particle. We reverse these effective

forces and express by equations the conditions of equilibrium.
These equations are the equations of motion.
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Ex. 1. If three particles are attached to the rod at different distances from O,

find the motion, (1) when the system oscillates in a vertical plane, and (2) when it

revolves uniformly round the vertical.

Ex. 2. If the two particles are attached to O by two strings OA, AB as shown
in fig. 3, and the system revolves round the vertical with a uniform angular velocity

^, show that (m . AE . OE + m' .BF. OF) ip^=(rn.AE + m'. BF) g.

72. General Equations of Motion. To apply D'Alemhert's
principle to obtain the equations of motion of a system of rigid

bodies.

Let {x, y, z) be the coordinates of the particle m at the time
t referred to any set of rectangular axes fixed in space. Then

-T-1 > -rr , and -7— will be the accelerations of the particle. Let
dt^ dt^ dt^

^

X, Y, Z be the impressed accelerating forces on the same particle

resolved parallel to the axes. By D'Alembert's principle the

forces m(X-5), "^(F-g), ™(^-g).
together with similar forces on every particle, will be in equi-

librium. Hence by the principles of statics we have the equation

and two similar equations for y and z ; these are obtained by
resolving parallel to the axes. Also we have

iand two similar equations for zx and xy ; these are obtained by
Staking moments about the axes.

These equations may be written in the more convenient forms

d ^ dx ^ ^\
-TTZm^7 = ZmX \

dt dt

(A),
dt dt

d ^ dz ^
dt dt

In a precisely similar manner, by taking the expressions for

ihe accelerations in polar coordinates, we should have obtained
mother but equivalent set of equations of motion.

4—2

(B).
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73. Coordinates of a body. The equations of motion of

Art. 72 are the general equations of motion of any dynamical

system. They are, however, extremely inconvenient in their present

form. When the system considered is a rigid body and not merely

a finite number of separate particles, the S's are all definite inte-

grals. There are also an infinite number of ^'s, y's and z's all

connected together by an infinite number of geometrical equations.

It will be necessary, as suggested in Art. 67, to find some finite

number of quantities which determine the position of the body in

space and to express the effective forces in terms of these quantities.

These are called the coordinates of the body *. It is most important

in theoretical dynamics to choose the coordinates properly. They
should be (I) such that a knowledge of them in terms of the time

determines the motion of the body in a convenient manner, and

(2) such that the dynamical equations when expressed in terms of

them may be as little complicated as possible.

Let us first enquire how many coordinates are necessary to

fix the position of a body.

The position of a body in space is given when we know the

coordinates of some point in it and the angles w^hich two straight

lines fixed in the body make with the axes of coordinates. There
are three geometrical relations existing between these six angles,

so that the position of a body may be made to depend on six

independent variables, viz. three coordinates and three angles.

These migh. be taken as the coordinates of the body.

It is evident that we may express the coordinates {cc, y, z) of

any particle m of a body in terms of the coordinates of that body
and quantities which are known and remain constant during the
motion. First let us suppose the system to consist only of a
single body, then if we substitute these expressions for x, y, z in

the equations (A) and (B) of Art. 72, we shall have six equations
to determine the six coordinates of the body in terms of the

time. Thus the motion will be found. If the system consist of
several bodies, we shall, by considering each separately, have six

equations for each body. If there be any unknown reactions

between the bodies, these will be included in X, F, Z. For each
reaction there will be a corresponding geometrical relation con-

necting the motion of the bodies. Thus on the whole we shall

have sufficient equations to determine the motion of the system.

When the motion is in two dimensions these six coordinates

are reduced to three. These are the two coordinates of the point

fixed in the body, and the angle some straight line fixed in the

body makes with a straight line fixed in space.

* Sir W. Hamilton uses the phrase " marks of position," but subsequent writers

have adopted the term coordinates. See Cayley's Report to the Brit. Assoc, 1857.
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74. Let us next consider how the equations of motion (A) formed
by resolution can be simplified by a proper choice of coordinates.

We must find the resolved part of the momentum and the re-

solved part of the effective forces of a system in any direction.

Let the given direction be taken as the axis of x. Let {x, y, z)

be the coordinates of any particle vi^hose mass is m. The re-

(jX
solved part of its momentum in the given direction is 'W^ -,-

.

Hence the resolved part of the momentum of the whole system is

(1

X

Sm -J- . Let {x, y, z) be the coordinates of the centre of gravity

of the system and M the whole mass. Then Mx = %mx
;

Hence the resolved part of the momentum of a system in any
direction is equal to the whole mass midtiplied into the resolved part

of the velocity of the centre of gravity.

That is, the linear momentum of a system is the same as if the

whole mass were collected into its centre of gravity.

In the same way, the resolved part of the effective forces of a
system in any direction is equal to the whole mass multiplied into

the resolved part of the acceleration of the centre of gravity.

It appears from this proposition that it will be <;onvenient to

take the coordinates of the centre of gravity of ea^ rigid body
in the system as three of the coordinates of that body. We can
then express in a simple form the resolved part of the efifective

forces in any direction.

75. Lastly, let us consider how the equations of motion (B)

formed by taking moments can be simplified by a proper choice

of the three remaining coordinates. We must find the moment
of the momentum and the moment of the effective forces about
any straight line.

Let the given straight line be taken as the axis of x, then just

as in statics yZ — zY is the moment of a force about the axis of x,

so, replacing Y and Z by ij and i, the moment of the momentum

about the axis of x is Sm [y t: ~ ^ ~ii] -

Now this is an expression of the second degree. If, then, we
substitute y = y-\-y\ z — z ^ z\ we get as in Art. 14

dz' , dy'\ -.^ / dz _ dy""

^'^^yi[t-''ii)+^[ydt-'dt
-^ dz' _^ dy' .

dz ^ dy ^
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Exactly as in Art. 14, all the terms in the second line are zero

because Sm^ = 0, Sm/ = 0, where M is the mass of the system

or body under consideration.

The second term is the moment about the axis of x of the

momentum of a mass M moving with the centre of gravity.

The first term is the moment about a straight line parallel

to the axis of x, not of the actual momenta of all the several

particles but of their momenta relatively to the centre of gravity.

In the case of any particular body it therefore depends only on the

motion of the body relatively to its centre of gravity. In finding

its value we may suppose the centre of gravity reduced to rest

by applying to every particle of the system a velocity equal and
opposite to that of the centre of gravity. Hence we infer that

The moment of the momentum of a system about any straight

line is equal to the moment of the momentum of the whole mass
supposed collected at its centre of gravity and moving with it,

together with the moment of the momentum of the system relative

to its centre of gravity about a straight line drawn parallel to the

given straight line through the centre of gravity.

In the same way, this proposition will be also true if for the
" momentum " of the system we substitute its " effective force."

By taking the axis Ox through the centre of gravity, we see

that the moment of the relative momenta about any straight

line through the centre of gravity is equal to that of the actual

momenta.

It appears from this proposition that it will be convenient to

refer the angular motion of a body to a system of coordinate

axes meeting at the centre of gravity. A general expression for

the moment of the effective forces about any straight line through
the centre of gravity cannot be conveniently investigated at this

stage. Different expressions will be found advantageous under
different circumstances. There are three cases to which attention

should be particularly directed : (1) that of a body turning
about an axis fixed in the body and fixed in space

; (2) that of

motion in two dimensions, and (3) Euler's expression when the

body is turning about a fixed point. These will be found at the
beginnings of the third and fourth chapters and in the fifth

chapter respectively.

76. Let a rigid body be turning about any point fixed in the body, such as

the centre of gravity. Let 0|, Orj, 0^ be a new set of rectangular axes fixed in the

body. Then the ordinary formulae for transformation of axes give

y = l^ + mr} + n^, z= \^ + firi + v^

where the direction-cosines {Imn) (kjuv) are functions of the time. We see therefore

that the angular momentum
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where A = l\- X/, and B, C &c. are similar functions of the direction-cosines. Now
S/»^^ SwT/^, (fee, and also the coefficients A, B, &c. would be the same for any system

of particles equimomental to the given body. We therefore infer that the moment
of the effective forces of a rigid body about any straight line is the same as that for

any equimomental system which moves with the body.

In the same way we may show that the resolved parts of the effective forces are

the same. Hence in calailatirig tJie effective forces of a rigid body ice may replace

it by any convenient equimomental system ichich is rigidly connected ivith it.

77. The quantity ^m{xy — yx) expresses the moment of the

momentum about the axis of z. It is called the angular momentum
of the system about the axis of z. There is another interpretation

which can be given to it. If we transform to polar coordinates,

we have xij — yx — r^Q.

Now \T^dQ is the elementary area described round the origin

in the time dt by the projection of the particle on the plane of xy.

If twice this polar area be mtdtiplied by the mass of the particle,

it is called the area conserved by the particle in the time dt round

the axis of z. Hence

^ ( dy dx

is called the area conserved by the system in a unit of time, or

more simply the area conserved.

78. Three Important Propositions. Summing up the

results of the articles from 72 onwards, we see that we have

established three important propositions.

Since any straight line fixed in space may be taken as an axis

of coordinates, the three equations (A) of Art. 72 may be written

in the typical form

d /Linear Momentum in any\ _ /Resolved impressed\

dt \ fixed direction / V force /
'

For the same reason, the three equations (B) of the same article

may be written in the typical form

d /Angular Momentum about \ _ /Moment of im-

dt\ a fixed straight line I ~\ pressed forces

Thirdly, we see by Art. 74, that the typical expression for the

linear momentum may be written

/Linear Momentum in\ _ /Mass x resolved velocityX

\ any fixed direction / V of centre of gravity /
"

The corresponding typical expression for the angular momentum
is deferred for the present.

79. Independence of Translation and Rotation. We
may now enunciate two important propositions, which follow at

b
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once from the preceding results. It will, however, be more useful

to deduce them from first principles.

(1) The motion of the centre of gravity of a system acted on hy

any forces is the same as if all the mass were collected at the centre

of gravity and all the forces were applied at that point parallel to

theirformer directions.

(2) The motion of a body, acted on hy any forces, about its

centre of gravity is the same as if the centre of gravity were fixed

arid the same forces acted on the body.

Taking any one of the equations (A) we have

27?i -^ = 2mX.

If X, y, z be the coordinates of the centre of gravity, then

'xZm = SmA'

;

.*. -^ Sm = 2mX,

and the other equations may be treated in a similar manner.

Since these are the equations which give the motion of a mass

2m acted on by forces SmX, &c., the first priociple is proved.

Taking any one of the equations (B) we have

Let x — x-\-x', y = y -\-y', z = z -\- z', then proceeding as in

Art. 14 or Art. 75 this equation becomes

^ / , dh/ , d^x\ /_ d^y _ d'^x\ ^ ^^ / t- v.S™ [x^-y ^-j + (^0.^ -2/^j
2m = 2m (^I - yX).

Now the axes of coordinates are quite arbitrary, let them be

so chosen that the centre of gravity is passing through the origin

at the moment under consideration. Then i^ = 0, ^ = 0, but dxjdt,

dyjdt are not necessarily zero. The equation then becomes

This equation does not contain the coordinates of the centre

of gravity and holds at every separate instant of the motion and
therefore is always true. But this and the two similar equations

obtained from the other two equations of (B) are exactly the

equations of moments we should have had if we had regarded the

centre of gravity as a fixed point and taken it as the origin of

moments.

80. These two important propositions are called respectively

the principles of the conservation of the motions of translation and
rotation. The first was given by Newton in the fourth corollary

to the third law of motion, and was afterwards generalized by

mi \x "



ART. 82.] METHOD OF USE. 57

D'Alembert and Montucla. The second is more recent and seems

to have been discovered about the same time by Euler, Bernoulli

and the Chevalier d'Arcy.

Another name has also been given to these results. Together

they constitute the principle of the independence of the motions of
translation and rotation. The motion of the centre of gravity is

the same as if the whole mass were collected at that point, and is

therefore quite independent of the rotation. The motion round

the centre of gravity is the same as if that point were fixed, and
is therefore independent of the motion of that point.

81. By the first principle the problem of finding the motion

of the centre of gravity of a system, however complex the system

may be, is reduced to the problem of finding the motion of a

single particle. By the second the problem of finding the angular

motion of a free body in space is reduced to that of determining

the motion of that body about a fixed point.

Example of the first principle. In using the first principle

it should be noticed that the impressed forces are to be applied at

the centre of gravity parallel to their former directions. Thus, if

a rigid body be moving under the influence of a central force, the

motion of the centre of gravity is not generally the same as if the

whole mass were collected at the centre of gravity and it were

then acted on by the same central force. What the principle

asserts is, that, if the attraction of the central force on each

element of the body be found, the motion of the centre of gravity

is the same as if these forces were applied at the centre of gravity

parallel to their original directions.

If the impressed forces act always parallel to a fixed straight

line, or if they tend to fixed centres and vary as the distance from

those centres, the magnitude and direction of their resultant are

jhe same whether we suppose the body collected into its centre of

gravity or not. But in most cases care must be taken to find the

.^esultant of the impressed forces as they really act on the body
before it has been collected into its centre of gravity.

82. Example of the second principle. Let us next con-

sider an example of the second principle. Suppose the earth to

3e in rotation about some axis through its centre of gravity and
to be acted on by the attractions of the sun and moon. Then we
learn, from the second principle, that if the resultant attraction of

these bodies pass through the centre of gravity of the earth, the

rotation about the axis will not be in any way affected. In what-
3ver way the centre of gravity of the earth may move in space,

the axis of rotation will have its direction fixed in space and the

angular velocity will be constant. Two important consequences

folIoAv immediately from this result. The centre of gravity of the
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earth is known to describe an orbit round the sun, which is very

nearly in one plane, and the changes of the seasons chiefly depend
on the inclination of the earth's axis to the plane of motion of the

centre of the earth. The permanence of the seasons is therefore

established. Secondly, since the angular velocity is constant, it

follows that the length of the sidereal day is invariable.

Strictly speaking the resultant attraction due to any particle of the sun and

moon does not pass through the centre of gravity of the earth. The reason is that

the earth is not a perfect sphere whose strata of equal density are concentric

spheres. But since the ellipticities of these strata are all small the motion of

rotation of the earth will be but slightly affected. Nevertheless the sun (for

instance) will act with unequal forces on those parts of the earth's equator which

are nearer to it and on those more remote. Thus the sun's attraction will tend to

turn the earth about an axis lying in the plane of the equator and which is perpen-

dicular to the radius vector of the sun. The general effect of this couple on the

rotation of the earth is very remarkable. It will be proved in a later chapter (1) that

the period of rotation of the earth is unaltered, (2) that though the direction of the

earth's axis is no longer fixed in space, yet the axis still preserves, on the whole, the

same inclination to the plane of the earth's motion round the sun. Thus the per-

manence of the seasons, as far as these causes are concerned, remains unaffected.

83. General Method of using D'Alembert^s principle.

The general problem in dynamics to be solved may be stated

thus.

Any number of rigid bodies press both against each other and
against fixed points, curves, or surfaces and are acted on by given

forces ; find their motion.

The mode of using D'Alembert's principle for the solution

may be stated thus.

Let X, y, z be the coordinates of the centre of gravity of any
one of these bodies referred to three rectangular axes fixed in

space. Let three other coordinates of this body be chosen so

that the three moments of the momentum of the body about
three rectangular axes fixed in direction and meeting at the

centre of gravity may be found conveniently in terms of them.
Let /ii, h^,h^ be these three moments of the momentum, and let M
be the mass. Then the effective forces of the body are equivalent

d^x d?v (Pz
to the three effective forces M-j-, -^77^' ^'^/2 ^^^ ^^® three

effective couples -^ , -j^ , -j^ . The three effective forces act
^ at at at

at the centre of gravity parallel to the axes of x, y, z respectively,

and the three couples act round the three axes about which the

moments of the momentum were taken. The effective forces of

all the other bodies of the system may be expressed in a similar

manner.

Then all these effective forces and couples being reversed will
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36 in equilibrium with the impressed forces. The equations of

3(]uilibrium may be found by resolving in such directions and
making moments about such straight lines as may be convenient.

Instead of reversing the effective forces it is usually found more
convenient to write the impressed and effective forces on opposite

•iides of the equations.

Taking the bodies separately we may thus obtain, by three

esolutions and three moments, six equations of motion for each

oody.

If two rigid bodies press against each other or against a fixed

obstacle there may be one or more unknown reactions. But there

will also be in general as many equations to express the conditions

Df contact. The mode of writing down these conditions of contact

will be explained in the chapters which follow.

Thus we shall have as many equations as there are coordinates

md reactions. But sometimes by a judicious choice of the direc-

tions in which we resolve, or of the straight lines about which we
3ake moments, we may (exactly as in statics) avoid introducing

5ome of these reactions into the equations. This will reduce the

aumber of equations which have to be formed. We may also

sometimes avoid these reactions by resolving or taking moments
br two of the bodies as if they formed for an instant one single

Dody.

These differential equations will then have to be solved. The
iifferent methods of proceeding will be explained further on.

3renerally we can find one integral by a method called the

Drinciple of Vis Viva. A rule will be given to write down this

ntegral without previously forming the equations of motion.

We have here limited ourselves to the method of forming the

equation by resolving and taking moments. But we may proceed

)therwise. Thus Lagrange has given a method of writing down
;he equations of motion by which, amongst other advantages, the

abour of eliminating the reactions is avoided.

Application of UAlemberfs Principle to impulsive forces.

84. If a force F act on a particle of mass m always in the

^ame direction, the equation of motion is

dv ^

Arhere v is the velocity of the particle at the time t. Let T be the

nterval during which the force acts, and let v, v' be the velocities

it the beginning and end of that interval. Then
rT

{v'-v)=\ 1

Jo
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Now suppose the force F to increase without limit while the

interval T decreases without limit. Then the integral may have

a finite limit. Let this limit be P. The equation then becomes

m {v —v) = P.

The velocity in the interval T has increased or decreased from

V to v'. Supposing the velocity to have remained finite, let V be

its greatest value during this interval. Then the space described

is less than VT. Since this vanishes in the limit the particle has

not moved during the action of the force F. It has not had time

to move, but its velocity has been changedfrom v to v'

.

We may consider that a proper measure has been found for a

force when from that measure we can deduce all the effects of the

force. In the case of finite forces we have to determine both the

change of place and the change in the velocity of the particle.

It is therefore necessary to divide the whole time of action into

elementary times and determine the effect of the force during

each of these. But in the case of infinite forces which act for an

indefinitely short time, the change of place is zero, and the change
of velocity is the only element to be determined. It is therefore

more convenient to collect the whole force expended into one

measure. A force so measured is called an impulse. It may be

defined as the limit of a force which is infinitely great, but acts

only during an infinitely short time. There are of course no such

forces in nature, but there are forces which are very great, and
act only during a very short time. The blow of a hammer is

a force of this kind. They may be treated as if they were im-

pulses, and the results will be more or less correct according to

the magnitude of the force and the shortness of the time of action.

They may also be treated as if they were finite forces, and the

small displacement of the body during the short time of action of

the force may be found.

The quantity P may be taken as the measure of the force.

An impulsive force is measured by the whole momentum generated

by the impulse.

85. In determining the effect of an impulse on a body, the

effect of all finite forces which act on the body at the same time

may be omitted.

For let a finite force / act on a body at the same time as an
impulsive force F. Then as before we have

V — v =fJo
Fdt r/dt

m m mm
But in the limit fT vanishes. Similarly the force / may be

omitted in the equation of moments.
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86. To obtain the general equations of motion of a system acted

'11 hy any number of impulses at once.

Let u, V, w, u, V, w be the velocities of a particle of mass m
);uallel to the axes just before and just after the action of the

mpulses. Let X' , Y\ Z' be the resolved parts of the impulse on

n parallel to the axes. Taking the same notation as before, we
lave the equation Smir = "SmX, or integrating

tm{n:-u) = Xm rXdt = %X' (1).
Jo

Similarly we have the equations

2m {v' -v) = SF ...(2), tm (w' -w) = IZ' ...(3).

Again the equation Sm (xy — yx) = 2m {xY— yX) becomes on
ntegration 2m {xy — yx) = 2m {xjYdt — yfXdt).

In this integration x, y are regarded as constants, because the

Uiration T of the impulse is so short that the body has not time

,0 move (Art. 84), i.e. the changes of x, y during this interval may
)e neglected. Taking the equation between limits,

%m{x(v'-v) -y(u'-u)] =t(xY'-yX') (4).

T'he other two equations become

l.m{y(w'-w)-2(v' -v)\=X(yZ-zY') (5),

tm{z(u' - u) - X (w' - w)} = ^ {zX'- xZ'

)

(6).

In the following investigations it will be found convenient to

ise accented letters to denote the states of motion after impact

kvhich correspond to those denoted by the same letters unaccented

Defore the action of the impulse. Since the changes in direction

ind magnitude of the velocities of the several particles of the

bodies are the only objects of investigation, it will be found

convenient to express the equations of motion in terms of these

velocities.

87. In applying D'Alembert's Principle to impulsive forces the

only change which must be made is in the mode of measuring the

effective forces. If (u, v, w), (u, v\ w') be the resolved part of the

velocity of any particle just before and just after the impulse, and
if m be its mass, the effective forces will be measured by m (u — u\

m {v' — v), and m {w' — w). The quantity mf in Art. 67 is to be

regarded as the measure of the impulsive force which, if the

particle were separated from the rest of the body, would produce

these changes of momentum.

In this case, if we follow the notation of Arts. 74 and 75, the

resolved part of the effective force in the direction of the axis of z

is the difference of the values of Xmdz/dt just before and jusfc

after this action of the impulses, and this is the same as the
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difference of the values of Mdzjdt at the same instants. In the

same way the moment of the effective forces about the axis of z

will be the difference of the values of

vdt y dt)

just before and just after the action of the impulses.

We may therefore extend the general proposition of Art. 83 to

impulsive forces in the following manner.

Let {u, V, w), {u, v', w') be the velocities of the centre of gravity

of any rigid body of mass TIf just before and just after the action

of the impulses resolved parallel to any three fixed rectangular

axes. Let (Ai, hr^, h.^), {hi, h^, 4/) be the moments of momentum
relative to the centre of gravity about three rectangular axes

fixed in direction and meeting at the centre of gravity, the

moments being taken respectively just before and just after the

impulses. Then the effective forces of the body are equivalent to

the three effective forces M {u — u), M {v' — v), M{w' — w), acting

at the centre of gravity parallel to the rectangular axes, together

with the three effective couples (/?/ — AJ, {h^ — h^), Qi^ — K) about

those axes.

These effective forces and couples being reversed will be in

equilibrium with the impressed forces. The equations of equili-

brium may then be formed according to the rules of statics.

Examples. Ex. 1. Two particles moving in the same plane are projected in

parallel but opposite directions with velocities inversely proportional to their masses.

Find the motion of their centre of gravity.

Ex. 2. A person is placed on a perfectly smooth table, show how he may
get off.

Ex. 3. Explain how a person sitting on a chair is able to move the chair across

the room by a series of jerks, without touching the ground with his feet.

Ex. 4. A person is placed at one end of a perfectly rough board which rests

on a smooth table. Supposing he walks to the other end of the board, determine

how far the board has moved. If he steps off the board, show how to determine

its subsequent motion.

Ex. 5. The motion of the centre of gravity of a shell shot from a gun in vacuo

is a parabola, and its motion is unaffected by the bursting of the shell.

Ex. 6. A rod revolving uniformly in a horizontal plane round a pivot at its

extremity suddenly snaps in two : determine the motion of each part.

Ex. 7. A cube slides down a perfectly smooth inclined plane with four of its

edges horizontal. The middle point of the lowest edge comes in contact with

a small fixed obstacle and is reduced to rest. Determine whether the cube is also

reduced to rest, and show that the resultant impulsive action along the edge will

not act along the inclined plane.

Ex. 8. Two persons A and B are situated on a perfectly smooth horizontal

plane at a distance a from each other. A throws a ball to B which reaches B after
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a time t. Show that A will begin to slide along the plane with a velocity malMt,
where M is his own mass and 7/i that of the ball. If the plane had been perfectly

rough, explain in general terms the nature of the pressures between ^'s feet and

the plane which would have prevented him from sliding. Would these pressures

have had a single resultant?

Ex. 9. A cannon rests on an imperfectly rough horizontal plane and is fired

with such a charge that the relative velocity of the ball and cannon at the moment
when the ball leaves the cannon is F. If M be the mass of the cannon, m that of

the ball, and //, the coefficient of friction, show that the cannon will recoil a distance

-— on the plane.
Bl+mJ 2/j,g

Ex. 10. A spherical cavity of radius a is cut out of a cubical mass so that the

centre of gravity of the remaining mass is in the vertical through the centre of the

cavity. The cubical mass rests on a perfectly smooth horizontal plane, but the

interior of the cavity is perfectly rough. A sphere of mass m, and radius b, rolls

down the side of the cavity starting from rest with its centre on a level with the

centre of the cavity. Show that when the sphere next comes to rest, the cubical

mass will have moved, through a space ,: , where 31 is the mass of theM+m
remaining portion of the cube. Would the result be the same if the cavity were

smooth or imperfectly rough?

Ex. 11. Two railway engines drawing the same train are connected by a loose

chain and come several times in succession into collision with each other; the

leading engine being a little top-heavy and the buffers of both rather low. The
fore-wheels of the first engine are observed to jump up and down. What dynamical

explanation can be given of this rocking motion ? At what level should the buffers

be placed that it may not occur? Camb. Trans. Vol. vii. 1841.

Ex. 12. Sir C. Lyell in his account of the earthquake in Calabria in 1783,

mentions two obelisks each of which was constructed of three great stones laid one

on the top of the other. After the earthquake, the pedestal of each obelisk was
found to be in its original place, but the separate stones above were turned partially

round and removed several inches from their position without falling. The shock

which agitated the building was therefore described as having been horizontal and
vorticose. Show that such a displacement would be produced by a simple rectilinear

shock, if the resultant blow on each stone did not pass through its centre of gravity.

See Mallet's Dynamics of Earthquakes. Milne in his Earthquakes, 1886, page 196,

discusses the latter explanation and refers to some similar cases which occurred in

the earthquake at Yokohama in 1880.

1.



CHAPTER III.

MOTION ABOUT A FIXED AXIS.

88. The Fundamental Theorem. A rigid body can turn

freely about an axis fixed in the body and in space, to find the

moment of the effective forces about the axis of rotation.

Let any plane passing through the axis and fixed in space be
taken as a plane of reference, and let be the angle which any-

other plane through the axis and fixed in the body makes with
the first plane. Let m be the mass of any element of the body,

r its distance from the axis, and let cj) be the angle made by a plane

through the axis and the element m with the plane of reference.

The velocity of the particle m is r(j) in a direction perpen-

dicular to the plane containing the axis and the particle. The
moment of the momentum of this particle about the axis is clearly

mr^cj). Hence the moment of the momenta of all the particles is

X {mr^^). Since the particles of the body are rigidly connected
with each other, it is^ obvious that <^ is the same for every

particle, and equal to 6. Hence the moment of the momenta of

all the particles of the body about the axis is Xtnr'^d, i.e. the

moment of inertia of the body about the axis multiplied into the

angular velocity.

The accelerations of the particle m are r^ and - r<j>^ perpen-

dicular to, and along the direction in which r is measured, the

moment of the effective forces on m about the axis is mr^if),

hence the moment of the effective forces on all the particles of the

body about the axis is 2 (mr^if)). By the same reasoning as before

this is equal to %mr~Q, i.e. the moment of inertia of the body about

the axis into the angular acceleration.

89. To determine the motion of a body about a fixed axis

under the actioii of any forces.

By D'Alembert's principle the effective forces when reversed

will be in equilibrium with the impressed forces. To avoid intro-

ducing the unknown reactions at the axis, let us take moments
about the axis.
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Firstly, let the forces he impulsive. Let w, w be the angular
velocities of the body just before and just after the action of the
forces. Then, following the notation of the last article,

w . Sm7'^ — ft) . Xmr^ = L,

where L is the moment of the impressed forces about the axis

;

, moment of forces about axis
.'. CD — (O = —. ; -, 7-.

moment oi inertia about axis

This equation will determine the change in the angular velocity

produced by the action of the forces.

Secondly, let the forces he finite. Then taking moments about

the axis, we have -j— . Xmr^ = L
;

d?6 _ moment of forces about axis

df^ moment of inertia about axis
'

This equation when integrated will give the values of 6 and
ddjdt at any time. Two undetermined constants will make their

appearance in the course of the solution. These are to be deter-

mined from the given initial values of S and ddjdt. Thus the
whole motion can be found.

90. It appears from this proposition that the motion of a rigid body about a
fixed axis depends on (1) the moment of the forces about that axis and (2) the
moment of inertia of the body about the axis. Let Mk^ be this moment of inertia,

so that k is the radius of gyration of the body. Then if the whole mass of the
body were collected into a particle and attached to the fixed axis by a rod without
inertia, whose length is the radius of gyration k, and if this system be acted on by
forces having the same moment as before, and be set in motion with the same
initial values of d and cWldt, then the whole subsequent angular or gyratory

motion of the rod will be the same as that of the body. We may say briefly, that

a body turning about a fixed axis is dynamically given, when ive knoiv its mass and
radius of gyration.

91. Ex. 4 perfectly rough circular horizontal board is capable of revolving

freely round a vertical axis through its centre. A man whose iveight is equal to that

of the board ivalks on and round it at the edge : when he has completed the circuit

what will be his position in space ?

Let a be the radius of the board, Mk^ its moment of inertia about the vertical

axis. Let w be the angular velocity of the board', w' that of the man about the
vertical axis at any time. And let F be the action between the feet of the man and
the board.

The equation of motion of the board is by Art. 89, Mk^C3= - Fa (1).

The equation of motion of the man is by Art. 79, 3Iata'=F (2).

Eliminating F and integrating, we get k^o} + a^<a'= 0,

the constant being zero, because the man and the board start from rest. Let
6, e' be the angles described by the board and man round. the vertical axis. Then
w = ^, (»'= &', and k'^d + a^d' = 0. Hence, when e'-d=^2ir and k^=la^, we have
^'= |7r. This gives the angle in space described by the man. Let F be the mean

R. D. 5
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relative velocity with which the man walks along the board, then w' - w = Vja, and
.•. w = - 2F/3a. This gives the mean angular velocity of the board.

92. On the Pendulum. A body acted on by gravity only

moves about a fixed horizontal axis, to determine the motion.

Take the vertical plane through the axis as the plane of refer-

ence, and the plane through the axis and the centre of gravity as

the plane fixed in the body. Then the equation of motion is

d^d _ moment of forces Mgh sin 6

df " moment of inertia
~~ M{k^+ h^)

^ ^'

where h is the distance of the centre of gravity from the axis and
Mk"^ is the moment of inertia of the body about an axis through

the centre of gravity parallel to the fixed axis. Hence

d^6 qh . ^ ^

The equation (2) cannot be integrated in finite terms, but if

the oscillations be small, we may reject the cubes and higher

powers of 6 and the equation will become

Hence the time of a complete oscillation is 27r kJ v . If

h and k be measured in feet and g— 32'18, this formula gives the

time in seconds.

The equation of motion of a particle of any mass suspended

by a string Hs -^ + '? . sin ^ = (3),

which may be deduced from equation (2) by putting A; = and
h = l. Hence the angular motions of the string and the body
under the same initial conditions will be identical if

' =^"
;

i^

This length is called the length of the simple equivalent

pendulum.

Centre of Oscillation*. Through G, the centre of gravity of

the body, draw a perpendicular to the axis of revolution cutting it

* The position of the centre of oscillation of a body was first correctly deter-

mined by Huygens in his Horologium Oscillatorium published at Paris in 1673.

The most important of the theorems given in the text were discovered by him. As

D'Alembert's principle was not known at that time, Huygens had to discover some

principle for himself. The hypothesis was, that when several weights are put in

motion by the force of gravity, in whatever manner they act on each other their

centre of gravity cannot be made to mount to a height greater than that from which
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in G. Then G is called the centre of suspension. Produce GG to

so that GO = I. Then is called the centre of oscillation. If the

whole mass of the body (or indeed any mass) were collected at the

centre of oscillation and suspended by a thread to the centre of
suspension, its angular motion and time of oscillation would be the

same as that of the body under the same initial circumstances.

The equation (4) may be put under another form. Since

GG = h and OG = l — h, we have

GG.GO = (rad.)2 of gyration about G,

GG .GO = (rad.y of gyration about G,

OG . 0C= (rad.y of gyration about 0.

Any of these equations show that, if be made the centre of

suspension, and the axis be parallel to the axis about which k was
taken, G will be the centre of oscillation. Thus the centres of
oscillation and suspension are convertible and the times of oscillation

about these points are the same.

If the time of oscillation be given, I is given and the equation (4)

will give two values of h. Let these values be h^y h^. Let two
cylinders be described with that straight line as axis about which
the radius of gyration k was taken, and let the radii of these

cylinders be \, h^. Then the times of oscillation of the body about
all generating lines of these cylinders are the same, and are

approximately equal to 27r . / - .

With the same axis describe a third cylinder whose radius

is k. Then I = 2k + -—r

—

-
, hence I is always greater than 2k,

and decreases continually as h decreases and approaches the value

k. Thus the length of the equivalent pendulum continually de-

creases as the axis of suspension approaches from without to the

circumference of this third cylinder. When the axis of suspension

is a generating line of the cylinder the length of the equivalent

pendulum is 2k. When the axis of suspension is within the

cylinder and approaches the centre of gravity the length of the

equivalent pendulum continually increases, and it becomes infinite

as the axis passes through the centre of gravity.

i
it has descended (Art. 68). Huygens considers that he assumes here only that a

heavy body cannot of itself move upwards. The next step in the argument was,

that at any instant the velocities of the particles are such that, if they were separated
' from each other and properly guided, the centre of gravity could be made to mount

to a second position as high as its first position. For if not, consider the particles to

start from their last positions, to describe the same paths reversed, and then again

to be joined together into a pendulum ; the centre of gravity would rise to its first

position ; but if this be higher than the second position, the hypothesis would be

contradicted. This principle gives the same equation which the modern principle

of Vis Viva would give. The rest of his solution is not of much interest.

5—2
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The time of oscillation is therefore least when the axis is a
generating line of the circular cylinder whose radius is k. But the
time about the axis thus found is not an absolute minimum. It

is a minimum only for axes drawn parallel to a given straight line

in the body. To find the axis about which the time is absolutely

a minimum we must find the axis about which k is a minimum.
Now it is proved in Art. 23 that the axis through G about which
the moment of inertia is least or greatest is one of the principal

axes. Hence the axis about which the time of oscillation is a
minimum is parallel to that principal axis through G about which
the moment of inertia is least. Also if Mk'^ be the moment of

inertia about that axis, the axis of suspension is at a distance k
from it measured in any direction.

93. Ex. 1. Find the time of the small oscillations of a cube (1) when one

side is fixed, (2) when a diagonal of one of its faces is fixed ; the axis in both cases

being horizontal. If 2a be a side of the cube, show that the length of the simple

equivalent pendulum is in the first case 4;^2a/3, and in the second case 5a/3.

Ex. 2. An elliptic lamina is such that when it swings about one latus rectum

as a horizontal axis, the other latus rectum passes through the centre of oscillation,

prove that the eccentricity is h .

Ex. 3. A circular arc oscillates about an axis through its middle point perpen-

dicular to the plane of the arc. Prove that the length of the simple equivalent

pendulum is independent of the length of the arc, and is equal to twice the radius.

Ex. 4. The density of a rod varies as the distance from one end, show that the

axis perpendicular to it about which the time of oscillation is a minimum intersects

the rod at one of the two points whose distance from the centre of gravity is

,y/2a/6, where a is the length of the rod.

Ex. 5. Find what axis in the area of an ellipse must be fixed that the time of a

small oscillation may be a minimum. Show that the axis must be parallel to the

major axis, and must bisect the semi-minor axis.

Ex. 6. A uniform stick hangs freely by one end, the other end being close to the

ground. An angular velocity in a vertical plane is then communicated to the stick,

and, when it has risen through an angle of 90°, the end by which it was hanging is

loosed. What must be the initial angular velocity so that on falling to the ground

it may pitch in an upright position ? Show that the required angular velocity w is

given by w^ = ^ |
3 + --^—-

j
, where 2p may be any odd multiple of tt and 2a

is the length of the rod.

Ex. 7. Two bodies can move freely and independently under the action of

gravity about the same horizontal axis ; their masses are m, m', and the distances of

their centres of gravity from the axis are li, h'. If the lengths of their simple equivalent

pendulums be L, L', prove that when they are fastened together in the positions

of equilibrium the length of the equivalent pendulum will be ;, r—,— . dn
mh +mh H

The length of this resultant equivalent pendulum lies between L and L' provided

/* and h' have the same sign.

If a heavy particle m' be attached to a vibrating pendulum it follows that the
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period is increased or decreased according as the point of attachment is at a greater

or less distance from the axis of suspension than the centre of oscillation.

Ex. 8. When it is required to regulate a clock, such as the great Westminster
clock, without stopping the pendulum, it is usual to add some small weight to or

subtract it from a platform attached to the pendulum. Show that, in order to make a

given alteration in the going of the clock by the addition of the least possible weight,

the platform must be placed at a distance from the point of suspension equal to half

the length of the simple equivalent pendulum. Show also that a slight error in the

position of the platform will not affect the weight required to be added.

Ex. 9. A circular table, centre 0, is supported by three legs AA', BB', CC which

rest on a perfectly rough horizontal floor, and a heavy particle P is placed on the

table. Suddenly one leg GC gives way, show that the table and the particle will

immediately separate if pc be greater than k^ ; where p and c are the distances of P
and respectively from the line AB joining the tops of the legs, and k is the radius

of gyration of the table with the remaining legs about the line A'B' joining the

points where the legs rest on the floor.

The condition of separation is that the initial normal acceleration of the point

of the table at P should be greater than the normal acceleration of the particle

itself.

Ex. 10. A string without weight is placed round a fixed ellipse whose plane is

vertical, and the two ends are fastened together. The length of the string is greater

than the perimeter of the ellipse. A heavy particle can slide freely on the string

and performs small oscillations under the action of gravity. Prove that the simple

equivalent pendulum is the radius of curvature of the confocal elhpse passing

through the position of equilibrium of the particle.

94. Effect of change of temperature. In a clock which
is regulated by a pendulum, it is necessary that the time of oscil-

lation should be invariable. As all substances expand or contract

with every alteration of temperature, it is clear that the distance

of the centre of gravity of the pendulum from the axis and the
moment of inertia about that axis will be continually altering.

The length of the simple equivalent pendulum does not however
depend on either of these elements simply, but on their ratio. If

then we can construct a pendulum such that the expansion or

contraction of its different parts does not alter this ratio, the time
of oscillation will be unaffected by any change of temperature.
For an account of the various methods of accomplishing this which
have been suggested, we refer the reader to any treatise* on clocks.

We shall here only notice for the sake of illustration one simple

construction, which has been much used. It was invented by
George Graham about the year 1715. He gave an account of it

in Vol. 34 of the Phil. Trans. 1726 (printed 1728).

* Denison's treatise on Clocks and Watches and Bells, 7tli ed. 1883. Treatise

on Modern Horology in theory and practice, translated from the French of Claudius

Saanier by Julien Tripplin and Edward Kigg, 2nd ed. 1891. The Watchmaker's

handbook, translated from the French of C. Saunier by the same authors, 3rd ed.

1891. Both these are rather practical tban theoretical. Watch and Clockinakers^

handbook, by F. J. Britten, 1884. This is a practical treatise arranged alphabetically.



70 MOTION ABOUT A FIXED AXIS. [CHAP. III.

Some heavy fluid, such as mercury, is enclosed in a cast-iron cylindrical jar.

Iron is used partly because there is no chemical action between it and the mercury

and partly because its coefficient of expansion is not large. An iron rod is screwed

into the top of the jar and then suspended in the usual manner from a fixed point.

The downward expansion of the iron on any increase of temperature tends to lower

the centre of oscillation, but the upward expansion of the mercury tends on the

contrary to raise it. It is required to determine the condition that the position of

the centre of oscillation may on the whole be unaltered.

Let 3Ik'^ be the moment of inertia of the iron jar and rod about the axis of

suspension, c the distance of their common centre of gravity from that axis. Let

I be the length of the pendulum from the point of suspension to the bottom of the

jar, a the internal radius of the jar. Let nM be the mass of the mercury, h the

height it occupies in the jar.

The moment of inertia of the cylinder of mercury about a straight line through

its centre of gravity perpendicular to its axis is by Art. 17, nM {-^i^h^ + ^a'^). Hence

the moment of inertia of the whole body about the axis of suspension is

and the moment of the whole mass collected at its centre of gravity is

M7i{l-yi) + Mc.

The length L of the simple equivalent pendulum is the ratio of these two, and on

reduction we have L= -^^ -jz
—

, ,> — (Ij-

n{l-ih) + c

Let the linear expansion of the substance which forms the rod and jar be

denoted by a and that of mercury by /3 for each degree of the thermometer. If the

thermometer used be Fahrenheit's, we have a= -0000065668, j3
= -00003336, accord-

ing to some experiments of Dulong and Petit. Thus we see that a and ^ are so

small that their squares may be neglected. In calculating the height of the mercury

it must be remembered that the jar expands laterally, and thus the relative vertical

expansion of the mercury is 3/3 - 2a, which we shall represent by y.

If then the temperature of every part be increased f^, we have a, I, k, c, all

increased in the ratio 1-j-at : 1, while h is increased in the ratio 1 + 7^ : 1. Since L
is to be unaltered, we have

rIT. rlT. iJT \ /IT.{dL dL^ dL^ dL \ dL
dl dk dc J dh

hy= Q

But L is a homogeneous function of one dimension, hence

dL
da'

dL^ dL
"""-Ti'-^dk

, dL
dc

dL^
dh^-

= L.

The condition becomes therefore by substitution = — —- .

a- 7 L dh

Let A, B he the numerator and denominator of the expression for L given by

equation (1). Then taking the logarithmic differential

1 dL _ n{^h-l
) in_n f^h-l 1

L dh ~ A "^ "^ ~ ^ V ir~ "^
2

nf%h-
b\ L

Hence the required condition is ^ ,

"—r= —r-
. i-^ tA (2).

^{^-a) h c \ L 2)
^"2 + n

This calculation has more theoretical than practical importance, for the nu-

merical values of a and /3 depend a good deal on the purity of the metals and on

the mode in which they have been worked. The adjustment must therefore be
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finally made by experiment. If the rate of the clock is found to be affected by a

change of temperature it is usual to alter slightly the quantity of mercury in the

jar until by trial the adjustment is found to be satisfactory.

In the investigation we have supposed a and /3 to be absolutely constant, but

this is only a very near approximation. Thus a change of 80° Fah. would alter /3

by less than a fiftieth of its value.

When the adjustment is made the compensation is not strictly correct, for the

iron jar and mercury have been supposed to be of uniform temperature. Now the

different materials of which the pendulum is composed absorb heat at different

rates, and therefore while the temperature is changing there will be some slight
,

error in the clock.

The whole length of a seconds pendulum of this construction is about 44 inches,

the expansion and contraction of which is corrected by a column of mercury in the

jar about 7 inches long. The radius of the jar is usually about one inch. The
weight of the mercury is then about 10 to 12 pounds which, added to that of the

jar, frame, and rod, brings the total weight to about 14 pounds.

Ex. If, as a first approximation, we regard the mercury as the weight, the jar

and the rod being only of sufficient mass to hold up the mercury, and if we also

suppose h and a to be so much less than L that we may reject the squares of their

ratios to L, prove that the equation (1) gives L = l-^h and that the equation (2)

gives h— \L.

95. Buoyancy of Air. Another cause of error in a clock pendulum is the

buoyancy of the air. This produces an upioard force acting at the centre of gravity

of the volume of the pendulum equal to the weight of the air displaced. A very slight

modification of the fundamental investigation in Art. 92 will enable us to take this

into account. Let V be the volume of the pendulum, D the density of the air ; h^,

h^, the distances of the centres of gravity of the mass and volume respectively from

the axis of suspension, Mk'^ the moment of inertia of the mass about the axis of

suspension. Let us also suppose the pendulum to be symmetrical about a plane

through the axis and either centre of gravity.

The equation of motion is then Mk'^ d = - Mg\ sin d + VDgho sin ^ (1).

By the same reasoning as before we infer that if I be the length of the equivalent

pendulum j = h^-h^— (2).

The density D of the air is continually changing, the changes being indicated by

variations in the height of the barometer. Let h be the value of the right-hand side

of this equation for any standard density D. Suppose the actual density to be

D + 8D and let I + 81 be the corresponding length of the seconds pendulum, then we
, , ,.^ ,. ^. k^dl , VdD . ,^ , dl h^ VD dD
have by differentiation ——- = he,~^ , and therefore — = -f -—r -=- .

L^ ' M L h M D
This formula gives in a convenient form the change in the length of the equi-

valent pendulum due to a change in the density of the air.

96. Ex. 1. If the centres of gravity of the mass and volume were very nearly

coincident and the weight of the air displaced were ^^^j,- of the weight of the

pendulum, show that a rise of one inch in the barometer would cause an error in

the rate of going of the seconds pendulum of nearly one-fifth of a second per day.

This example will enable us to estimate the general effect of a rise of the

barometer on the rate of going of an iron pendulum.

Ex. 2. If a barometer were attached to the pendulum show that the rise or fall
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of the mercury as the density of the air changed could be so arranged as to keep the

time of vibration unaltered. This method was suggested first by Dr Eobinson of

Armagh in 1831 in the fifth vohime of the memoirs of the Astronomical Society, and

afterwards by Mr Denison in the Astronomical Notices for Jan. 1873. In the Armagh

Places of Stars published in 1859, Dr Eobinson described the difficulties he found in

practice before he was satisfied with the working of the clock.

The jar of mercury in Graham's mercurial pendulum might be used as the

cistern of the barometer, as Mr Denison remarks.

The theory of the construction is that in differentiating equation (2) we are to

suppose k'^, &c. variable and I constant.

Prof. Eankine read a paper to the British Association in 1853 in which he

proposed to use a clock with a centrifugal or revolving pendulum, part of which

should consist of a siphon barometer. The rising and falling of the barometer

would affect the rate of going of the clock so that the mean height of the mercurial

column during any long period would register itself.

Ex. 3. If the pendulum be supposed to drag a quantity of air with it which

bears a constant ratio to the density D of the surrounding air and adds yD to the

moment of inertia of the pendulum without increasing the moving power, show that

the change produced in the simple equivalent pendulum by a change of density 8D
is given by 5l= y5DI3Ili^ (see Art. 105).

97. Moments of Inertia found by experiment. In many
experimental investigations it is necessary to determine the

moment of inertia of the body experimented on about some
axis. If the body be of regular shape and be so far homogeneous
that the errors of this assumption are of the order to be neglected,

we can determine the moment of inertia by calculation. But
sometimes this cannot be done. If we can make the body oscillate

under gravity about any axis parallel to the given axis placed

in a horizontal position, we can determine by equation (4) of

Art. 92 the radius of gyration about a parallel axis through the

centre of gravity. This requires however that the distances of

the centre of gravity from the axes should be very accurately

found. Sometimes it is more convenient to attach the body to

a pendulum of known mass whose radius of gyration about a fixed

horizontal axis has been previously found by observing the time
of oscillation. Then by a new determination of the time of

oscillation, the moment of inertia of the compound body, and
therefore that of the given body, may be found, the masses being
known.

If the body be a lamina, we may thus find the radii of gyration

about three axes passing through the centre of gravity. By
measuring three lengths along these axes inversely proportional

to these radii of gyration, we have three points on a momental
ellipse at the centre of gravity. The ellipse may then be con-

structed. The directions of its principal diameters are the

principal axes, and the reciprocals of their lengths represent on
the same scale as before the principal radii of gyration.
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If the body be a solid, six observed radii of gyration will de-

termine the principal axes and moments at the centre of gravity.

But in most cases some of the circumstances of the particular

problem under consideration will simplify the process.

The following example illustrates the use of the method in determining or

eliminating the unknown moments of inertia which occur in some experimental

researches. Other examples are given in Arts. 99, 122, &c.

Ex. A symmetrical magnet can turn freely about a vertical axis which passes

through its middle point, and the effect of the earth's magnetism on it is represented

by a couple whose moment is F sin 9, where d is the angle the axis of the magnet

makes with the meridian. The extremities of the magnet can be loaded at pleasure

with two equal spherical brass weights which rest on the magnet by sharp points

so that the weights do not partake of the rotatory motion of the magnet. If I be

the moment of inertia of the magnet, fx the mass of either sphere, 2c the distance

between their centres, prove that the times of oscillation without and with the

spheres are

T=27r{I/F}^ r' = 27r{(Z + 2Atc2)/F}*,

whence I and F can be found when T and T' have been observed. If the weights

were rigidly attached to the magnet, we must increase lixc^ by |iue- where e is the

radius (see Art. 148). In this case e must be measured as well as c, but the error

due to friction at the point of attachment is avoided. This method of finding

the value of F is commonly ascribed to Weber. See Taylor's translations of

Scientific Memoirs, and Airy's Magnetinm.

98. On the length of the Seconds Pendulum. The
oscillations of a rigid body may be used to determine the

numerical value of the accelerating force of gravity. Let r be
the half time of a small oscillation of a body made in vacuo about
a horizontal axis, h the distance of the centre of gravity from the

axis, k the radius of gyration about a parallel axis through the

centre of gravity. Then we have by Art. 92,

k^ + Jf^ = \hT^ (1),

where \= ~, so that X is the length of the simple pendulum

whose complete time of oscillation is two seconds.

I

We might apply this formula to any regular body for which
' k and h could be found by calculation. Experiments have thus

been made with a rectangular bar, drawn as a wire and suspended
J^-2 ^ J^2

from one end. In this case —j— , which is the length of the

simple equivalent pendulum, is easily seen to be two-thirds of the
' length of the rod. The preceding formula then gives \ or g as

soon as the ' time of oscillation has been observed. By inverting
the rod and taking the mean of the results in the two positions

any error arising from want of uniformity in density or figure may
be partially obviated. It has, however, been found impracticable
to obtain a rod sufficiently uniform to give results in accordance

k with each other.
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99. If we make a body oscillate in succession about two
parallel axes not at the same distance from the centre of gravity,

we get two equations similar to (1), viz.

]^^^k2 = XliT\ k'-^h'^-^Xlir'^' (2).

Between these two we may now eliminate k^, thus

/j2 _ 7/2

^^A=/,^2_/,V2 (3)^
A,

This equation gives \. Since h^ has disappeared, the form and
structure of the body is now a matter of no importance. Let
a body be constructed with two apertures into which knife edges
can be fixed. The apertures may be triangular to prevent
slipping. Resting on these knife edges, the body can be made
to oscillate through small arcs. The perpendicular distances h, h'

of the centre of gravity from the axes must then be measured
with great care. The formula will then give X.

100. In Capt. Rater's method (PhiL Trans. 1818) the body
has a sliding vveight in the form of a ring which can be moved
up and down by means of a screw. The body itself has the

form of a bar and the apertures are so placed that the centre of

gravity lies between them. The ring weight is then moved until

the two times of oscillation are exactly equal. The equation (3)

then becomes —-— = t- (4),
A,

which determines \. The advantage of this construction is that

the position of the centre of gravity, which is not found without
difficulty by experiment, is not required. All we want is h + h\

the exact distance between the knife edges. The disadvantage is

that the ring weight has to be moved until two times of oscillation,

each of which it is difficult to observe, are made equal.

101. The equation (3) can be written in the form

h+J^_r^ + T^ h + h' J

\ - 2 ^^h-h'^"^ ^
'

\

We now see that, if the body be so constructed that the times

of oscillation about the two axes of suspension are very nearly

equal, t^ — t'^ will be small, and therefore it will be sufficient in

the last term to substitute for h and h' their approximate values.

The position of the centre of gravity is of course to be found as

accurately as possible, but any small error in its position is of

no very great consequence, for such an error is multiplied by the

small quantity t'^ — t"^. The advantage of this construction over

Rater's is that the ring weight may be dispensed with and yet

the only element which must be measured with extreme accuracy

is h + h\ the distance between the knife ed^es.



ART. 103.] LENGTH OF THE SECONDS PENDULUM. 75

102. In order to measure the distance between the knife edges, Captain Kater

first compared the different standards of length then in use, in terms of each of

which he expressed the length of his pendulum. Since then a much more complete

comparison of these and other standards has been made under the direction of the

Committee appointed for that purpose in 1843. Phil. Trans., 1857.

Having settled his unit of length, Captain Kater proceeded to measure the

distance between the knife edges by means of microscopes. Two different methods

were used, which however cannot be described here. As an illustration of the

extreme care necessary in these measurements, the following fact may be mentioned.

Though the images of the knife edges were always perfectly sharp and well defined,

their distance when seen on a black ground was -000572 of an inch less than when
seen on a white ground. This difference appeared to be the same, whatever the

relative illumination of the object and ground might be, so long as the difference of

character was preserved. Three sets of measurements were taken, two at the be-

ginning of the experiments, and the third after some time. The object of the last

set was to ascertain if the knife edges had suffered from use. The mean results of

these three differed by less than a ten-thousandth of an inch from each other, the

distance to be measured being 39*44085 inches.

103. The time of a single vibration cannot be observed

directly, because this would require the fraction of a second of

time as shown by the clock to be estimated either by the eye or

ear. The difficulty may be overcome by observing the time, say

of a thousand vibrations, and thus the error of the time of a single

vibration is divided by a thousand. The labour of so much counting
may however be avoided by the use of the method of coincidences.

The pendulum is placed in front of a clock pendulum whose time
of vibration is slightly different. Certain marks made on the two
pendulums are observed by a telescope at the lowest point of their

arcs of vibration. The field of view is limited by a diaphragm
to a narrow aperture across which the marks are seen to pass.

At each succeeding vibration one pendulum follows the other

more closely, and at last its mark is completely covered by the

other during the passage across the field of view of the telescope.

After a few vibrations it appears again preceding the other. In
the interval from one disappearance to the next, one pendulum
has made, as nearly as possible, one complete oscillation more than
the other. We have therefore to count the number of vibrations

made by either pendulum in the interval. At the beginning
of the counting let one pendulum coincide with the other as

nearly as we can judge. Suppose that after n half vibrations

of the clock pendulum the next coincidence has not quite arrived,

but that after n+ 1 half vibrations the coincidence has passed.

If the clock pendulum be the slower of the two, the other must
have made ?i -f 2 or n + S half vibrations in the interval. Thus
the time of one half vibration of the pendulum lies between the

71 72/ -|- 1
fractions —— - and ~ of the period of the clock vibration.

71+ 2 71 + 3 ^

Taking either of these estimates as the real time of a half
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vibration of the pendulum the error is less than the fraction

2
,- ^r^^ -; of the time of a half vibration of the clock
{n-\-2)(n-\-S)

pendulum. It appears from this that the error varies nearly in-

versely as the square of the number of vibrations between two
coincidences. In this manner 530 half vibrations of a clock

pendulum, each equal to a second, were found to correspond to 532
of Captain Kater's pendulum. The error of this estimate is so

small that in twenty-four hours it would accumulate only to about
three-fifths of a second. The ratio of the times of vibration of the

pendulum and the clock pendulum may thus be calculated with

extreme accuracy. The rate of going of the clock must then

be found by astronomical means.

The reader should notice the resemblance between this process

of comparing two clocks with the use of the vernier in comparing
lengths. Of course there are differences, because the vernier is

applied to space, and we have here to do with time. But the

general principle is the same.

In some more recent experiments the observation of the

coincidences was assisted by the use of a momentary electrical

illumination of the slit, Nature 1898, Feb. 10.

104. The Reductions. The time of vibration thus obtained

will require several corrections which are called " reductions."

For instance, if the oscillation be not so small that we can put
sin ^ = ^ in Art. 92, we must make a reduction to infinitely small

arcs. The general method of effecting this will be considered

in the chapter on Small Oscillations. Another reduction is

necessary if we wish to reduce the result to what it would have
been at the level of the sea. The attraction of the intervening

land may be allowed for by Dr Young's rule (Phil. Trans. 1819).

We may thus obtain the force of gravity at the level of the sea,

supposing all the land above this level were cut off and the sea

constrained to keep its present level. As the level of the sea is

altered by the attraction of the land, further corrections are still

necessary if we wish to reduce the result to the surface of that

spheroid which most nearly represents the earth. See Camb.
Phil. Trans. Vol. viii. On the vai^iation of gravity at the surface

of the eai'th, by Sir G. Stokes.

Mr Baily gives as the length of the pendulum whose half time
of vibration is a mean solar second in the open air in the latitude

of London 39'133 inches, and as the length of a similar pendulum
vibrating sidereal seconds 38*919 inches.

105. Correction for Resistance of the Air. The observations must be made
in the air. To correct for this we have to make a reduction to a vacuum. This

reduction consists of three parts: (1) The correction for buoyancy, (2) Du Buat's

correction for the air dragged along by the pendulum, (3) The resistance of the air.
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The volume V of the pendulum may be found by measuring the dimensions of

the body. As the "reduction to a vacuum" is only a correction, any small un-

avoidable errors in calculating the dimensions will produce an effect only of the

second order on the value of X. Let p be the density of the air when the body is

oscillating about one knife edge, p' the density when oscillating about the other.

If the observation be made within an hour or two hours, we may put p= p'. The
effect of buoyancy is allowed for by supposing a force Vpg to act upwards at the

centre of gravity of the volume of the body. If the body be made as nearly as

possible symmetrical about the two knife edges this centre of gravity will be half

way between the knife edges, see Art. 95.

Du Buat discovered by experiment that a pendulum drags ivith it to and fro a

certain mass of air ichich increases the inertia of the body toithout adding to the

moving force of gravity. This result has been confirmed by Bessel and Stokes.

The mass dragged bears to the mass of air displaced by the body a ratio which

depends on the external shape of the body. Let us represent it by fxVp. If the

body be symmetrical about the knife edges, so that the external shape is the same

whichever edge is made the axis of suspension, p, will be the same for each oscilla-

tion. We must add to the k^ of equation (1) in Art. 92 and therefore also in

Art. 98 the term p^Vph'^jm, where k' is the radius of gyration of the dragged air

about either axis of suspension and m is the mass of the pendulum.

Taking these two corrections the equation (1) of Art. 98 will now become

\ m 2 J

Similarly for the oscillation about the other knife edge,

,., ,,, p.Vp'k'-^ ^ ,,/,, Vp' h + h'\

m \ m 2 J

We must eliminate />;- as before. If the observations about the two knife

edges succeed each other at a short interval we may put p — p, and then Du Buat's

correction will disappear. This is of course a very great advantage. We then have

h + h' T^ + r'\^h+h' ( Vp\

the last term being very small, because r and t' are nearly equal.

The resistance of the air will be some function of the angular velocity ddjdt of

the pendulum. Since the angular velocity is very small we may expand this function

and take only the first power. Supposing that Maclaurin's theorem does not fail,

and that no coe£&cient of a higher power than the first is very great, this gives a

resistance proportional to ddjdt. The equation of motion will therefore take the form

df^ ^ dt'

where 27r/ri is the time of a complete oscillation in a vacuum, and the term on the

right-hand side is that due to the resistance of the air. The discussion of this

equation will be found in the chapter on Small Oscillations.

When the density of the air is increased, the three corrections (buoyancy, the

addition to the inertia, and the resistance of the air) combine to increase the time

of oscillation of a pendulum and therefore to make a clock go a little slower.

The reader may consult, Du Buat, Principes d'hydraulique 1786 ; F. W. Bessel,

Royal Academy of Sciences, Berlin 1826, Baily "On the correction of the pendulum,"

Phil. Trans. 1832, Account of the operations of the great trigonometrical survey in

India by Capt. Heaviside 1879, Gen. Walker's Account of recent pendulum opera-

tions <&c., Phil. Trans. 1890.
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106. Construction of a pendulum. In constructing a

reversible pendulum to measure the force of gravity, the following

are points of importance.

1. The axes of suspension, or knife edges, must not be at the

same distance from the centre of gravity of the mass. They
should be parallel to each other.

2. The times of oscillation about the two knife edges should

be nearly equal.

3. The external form of the body must be symmetrical, and
the same about the two axes of suspension.

4. The pendulum must be of such a regular shape that the

dimensions of all the parts can be readily calculated.

These conditions are satisfied if the pendulum be of rect-

angular shape with two cylinders placed one at each end. The
external forms of these cylinders should be equal and similar,

but one solid and the other hollow, and such that the distance

between the knife edges is to be as nearly as possible equal to the

length of the simple equivalent pendulum found by calculation.

This is called Repsold's pendulum.

5. The pendulum should be made, as far as possible, of one
metal, so that as the temperature changes it may be always similar

to itself. In this case since the times of oscillation of similar

bodies vary as the square root of their linear dimensions, it is

easy to reduce the observed time of oscillation to a standard tem-
perature. The knife edges however must be made of some strong

substance not likely to be easily injured.

107. Ex. 1. If the knife edges be not perfectly sharp, let r be the difference of

their radii of curvature ; show that

A

very nearly, when the pendulum vibrates in vacuo. It appears that the correction

vanishes if the knife edges are equally sharp. By interchanging the knife edges

we have the same equation with the sign of r changed. By making a few observa-

tions we may thus determine r. A proposition similar to this has been ascribed to

Laplace by Dr Young.

Let p, p' be the radii of curvature of the knife edges. Then by taking moments
about the instantaneous axis we may show (as in Art. 98) that k^ + h'= \{h-\-p)T^.

Since p is small we may write this in the form k^ + Ji^ - {k^ + h^) t= \Jit^. The times

of vibration r, r' are nearly equal, hence by Art. 92 we have k^= hh' very nearly.

Substituting this value of k in the small terms we get k^ +h^-{h + h') p= Xhr^. There
is a similar equation for the pendulum when it vibrates about the other knife edge,

which may be obtained from this by interchanging h, h' and r, r'. Eliminating k^

as in Art. 99, and remembering that r=p' - p, we obtain the result to be proved.

Ex. 2. A heavy spherical ball is suspended by a very fine wire successively

from two points of support A and B, whose vertical distance b has been carefully

I
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measured, thus forming two pendulums. The lowest point of the ball is, on each

suspension, made to be as exactly as possible on the same level, which level is

approximately at depths a and a' below A and B respectively. If r be the radius of

the ball, which is small compared with a or a', and I, V the lengths of the simple

I— I' 2 r^
equivalent pendulums, prove that —— = 1 - ^ -. ry-^ very nearly. By count-

ing the number of oscillations performed in a given time by each pendulum, show

how to find the ratio of I to l'. Thence show how to find g and point out which

lengths must be most carefully measured and which need only be approximately

found, so as to render this method effective. This method is mentioned in Grant's

History of Physical Astronomy, page 155, as having been used by Bessel in 1826.

108. A Standard of Ziengtli. The length of the seconds pendulum has been

used as a national standard of length. By an Act of Parliament passed in 1824, it

was declared that tlie distance between the centres of two points in the gold studs

in the straight brass rod then in the custody of the clerk of the House of Commons,
whereon the words and figures " standard yard, 1760" were engraved, should be the

original and genuine standard of length called a yard, the brass being at the tem-

peiature of 62° Fahr. And as it was expedient that the said standard yard if injured

should be restored to the same length by reference to some invariable natural

standard, it was enacted that the new standard yard should be of such length that

the pendulum vibrating seconds of mean time in the latitude of London in a vacuum

at the level of the sea should be 39-1393 inches.

On Oct. 16, 1834, occurred the fire at the Houses of Parliament, in which the

standards were destroyed. The bar of 1760 was recovered, but one of its gold pins

bearing a point was melted out and the bar was otherwise injured.

In 1838 a commission was appointed to report to the Government on the course

best to be pursued under the peculiar circumstances of the case. In 1841 the com-

mission reported that they were of opinion that the definition by which the standard

yard is declared to be a certain brass rod was the best which it was possible to adopt.

With respect to the provision for restoration they did not recommend a reference to

the length of the seconds pendulum. " Since the passing of the act of 1824 it has

been ascertained that several elements of reduction of the pendulum experiments

therein referred to are doubtful or erroneous : thus it was shown by Dr Young,

Phil. Trans. 1819, that the reduction to the level of the sea was doubtful; by

Bessel, Astron. Nachr. No. 128, and by Sabine, Phil. Trans. 1829, that the reduction

for the weight of air was erroneous ; by Baily, Phil. Trans. 1832, that the specific

gravity of the pendulum was erroneously estimated and that the faults of the agate

planes introduced some elements of doubt ; by Kater, Phil. Tram. 1830, and by

Baily, Astron. Soc. Memoirs, Vol. ix., that very sensible errors were introduced in

the operation of comparing the length of the pendulum with Shuckburgh's scale

used as a representative of the legal standard. It is evident, therefore, that the

course prescribed by the act would not necessarily reproduce the length of the

original yard." The commission stated that there were several measures which

had been formerly accurately compared with the original standard yard, and that

by the use of these the length of the original yard could be determined without

sensible error.

In 1843 another commission was appointed to compare all the existing measures

and to construct from them a new Parliamentary standard. Unexpected difficulties

occurred in the course of the comparison, which cannot be described here. A full

account of the proceedings of the commission will be found in a paper contributed

by Sir G. Airy to the Royal Society in 1857. A standard bar of gun metal was

finally produced which was legalised as the standard by the act of 1855. Copies
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are kept at the Mint, the Eoyal Observatory, the Eoyal Society and many other

places. A new Imperial yard has been in course of construction since 1897. The
weights and measures act of 1878 regulates the law on this subject.

In France the standard of length is the m^tre. This, like our standard yard,

was originally defined by reference to a length given in nature. The ten millionth

part of the length of a meridian of the earth measured from the pole to the equator

was declared to be the legal metre. But when new and more accurate measurements
were subsequently made, it became evident that the length of the legal metre could

not be altered for each improvement in the measure of the earth. Practically there-

fore the definition of the metre is a certain length preserved in Paris.

The use of the seconds pendulum as a standard of length assumes that a

standard of time has already been obtained. In this case we must have recourse

to some natural standard, and the one usually chosen is the time of rotation of the

earth on its axis. This is recommended by its simplicity, for the interval between

two successive transits of the same star across the meridian is very nearly equal to

the time of rotation of the earth. But other natural standards may also be used to

check the clock.

For an account of the recommendations made in the two reports (1873 and 1874)

by the Units Committee of the British Association, see Prof. Everett's treatise on

Units and Physical Constants.

109. Oscillation of a Watch Balance. A rod B'OB can

turn freely about its centre of gravity which is fixed, and is

acted on by a very fine spiral spring GPB. The spring has one

end C fixed in position in such a manner that the tangent at C
is also fixed, and has the other end B attached to the rod so that

the tangent at B makes a constant angle with the rod. The rod

being turned through any angle, it is required to find the time of

oscillation. This is the construction used in watches, just as the

pendulum is used in clocks, to regulate the motion. In many
watches the rod is replaced by a wheel whose centre is 0.

Let Ox be the position of the rod when in equilibrium, and
let 6 be the angle the rod makes with Ox at any time t, Afk^ the

moment of inertia of the rod about 0. Let p be the radius of

curvature at any point P of the spring, p^ the value of p when in

equilibrium. Let {x, y) be the coordinates of P referred to as

origin and Ox as axis of x. Let us consider the forces which act

on the rod and the portion BP of the spring. The forces on the

rod are X, Y the resolved parts of the

action at parallel to the axes of co-

ordinates, and the reversed effective

forces which are equivalent to a couple

Mk'd^dldt^ The forces on the spring

are, the reversed effective forces which,

owing to the fineness of the spring,

are so small that they may be neg-

lected, and the resultant action across

the section of the spring at P. This resultant action is produced

by the tensions of the innumerable fibres which make up the.
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spring, and these are equivalent to a force at P and a couple.

When an elastic spring is bent so that its curvature is changed, it

is proved both by experiment and theory, that this couple is pro-

poitional to the change of curvature at P. We may therefore

represent it hy E i
J

, where E depends only on the material

of which the spring is made and on the form of its section.

To avoid introducing the unknown force at P, we take moments
about P. This gives

This equation is true whatever point P may be chosen. Con-
sidering the left side constant at any moment and {w, y) variable,

this becomes the intrinsic equation to the form of the spring.

Let BP = s. Multiplying this equation by ds and integrating

along the whole length I of the spiral spriui^, we have

Now ds/p is the angle between two consecutive normals, hence

Jds/p is the angle between the extreme normals. At C the

normal to the spring is fixed throughout the motion, therefore

is the angle between the normals at B in the two

Mk^%^^-E(--^)-Xy-^ Yx.

/{'
P Po

positions in which 6 = and 6 = 0. But since the normal at B
makes a constant angle with the rod, this angle is the angle

which the rod makes with its position of equilibrium. Also if

X, y be the coordinates of the centre of gravity of the spring at

the time t, we have foods — xl, Jyds = yl. Hence the equation of

motion becomes Mk'^ ri: — —~r^ -^ Y^ — ^V-
dt^ I

Let us suppose that in the position of equilibrium there is no
pressure on the axis 0, then, if the oscillation is small, X and Y
will, throughout the motion, be small quantities of the order 6.

Let us also suppose that the fulcrum is placed over the centre

of gravity of the spring when at rest. Then if the number of

spiral turns cf the spring be numerous and if each turn be nearly

circular, the centre of gravity will never deviate far from G. Thus
the terms Yx and Xy are each the product of two small quantities,

and are therefore at least of the second order. Neglecting these

terms we have Mk^ -r- =—,6.
dt^ I

'MkH
Hence the time of oscillation is 27rA / -

j-j4-

R. D.
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It appears that to a first approximation the time of oscillation

is independent of the form of the spring in equilibrium, and
depends only on its length and on the form of its section.

This brief discussion of the motion of a watch balance is taken from a memoir
presented to the Academy of Sciences. The reader is referred to an article in

Liouville's Journal, 1860, for a further investigation of the conditions necessary for

isochronism and for a determination of the best forms for the spring.

109 a. If the length I of the spring is too long the time of oscillation is increased

and the watch goes too slow. To correct this when necessary the clamp by which

the point C is held is attached to a rod Ox which can turn stiffly round 0. The
spring being held tight at D, let the rod Ox be moved from D, the spring slides

through the clamp C and thus the length of CB, which is the effective length I of

the spring, is shortened. Similarly by moving the rod Ox towards D, the effective

length of the spring is increased.

When the temperature rises, the length I of the spring is increased. For this

and other reasons the watch will lose time. The compensation for a change of

temperature is now usually effected by altering the moment of inertia of the oscil-

lating body. The circumference of the balance wheel instead of being a complete

circle consists of two arcs each less than a semi-circumference. An extremity of

each is attached to one extremity of the rod BOB' , and each carries a small mass
which is attached to it near its free extremity. Each arc is constructed of two thin

slips of different metals lying side by side, the outer of which is made of brass and

the inner of steel. As the temperature increases the brass slip expands more than

the steel slip so that the arcs bend inward. The distances of the small masses from

the axis are decreased and the moment of inertia of the whole balance is diminished.

The proper positions of the masses on the circular arcs are determined by trial and

this is usually a troublesome process.

As thus constructed the instrument corrects the error only to a near approxi-

mation. The changes in MkH, and in the coefficient of elasticity E, due to changes

of temperature, follow somewhat different laws, and cannot be made to neutralize

each other throughout the whole of any large range of temperature. What remains

is called the "secondary error" and the modes of correcting it are described in

treatises on clocks and watches.

109 h. The effect of the pressure and resistance of the air on the balance has

not here been allowed for. According to Du Buat's theory (Art. 105) the general

effect is to increase the moment of inertia MP of the balance by a small quantity R
which is proportional to the density or pressure of the air. The time T of oscillation

is therefore increased by ^TRjMk'^. The watch therefore goes a little slower, the

change of rate being proportional to the pressure. A short summary of some ex-

periments made to test this result is given in the Bulletin de la Societe Astronomique

de France, April 1904.

When great accuracy is required the chronometer might be enclosed in an air-

tight case so that the density of the air inside might be kept constant.

110. Pressures on the fixed axis. A body moves about a

fixed aods under the action of any forces, to find the pressures on

the axis.

Firstly. Suppose the body and the forces to be symmetrical

about the plane through the centre of gravity perpendicular to
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the axis. Then it is evident that the pressures on the axis are
reducible to a single force at C the centre of suspension.

Let Fy G be the actions of the point of support on the body
resolved along and perpendicular to CO, where

is the centre of gravity. Let X, F be the

sum of the resolved parts of the impressed
forces in the same directions, and L their

moment round G. Let GG = h and 6 — angle
which GG makes with any straight line fixed

in space.

Taking moments about G, we have

gg^ ^
(1)

The motion of the centre of gravity is the

same as if all the forces acted at that point. Since it describes

a circle round G, we have, by taking the tangential and normal
resolutions,

d^e F+(?
^W = M ...(2),

de\^

dt)

d^e

X-^F
...(3).

and then the

M
dO

Equation (1) gives the values of ^ and -r-

pressures may be found by equations (2) and (3).

If the only force acting on the body be that of gravity, and 6

be measured from the vertical, we have

X = Mg cos 6, Y= -Mg sin 0, L = -MghsmO;
d^_ gh^

' ' dt'

'd6\^_

dij
~

sin 6 ,(4).

Integrating, w^e have .(5).

Itf + h?

If the angular velocity of the body be fl when GO is horizontal,

we have co = fl when cos^ = 0. We find G=il^. Substituting

these values in (2) and (3) we get

j^
= n^h -{-gcosd

G_
M g sin

k'

k^ + h^ ,

where 6 is the angle the perpendicular drawn from the centre of

gravity of the body on the axis makes with the vertical measured
downwards.

It appears from these results that the component of the pressure
which is perpendicular to the plane containing the axis and the

centre of gravity is independent of the initial conditions. As the

6—2
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body oscillates this component varies as the distance of the centre

of gravity from the vertical plane through the axis. On the other

band the component of pressure in the plane containing the axis

and the centre of gravity does depend on the initial angular

velocity of the body.

If the forces are impulsive, the equations (1), (2), (3) are only

slightly altered. Let co, w! be the angular velocities of the body
just before and just after the action of the impulses. The equa-

tions then become

"'-" = S7FTI^)' ^("'-<») =^. = .Y + F,

where all the letters have the same meaning as before, except that

F, G, X, Y are now impulses instead of finite forces.

111. Ex. 1. A circular area of weight W can turn freely about a horizontal

axis perpendicular to its plane which passes through a point C on its circumference.

If it start from rest with the diameter through C vertically above C, show that the

resultant pressures on the axis when that diameter is horizontal and vertically

below C are respectively ^^ITW and ^W.
Ex. 2. A thin uniform rod, one end of which is attached to a smooth hinge, is

allowed to fall from a horizontal position
;
prove that when the horizontal strain is

the greatest possible, the vertical strain on the hinge is to the weight of the rod as

11 : 8. [Math. Tripos.

Ex. 3. Let a= g . .,—,~^ , b= g .^ . „ , and let R be the resultant of - i^' - M^"h

and G. Construct an ellipse with C for centre and axes equal to 2a and 26 measured
along and perpendicular to CO. Let this ellipse be fixed in the body and oscillate

with it. Prove that the pressure R varies as the diameter along which it acts. And
the direction may be found thus ; let the auxiliary circle cut the vertical through G
in V, and let the perpendicular from V on CO cut the ellipse in R. Then CR is

the direction of the pressure R,

112. Secondly. Suppose either the body or the forces not to

be symmetrical.

Let the fixed axis be taken as the axis of z with any origin
and plane of xz. These we shall afterwards so choose as to simplify
our process as much as possible. Let x, y, z be the coordinates of
the centre of gravity at the time t Let co be the angular velocity
of the body, / the angular acceleration, so that /= w.

Now every element m of the body describes a circle about the
axis, hence its accelerations along and
perpendicular to the radius vector r
from the axis are — wV and fr. Let 6
be the angle which r makes with the
plane of ^^ at any time, then from the

resolution offorces it is clear that

~x x = — (o^r cos -fr sin d = — (o^w—Jy,

and similarly y= — (o'^y \-fx.
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These equations may also be obtained by differentiating the

equations a? = r cos 0, y — r sin 6 twice, remembering that r is

constant.

Collecting the effective forces of all the elements and com-
bining them in Poinsot's manner, we see that they are equivalent

to a force acting at the origin and a couple whose six com-
ponents are

X, = Imx = Sm (- 0)2^ -fy) = - (dHIx -/My (1),

Fi = Imy = tm (- co^y -\-fx) = - co^My +fMx .(2),

Z,==2mz =0 (3),

Lj=^m (yz — zy) = — Xmzy = oyl^myz —f^mxz (4),

M^ = 2m (zic — xz) = ^mzx — — co^lmxz —f^myz. . .(5),

N^ = ^m(xy-yx) = 2mr^Q) = Mk''f (6).

Since z = 0, the right-hand sides of (4) and (5) may obviously

be obtained by merely introducing z into the 2 of (2) and (1).

Let the body be fixed to the axis at two points distant a, a'

from the origin and let the reactions of the points on the body
resolved parallel to the coordinate axes be respectively F, G, H]
F\ G', H'. Let X, F, Z be the accelerating impressed forces

acting on the particle m. Then by D'Alembert's principle,

Art. 72,

tmX + F+F' = -<D''Mx-fMy (1/,

'LmY-vG + G' = -w'My+fMx (2/,

l.mZ +H+H' = (3)',

Xm (yZ — zY) — Ga — G'a ^ w^^myz —f^mxz .(4)',

Sm {zX — xZ) -^ Fa^- F'a' = — orl^mxz — fl^myz (5)',

%m{xY-yX) =fMk'' (6)'.

Equation (6)' determines / and by integration o) also; (1)',

(2)', (4)', (5/, then give F, G, F\ G' \ H and H' are indeterminate

but their sum is given by (3)'.

It is obvious that the six equations of motion may sometimes
be greatly simplified.

First. If the axis of ^ be a principal axis at the origin

^mxz = 0, ^myz = 0,

and the calculation of the right-hand sides of (4/ and (5/ becomes
unnecessary. Hence we should, when possible, so choose the origin

that the fixed axis is a principal axis of the body at that point,

Art. 48.

Secondly. Except the determination of/ and (o by integrating

{%)', the whole process is merely an algebraic substitution of/and
o) in the remaining equations. Hence our results will still be
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correct if in forming the equations of motion we choose the plane of
xz to contain the centre of gravity at the moment under consider-

ation; this will make y = and thus equations (1)' and (2/ will

be simplified.

Thirdly. The points at which the body is attached to the

axis being arbitrary, we shall arrive at simpler equations of motion,

if we put one hinge -it the origin and the other at some convenient

position. We then have a = 0, so that F\ G' are found by inspec-

tion from (4y and (o/ while F, G follow from (1)' and (2)'.

113. Impulsive forces. If the forces which act on the

body are impulsive, the equations require some alterations. Let
{u, V, w), {u\ v\ w') be the velocities resolved parallel to the axes of

any element m whose coordinates are {x, y, z). Then u = — yw,

u' = — y(o'; v = x(D, v —xw'\ and w; = 0, ^^' = 0. The six com-
ponents of the effective forces then become

Xj = 2m {u -n) = — l^my (o)' — co) = — My (co' — «) (1),

Y^ = ^m{v-v)= %mx{co'-a)) = Mx{a)'-(o) (2),

Z, = Xm(w'-w) =0 (3),

Li = 2m {y {w' — w) — z{v' — v)] = — ^mxz (&)' — co). . .(4),

il/j = 2m [z {iif — u) — x(w' — w)] = — ^myz {co' — (o). . .(5),

N, = (Art. 89) = Mk'' (co'-co) (6).

We then have by D'Alembert's principle (Art. 86)

%X + F-^F' = -My((o'-co) (ly,

XY+G + G'= Mx((d'-co) (2)',

^Z-^H + H' = (3)',

l(yZ-zY)-Ga-G'a =-Xmxz((o'-co) ...(4)',

1 (zX - xZ) -vFa^ F'a' = - Xmyz (w -co) .. .(5)\

t(xY-yX) =Mk''{(o'-(o) (6)'.

These six equations are sufficient for the determination of

co', F, F\ G, G' and the sum H-\-H'.

In forming the equations of motion for any particular problem
we see that it is important to attend to the three simplifications

mentioned above.

114. Analysis of results. Since the forces and pressures

enter into the equations of st ttics and dynamics in a linear form,

it follows that the resolved pressures due to several causes may
be found by adding together the resolved pressures due to each
separately. The pressures of the axis on the body may therefore

be regarded as the resultants of two sets of pressures, (1) the

statical pressures which balance the impressed forces X, Y, Z, &c.,

and (2) the pressures equivalent to the effective forces mx, my, &c.
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The resultant statical pressure can be found from the first five

equations, their right-hand sides being replaced by zero. These
.equations are not altered by transferring the impressed forces

parallel to themselves to act at points on the axis, provided that we
introduce the usual couples. We may then neglect the couple

whose axis is Oz, which occurs only in equation (6), and the statical

pressure at the axis may be found by compounding the remaining
transferred forces. Thus, if the only impressed force on the body
is that of gravity, and the axis of suspension is horizontal, the
statical pressure on the axis is a vertical force equal to the weight
of the body, acting at the foot of the perpendicular drawn from

the centre of gravity to the axis of suspension. In the same
way if an impulse act on the body perpendicular to the axis, the

statical pressure due to it may be found by simply transferring it

parallel to itself in a plane perpendicular to the axis to act at

a point on that axis.

When the axis of revolution Oz is a principal axis at some point

0, the pressures due to the effective forces take a simple form.

We see from (4) and (5) that Zj = 0, ifi = 0. The effective forces

are therefore equivalent to the forces X-^, Fj acting at together

with a couple N-^. The forces X^, Fj are evidently the components
of the effective forces of a mass M placed at the centre of gravity,

while the couple Ni appears only in the sixth equation of motion
and affects the pressures F, G, F' , G only indirectly by altering f.
It follows that the pressures at the axis due to the effective forces

are equivalent to a single force which acts at the principal point

of the axis of revolution and is equal to the resultant of the effective

forces of the whole mass collected at the centre of gravity and
moving with it. Representing the perpendicular from the centre

of gravity on the axis by r, the components of this pressure are

— (o^Mr and fAlr acting respectively along r and perpendicular

to the plane containing r and the axis. When the forces are

impulses the sanie remarks apply, except that the only component
of the pressure is fMr where/= co' — co.

It appears therefore that when a heavy body rotates about a
fixed horizontal axis which has a principal point 0, the pressures

of the axis on the body are equivalent to two forces. One of

these is equal and opposite to the weight and acts at the projection

of the centre of gravity on the axis ; the other is equal to the

effective force at the centre of gravity and acts at the principal

point.

When the axis of suspension is parallel to a principal axis at

the centre of gravity, we know by Art. 49 that the axis has a
principal point and that this point coincides with the projection of

the centre of gravity. In this case when the axis is horizontal

both the pressure due to gravity and that due to the effective
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forces act at the same point and are equivalent to a single

pressure.

When the rotating body is a lamina with the axis Oz in its

plane, the effective forces of an element distant x from Oz are
— co^moo and fmx, x being the radius of the circle described by the

element. It follows from the principles of elementary hydrostatics

or from the reasoning of Art. 47 that the resultants of these two
sets ofparallel forces are respectively equal to — co^Mx andfMx and
that both act at the centre of pressure of the area, the axis of

suspension being regarded as in the surface of the fluid. The
position of the centre of pressure is known whenever the area has
equimomental points (Art. 47). In such cases the pressure at the
axis of suspension due to the effective forces acts at the projection

of the centre of pressure on the axis.

Ex. 1. A heavy body can turn freely about a horizontal axis Oz which is a

principal axis at 0. It starts from rest with the plane GOz through the centre of

gravity G horizontal. Show that the pressure due to the effective forces alone

makes an angle with the plane GOz whose tangent is half the tangent of the angle

which the plane GOz makes with the vertical.

Ex. 2. A quadrant of a circle of radius a can turn freely about a bounding

radius as a horizontal axis. Show that the pressures on the axis are equivalent to

two pressures, one equal to the weight of the lamina acting at a point of the fixed

radius distant Aaj'Sir from the centre, and the other at a point which divides that

radius in the ratio 3 : 5.

Ex. 3. An elliptic lamina can turn freely about the straight line joining the

extremities A and B of the principal diameters and this axis is fixed in a vertical

position. If the lamina is set in rotation with an angular velocity w, such that

{a'^-b^)u)^ = 4:g{a^ + h^)^, prove that the pressures on the axis are equivalent to a

single force acting at the foot of the perpendicular from the centre on the axis.

Should the end ^ or JB be highest?

Ex, 4. A lamina can turn freely about an axis Oz in its plane as a fixed axis.

It is struck by a blow P at any point A of its area in a direction perpendicular to

the lamina. Show that the statical pressure on the axis is equal to a blow P acting

at B where AB is a. perpendicular to Oz. Show also that the pressure due to the

effective forces is equal to a blow Px^jk^ acting at in a direction opposite to the

blow at B. Here the origin is the principal point of the axis, x and | are the

distances of the centre of gravity and of A from Oz, Mk^ is the moment of inertia

about Oz. What is the condition that the pressure on the axis should be equivalent

to a couple ?

Ex. 5. A triangular lamina ABC oscillates about the side AB as a horizontal

axis. Show that the length of the equivalent pendulum is A/c where A is the area.

If the corner C is suddenly fixed, prove that the impulsive pressures at the corners

A and B are equal.

Ex. 6. A door is suspended by two hinges frovi a fixed axis making an angle a

with the vertical. Find the motion and pressures on the hinges.

Since the fixed axis is evidently a principal axis at the middle point, we shall

take this point for origin. Also we shall take the plane of xz so that it contains

the centre of gravity of the door at the moment under consideration.

The only force acting on the door is gravity, which may be supposed to act at
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the centre of gravity. We must first resolve this parallel to the axes. Let be

the angle the plane of the door makes with a vertical plane through the axis of

suspension. If we draw a plane zON such that its trace ON on the plane of xOy

makes an angle with the axis of x, this will be the vertical plane through the

axis; and if we draw OV in this plane making zOV=a, OV will be vertical.

Hence the resolved parts of gravity are

X=^sinacos0, F=(jrsina sin 0, Z=-gcosa.

Here is the angle the moving plane zOG makes with the fixed plane zON, and is

therefore measured from ON towards OG. Hence/ in Art. 112 is here - 0.

Since the resolved parts of the effective forces are the same as if the whole mass

were collected at the centre of gravity, the six equations of motion are

Mg sin acos<p + F+F'- -ui^Mx.

Mg sin a sin + G + G' = - ifMx .

-Mg cos a +H+H' =
-Ga + G'a =

Mg cos ax + Fa -F'a=
- Mg sin a sin . 5= Mk''^ . .

.(1),

.(2),

.(3),

(4),

.(5),

.(6).

k'^ = - ^ sin a sin . if.

Integrating the last equation, we have

C + 2<7 sin a cos . x= k"^ui'^.

Suppose the door to be initially placed

at rest, its plane making an angle ^ with

the vertical plane through the axis ; then

when = /3, w= ; hence

k'^ (jd^= 2gx sin a (cos - cos /3)

,

By substitution in the first four equations F, F', G, G' may be found.

Ex, 7. A square lamina is suspended by two hinges at two adjacent corners,

from a fixed axis making an angle a with the vertical, prove that the pressure at

the upper hinge can never be entirely along the axis, but that the pressure on the

lower hinge can be entirely along the axis provided cot a lies between 1 and 4.

Prove also that if this be so the angle § made by the plane of the lamina in its

highest position with the vertical plane is given by 3 cos /3= 5 - 2 cot a. [Caius, 1899.

115. Dynamical and geometrical similarity. It should

be noticed that the equations of Arts. 112 and 118 do not depend
on the form of the body, but only on its moments and products of

inertia. We may therefore replace the body by any equimomental
body that may be convenient for our purpose.

This consideration will often enable us to reduce the compli-

cated forms of Art. 112 to the simpler ones given in Art. 110.

For though the body may not be symmetrical about a plane

through its centre of gravity perpendicular to the axis of sus-

pension, yet if the momental ellipsoid at the centre of gravity is

symmetrical about this plane we may treat the body as if it were
really symmetrical. Such, a body may be said to be dynamically
symmetrical. If at the same time the forces are symmetrical

about the same plane, and this will always be the case if the axis

of suspension be horizontal and gravity is the only force acting,

we know that the pressures on the axis must certainly reduce to

a single pressure, which may be found by Art. 110.
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116. Ex. 1. A uniform heavy lamina in the form of a sector of a circle is

suspended by a horizontal axis parallel to the radius which bisects the arc, and
oscillates under the action of gravity. Show that the pressures on the axis are

equivalent to a single force, and find its magnitude.

Ex. 2. An equilateral triangle oscillates about any horizontal axis situated in

its own plane, show that the pressures are equivalent to a single force and find its

magnitude.

117. Permanent axes of Rotation. Let us suppose that

any point of a body under no forces is fixed in space and that it

is set in rotation about some axis which we may call O2. We may
enquire what are the necessary conditions that the body should

continue to rotate about that axis as if it were fixed in space.

When these conditions are satisfied the axis is called a permanent
axis of rotation at the point 0.

To determine these conditions let us suppose some other

point A of the axis to be also fixed in space. Then by using the

method of Arts. 112 or 113 we may determine the pressures at A
which are necessary to fix the axis. If these are zero the attach-

ment at A is unnecessary and may be removed. The body will

then continue to rotate about Oz as if it were fixed in space.

Since there are no impressed forces acting on the body, the

whole pressure on the axis is that due to the effective forces. If

the axis Oz is a principal axis at any point of its length the pres-

sure due to the effective forces will act at that point (Art. 114).

Hence the pressure at A cannot be zero unless that point coincide

with 0. The conditions are therefore satisfied if the axis of rota-

tion Oz is a principal axis at the fixed point 0.

If the axis Oz is not a principal axis at any point we shall

prove that it cannot be a permanent axis of rotation. To prove

this we must practically return to the equations (4)', (5)' and (6/
of Art. 112. Let F, G, H, F', G\ H' be the pressures at and A.
Then a = 0, a' = OA. Taking moments about Oz we have Mk'^f—Q)
thus the angular velocity of the body about the axis Oz is constant.

It easily follows that x = — w'^x, y = — dy^y, z = 0. Taking moments
about the axes of x and y we have (Art. 72)

— G'a = Xm (yz — zy) = cti^^myz,

F'a = 2m {zx — x'z) = — co^Smxz.

Thus F' and G' cannot be zero unless Xmxz = and '2myz = 0, i.e.

Oz cannot be a permanent axis of rotation unless it is a principal

axis at the fixed point 0.

The existence of principal axes was first established by Segner in the work

Specimen Theoriae Turbinum. His course of investigation is the opposite to that

pursued in this treatise. He defines a principal axis to be such that when a body

revolves round it the forces arising from the rotation have no tendency to alter the

position of the axis. From this dynamical definition he deduces the geometrical

properties of these axes. The reader may consult Prof. Cayley's report to the
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British Association on the special problems of dynamics, 1862, and Bossut, Histoire

des Mathematiques, Tome ii.

118. A body at rest with one point fixed in space is acted

on by an impulsive couple^ it is required to find the initial axis of
rotation. Let Oz be the initial axis. As before we shall regard

this axis as fixed at some other point A, at which the pressures are

to be equated to zero. Let L, M, N be the resolved parts of the

couple about the axes. The plane of the couple is therefore

L^ + M7}-^N?=0 (1).

Let u, v', w be the initial velocities of an element of the body

whose coordinates are x, y, z, and let w be the initial angular

velocity of the body. Then u' = — yw, v = X(o' exactly as in Art.

113. Taking moments about the axes of x, y, z we have

L — G'a' = Im {yw' — zv') = — ^mxz . w

M+F'a — Sm {zu — xw) — — ^myz .
&>'

N = MW'ai'

Here F' , G' are, as before, resolved parts of the pressure at A, and

OA = a'. Putting F' = 0, G' — 0, these equations give the couples

which must act on the body to produce rotation about Oz. Sub-

stituting the values of L, M, N in (1), the equation to the plane

of the couple is — ^mxz^ — l^myzr) + i/F^f = (2).

Let the momental ellipsoid at the fixed point be constructed

and let its equation be

^f + Brj' + C^' -2Drj^~ 2^r| - 2Ff77 = K.

The diametral plane of the axis of f is

-E^-Dr)-hC^=0 (3).

Comparing (2) and (3) we see that the plane of the resultant

couple must be the diametral plane of the axis of revolution.

If then a body at rest with one point fixed be acted on by any
couple it will begin to rotate about the diametral line of the plane

of the couple with regard to the momental ellipsoid at the fi^ed point.

Thus a body will begin to rotate about a perpendicular to the

plane of the couple only when the plane of the couple is parallel

to a principal plane of the body at a fixed point.

119. Ex. 1. If a body at rest have one point fixed and be acted on by any

couple whose axis is a radius vector OP of the eUipsoid of gyration at 0, the body

will begin to turn about a perpendicular from O on the tangent plane at P.

Ex. 2. A solid homogeneous ellipsoid is fixed at its centre, and is acted on by a

couple in a plane whose direction-cosines referred to the principal diameters are

{I, m, n). Prove that the direction-cosines of the initial axis of rotation are pro-

portional to -^—-„, -„- „ *^^

Ex. 3. Any plane section being taken of the momental ellipsoid of a body at a

fixed point, the body may be made to rotate uniformly about either of the principal
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diameters of this section as a fixed axis by the application of a couple of the proper

magnitude whose axis is the other principal diameter.

For assume the body to be turning uniformly about the axis of z. Then the

couples which must act on the body to produce this motion are L = w^ Ztnyz,

M = - (J^'Lmxz, N= 0, Art. 112. Then by taking the axis of x such that 'Zmxz =
we see that the axis of the couple must be the axis of x and the magnitude of the

couple will be L= o}^1,rnyz.

Ex. 4. A body having one point O fixed in space is made to rotate uniformly

about any proposed straight line by the application of the proper couple. The
position of the axis of rotation when the magnitude of the couple is a maximum,
has been called an axis of maximum reluctance. Show that there are six axes of

maximum reluctance, two in each principal plane, each two bisecting the angles

between the principal axes in the plane in which they are.

Let the axes of reference be the principal axes of the body at the fixed point, let

(Z, VI, n) be the direction-cosines of the axis of rotation, (X, fi, v) those of the axis of

the couple G. Then by the last question and the second and third examples of

Art. 18, we have
^^

_ ^^^ ^^^^^

= ^^-^--^^ = ^^^^^

,

We have then to make G a maximum by variation of {bun) subject to the

condition l^ + m'^ + n^=l. The positions of these axes were first investigated by

Mr Walton in the Quarterly Journal of Mathematics, 1866, Vol. vii. p. 376.

120. The Centre of Percussion. When the fixed axis is

given and the body can be so struck that there is no impulsive

pressure on the axis, any point in the line of action of the force is

called a centre of percussion.

When the line of action of the blow is given, the axis about
which the body begins to turn is called the axis of spontaneous

rotation. It obviously coincides with the position of the fixed

axis in the first case.

Let us begin by considering the motion in two dimensions.

Imagine a lamina at rest and suspended from a point G with the

centre of gravity G vertically under G. Let it be struck by a

horizontal blow Y which we may suppose to act in the plane of

the lamina at some point A in GG produced. Let GA = a. Let F
and G be the impulsive reactions at the fixed point G. Let co' be

the angular velocity of the body round (7 just after the blow Y has

been given. The equations of motion, exactly as in Art. 110, are

therefore „'=^^^^^, ^"'=^' = ^-

If the pressure G on the fixed point is zero, we have by eliminating

F, ¥ + A- = ah.

By Art. 92 this shows that A must be the centre of oscillation of

the body. The centre of oscillation is therefore a centre of per-

cussion.
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Prop. A body is capable of turning freely about a fixed axis. To determine the

conditions that there shall be a centre of percussion and to find its position.

Take the fixed axis as the axis of z, and let the plane of xz pass through the

centre of gravity of the body. Let X, Y, Z be the resolved parts of the impulse, and

let ^, 7j, f be the coordinates of any point in its line of action. Let Mk"^ be the

moment of inertia of the body about the fixed axis. We have now to find the

pressures on the axis, and by equating these to zero we shall discover the conditions

for a centre of percussion. The process is virtually the same as that already

explained in Art. 113 and again in Art. 117. It seems unnecessary to repeat the

steps. Putting y = and omitting the impulsive pressures on the axis because by

hypothesis they are to be equated to zero, the six equations of motion of Art. 113

become X=0, Y=AIx(o}' - u,), Z= (1).

r}Z - iY= - (w' - w) ^7nxz\

^X-^Z=-{o}'-u})i:myz I (2).

^Y-rjX= {u}' - w) Mk"^ J

From these equations we may deduce the following conditions.

I. From (1) we see that X=0, Z= 0, and therefore the force must act perpen-

dicular to the plane containing the axis and the centre of gravity.

II. Substituting from (1) in the first two equations of (2) we have l/myz = and

f= „_ . Since the origin may be taken anywhere in the axis of rotation, let it be

so chosen that f=0. Then the axis of z must be a principal axis at the point

where a plane passing through the line of action of the blow perpendicular to the

axis cuts the axis. Thus there can be no centre of percussion unless the axis be a

principal axis at some point in its length.

III. Substituting from (1) in the last equation of (2) we have ^ = ^-. By

Art. 92 this is the equation to determine the centre of oscillation of the body about

the fixed axis treated as an axis of suspension. Hence the perpendicular distance

between the line of action of the impulse and the fixed axis must be equal to the

distance of the centre of oscillation from the axis.

If the fixed axis be parallel to a principal axis at the centre of gravity, the line

of action of the blow will pass through the centre of oscillation.

Ex. 1. A circular lamina rests on a smooth horizontal table ; how should it be

struck that it may begin to turn round a point on its circumference ? The line of

action of the blow should divide the perpendicular diameter in the ratio 3 : 1.

Ex. 2. A pendulum is constructed of a sphere (radius a, mass M) attached to

the end of a thin rod (length b, mass m). Where should it be struck at each oscil-

lation that there may be no impulsive pressures to wear out the point of support ?

The point is at a distance I from the point of support, where

{M {a + b) + ^mb} 1=M {ia^ + {a + bf\ + ^mb^.

121. The Ballistic Pendulum. It is a matter of con-

siderable importance in the Theory of Gunnery to determine the

velocity of a bullet as it issues from the mouth of a gun. By
means of it we obtain a complete test of any theory we have

reason to form concerning the motion of the bullet in the gun.

We may thus find by experiment the separate effects produced by
varying the length of the gun, the charge of powder, or the weight

of the ball. By determining the velocity of a bullet at different
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distances from the gun we may discover the laws which govern the

resistance of the air.

It was to determine this initial velocity that Robins about

1743 invented the Ballistic Pendulum. Before his time but little

progress had been made in the true theory of military projectiles.

His New Principles of Gunnery was soon translated into several

languages, and Euler added to his translation of it into German
an extensive commentary. The work of Euler was again trans-

lated into English in 1784. The experiments of Robins were all

conducted with musket balls of about an ounce weight, but they

were afterwards continued during several years by Dr Hutton,

who used cannon balls of from one to nearly three pounds in

weight.

There are two methods of applying the ballistic pendulum,

both of which were used by Robins. In the first method, the gun
is attached to a very heavy pendulum ; when the gun is fired the

recoil causes the pendulum to turn round its axis and to oscillate

through an arc which can be measured. The velocity of the

bullet can be deduced from the magnitude of this arc. In the

second method, the bullet is fired into a heavy pendulum. The
velocity of the bullet is itself too great to be measured directly,

but the angular velocity communicated to the pendulum may be

made as small as we please by increasing its bulk. The arc of

oscillation being measured, the velocity of the bullet can be found

by calculation.

The initial velocity of a small bullet may also be determined by

the use of some rotational apparatus. Two circular discs of paper

are attached perpendicularly to the straight line joining their

centres, and are made to rotate about this straight line with a

great but known angular velocity. Instead of two discs, a cylinder

of paper might be used. The bullet being fired through at least

two of the moving surfaces, its velocity can be calculated when
the situations of the two small holes made by the bullet have

been observed. This was originally an Italian invention, but it

was much improved and used by Olinthus Gregory in the early

part of last century.

The electric telegraph is now used to determine the instant at

which a bullet passes through any one of a number of screens

through which it is made to pass. The bullet severs a fine wire

stretched across the screen and thus breaks an electric circuit.

This causes a record of the time of transit to be made by an

instrument expressly prepared for this purpose. By using several

screens the velocities of the same bullet at several points of its

course may be found. The ballistic pendulum is thus more of

theoretical and historical interest than of practical importance.

The two instruments now chiefly used for observations on the
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velocities of bullets are, the chronograph invented by Bashforth

and used by the English government, and the chronograph in-

vented by Major Le Bouleng^ of the Belgian artillery.

122. A rifle is attached in a horizontal position to a large

block of wood which can turn freely about a horizontal axis. The

rifle being flred, the recoil causes the pendulum to turn round its

axis until brought to rest by the action of gravity. A piece of
tape is attached to the pendulum, and is drawn out of a reel

during the backward motion of the pendulum, and thus serves to

measur^e the amount of the angle of recoil. It is required to find

the velocity of the bullet.

The initial velocity of the bullet is so much greater than

that of the pendulum that we may suppose the ball to have left

the rifle before the pendulum has sensibly moved from its initial

position. The initial momentum of the bullet may be taken as

a measure of the impulse communicated to the pendulum.

Let h be the distance of the centre of gravity from the axis

of suspension
; / the distance from the axis of the rifle to the axis

of suspension ; c the distance from the axis of suspension to the

point of attachment of the tape, m the mass of the bullet ; M that

of the pendulum and rifle, and n the ratio of ilf to m ; b the

chord of the arc of the recoil which is measured by the tape. Let

k' be the radius of gyration of the rifle and pendulum about the

axis of suspension, v the initial velocity of the bullet.

The explosion of the gunpowder generates equal impulsive

actions on the bullet and on the rifle. Since the initial velocity of

the bullet is v, this action is measured by mv. The initial angular

velocity generated in the pendulum by the impulse is by Art. 89

mvf
o) = —^ . The subsequent motion is given (Art. 92) by

k'^d^-ghsme; .'. k'^d'' = C + 2gh cos 6

:

when ^ = we have 6 = co, and if a is the angle of recoil, when
6 — a, t7 = 0. Hence k'^o)^ = 2gh (1 — cos a). Eliminating &> we have

vf=nk'.2sm.\oi\Jgh. But the chord of the arc of the recoil is

b = 2c sin ^a. Hence the initial velocity of the bullet is given by

mv . cf= Mbk'slgh.

The magnitude of k' may be found experimentally by ob-

serving the time of a small oscillation of the pendulum and rifle.

If r be a half-time we have T=irx/~. (Art. 97.)

This is the formula given by Poisson in the second volume of

his Mecanique. The reader will find in the Philosophical Magazine
for June. 1854, an account of some experiments conducted by
Dr S. Haughton from which, by the use of this formula, the initial

velocities of rifle bullets were calculated.
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123. The formula must however be regarded only as a first approximation, for

the recoil due to the inflamed powder has been neglected. To make some allowance

for this Hutton assumed that the effect of a given charge of powder on the recoil

of the gun was the same with as without a ball. Let p be the unknown momen-
tum generated by the powder. By trying the experiment, with equal charges of

powder, first with and then without a ball, and writing mv +p and p for mv in the

two experiments he was able to eliminate p and deduce the value of v. With

large charges of powder, the results thus obtained did not agree sufficiently with

those obtained by firing the ball into a pendulum (Art. 124), The assumption was

therefore not altogether justified by the experiments and further corrections were

made.

124. A gun is placed in front of a heavy pendulum, which can turn freely about

a horizontal axis. The ball strikes the pendulum horizontally, penetrates into the

wood a short distance, and communicates a momentum to the pendulum. The chord

of the arc being measured as before by a piece of tape, find the velocity of the bullet.

The time, which the bullet takes to penetrate, is so short that we may suppose

it completed before the pendulum has sensibly moved from its initial position.

Let i be the distance of the ball from the axis of suspension at the moment
when the penetration ceases ; let j be the perpendicular distance between the axis

and the dnection of motion of the bullet ; let ^ be the angle the length j makes

with the length represented by i, so that j= i cos ^. Then if we follow the same

notation as before we have at the moment when the impact is concluded

mvi cos j8= {Mk'^ + mi^) u
;

also proceeding as before we may prove

{Mk'^ + mi^) u}^= 2Mgh (1 - cos a) + 2mgi {cos /3 - cos (a - /3)}.

If the gun be placed as nearly as possible opposite the centre of gravity of the

pendulum we have h=j nearly, and if the pendulum be rather long /3 will be very

small. Hence, since m is small compared with M, we may as an approximation put

i = h and j8= in the terms which contain m as a factor ; we thus find

M +m bh /—
v = : \jgi,

m cj

where l is the distance of the centre of oscillation of the pendulum and ball from

the axis of suspension.

The inconvenience of this construction as compared with the former is that the

balls remain in the pendulum during the time of making one whole set of experi-

ments. The weight, and the positions of the centres of gravity and oscillation,

will be changed by the addition of each ball which is lodged in the wood. Even

then the changes produced in the pendulum itself by each blow are omitted. A
great improvement was made by the French in conducting their experiments at

Metz in 1839, and at L'Orient in 1842. Instead of a mass of wood, requiring

frequent renewals, as in the English pendulum, a permanent recepteur was substi-

tuted. This receiver is shaped within as a truncated cone, which is sufficiently

long to prevent the shot from passing entirely through the sand with which it is

filled. The front is covered with a thin sheet of lead to prevent the sand from

being shaken out. This sheet is marked by a horizontal and by a vertical line, the

intersection corresponding to the axial line of the cone, so that the actual position

of the shot when entering the receiver can be readily determined by these lines.

125. Ex. 1. Show that after each bullet has been fired into a ballistic pen-

dulum constructed on the English plan, h must be increased by {j-h)mlM and

I by {j - 1) mjM nearly in order to prepare the formula for the next shot.
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Ex. 2. Dr Haughton found that, for rifles fired with a constant charge, the

initial velocity of the bullet varies as the square root of the mass of the bullet

inversely and as the square root of the length of the gun directly. Show from this

that the force developed by the explosion of the powder, diminished by the friction

of the barrel, is constant as the ball traverses the rifle.

Dr Hutton found that in smooth bores the velocity increases in a ratio some-

what less than the square root of the length of the gun, but greater than the cube

root of the length.

Ex. 3. If the velocity of a bullet issuing from the mouth of a gun 30 inches

long be 1000 feet per second, show that the time the bullet takes to traverse the gun

is about ^-fy of a second.

Ex. 4. It has been found by experiment that, if a bullet be fired into a large

fixed block of wood, the depth of penetration of the bullet into the wood varies

nearly as the square of the velocity, though as the velocity is very much increased

the depth falls short of that given by this rule. Assuming this rule, show that

the resistance to penetration is constant and that the time of penetration is the

ratio of twice the depth to the initial velocity of the bullet. In an experiment

of Dr Button's a ball fired with a velocity of 1500 feet per second was found to

penetrate about 14 inches into a block of sound dry elm : show that the time of

penetration was ^i^ of a second.

126. The Anemometer. The Anemometer called a "Kobinson" consists of

four hemispherical cups attached to four horizontal arms which turn round a

vertical axis. The wind blows into the hollows on one side of the axis and against

the convex surfaces of the cups on the other. If the anemometer start from rest,

it will turn quicker and quicker until the moment of the pressures of the wind

balances the moment of the resistances. Let V be the velocity of the wind and v

the velocity of the centres of the cups. Let 6 be the angle between the direction of

motion of any one cup and that of the wind. Then the velocity of the centre of

that cup relatively to the wind will be v\ where

v'^= v'^-2Vvcos0+V^ (1).

The determination of the pressure of the wind on the cups is properly a problem

in hydrodynamics, but no solution has yet been found. In the meantime we may
assume as an approximation the law, suggested by numerous experiments, that the

resistance to a body moving in a straight line in a fluid varies as the square of the

relative velocity. In any one position of the anemometer the parts of any one cup

have different velocities relative to the wind. We shall therefore take as our

expression for the moment about the axis of the anemometer of the resultant

pressure of the wind some quadratic function of V and v, such as

aV^ + 2^Vv + yv^ (2),

where a, j3, y depend in some manner as yet unknown on the position of the cups

relatively to the wind.

Thus a, j8, 7 are functions of 6 and will change as the cups turn round the axis..

What we want however is the average effect on the anemometer. The mean for

space is found by multiplying this expression by dd and integrating from ^= to

27r and finally dividing by 2t. If F be the mean moment about the axis of th&

anemometer of the wind pressure, we have

F=AV^-2BVv-Cv'^ (3),

where A, B, C are constants which depend on the pattern of the anemometer.

The signs of these coefficients may be determined by the following reasoning.

When the anemometer starts from rest, the initial moment of the wind pressure is

R. D. 7
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regarded as positive. When the cups begin to move, the pressure begins to decrease,

so that — must be negative when v is small ; it follows that the sign of the

coefficient of Vv in (3) must be negative. Finally, if the wind cease when the cups
are in motion so that V= 0, the resistance of the quiescent air must tend to stop the

cups. It follows that the coefficient of v^ in (3) must be also negative.

127. When the anemometer has attained its final state of motion, we must
have F equal to the mean moment of the friction on the supports. The instru-

ment should be so arranged that the friction due to its weight is as small as

possible. We may then omit this friction, as our formula is only an approximation.

The supports of the anemometer have also to sustain the lateral pressure of the

wind. Probably the greater part of the friction thus produced is proportional to

the pressure of the wind, and may be included in the formula (3) by an alteration of

the constants. As these constants are determined by experiment, we may suppose

all forces which are quadratic functions of the velocities to be included in the

expression for F.

In the Observatory at Greenwich an inverted cup rotating in oil on a fixed

conical point is used for the vertical bearing. No further correction is made for

friction. This arrangement appears to be very successful, the instrument is very

sensitive and exhibits a slow rotation with a very slight movement of the air.

When F is equated to zero, we have a quadratic to determine the ratio of V to

V. Let m be the positive root thus found. Then the velocity of the centre of any
cup being observed, the velocity of the wind is found by simply multiplying this

observed quantity by m. We may notice that m is independent of the speed of the

wind, and of the size of the machine. It depends however on the pattern of the

machine.

128. A variety of experiments have been made to determine the numerical

value of m. In some of these the anemometer is attached to the outer edge of a

whirling-machine. The axis of the anemometer is thus made to move round with

a constant velocity V. If the experiment be made on a calm day, this will represent

the effects of a wind of the same velocity on a fixed anemometer. The value of v

can be found by counting the number of revolutions of the anemometer in space.

In a paper in 1850, published in the Irish Transactions, Dr Eobinson gives m= 3 as

the mean value of the ratio as determined by experiments of this kind. This value

of m has been generally adopted.

Other experiments made in Greenwich Park in 1860 led to the same value of m.

These results were considered as confirming in a very high degree the accuracy of

this ratio. See the Greenwich Observations for 1862. About 1872 further experi-

ments were made with a steam merry-go-round for a whirling machine. These are

described by Sir G. Stokes in the Proceedings of the Royal Society for May, 1881.

According to some experiments conducted by W. H. Dines in 1889 the value

m= B for anemometers of the Kew pattern is too high, and if these results are con-

firmed the registered wind velocities are in excess of the truth. See the report of

the wind-force committee on the factor of the Kew-pattern Eobinson anemometer,

Meteorological Society, Dec. 1889.

Another method of conducting the experiments is to have two similar anemo-

meters rotating about fixed axes and to apply to one of them a known retarding

force of some kind which may diminish its v. Thus we have two different machines

moving with different, but known, velocities round their respective axes, from each

of which we should deduce the same velocity for the wind. This leads to two equa-

tions between which we may eliminate the unknown velocity of the wind. We thus
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obtaiu an equation connecting the constants A,B, C and the known retarding force.

Repeating the experiment, we may obtain a sufficient number of equations to find

these constants. The value of m may then be found in the manner explained in

Art. 127. The practical difficulty in this method of conducting the experiments is

that of finding a known uniform retarding force which may be conveniently applied

to the anemometer. The reader may consult a paper by Dr Robinson in the Phil.

Trans, for 1880.

129. Ex. 1. Supposing the value of F to be represented by AV^-2BVv, as

indicated by some experiments, show that, if an anemometer start from rest, the

velocity v of the cups will continually increase and tend to a certain finite limit.

Show also that the time, at which the actual velocity of the cups is any given

fraction of the limiting velocity, varies as the moment of inertia of the anemometer

about its axis, and inversely as the velocity of the wind.

Ex. 2. When the anemometer was attached to the outer edge of a merry-go-

round, as described above, it was impossible to find a perfectly calm day. If W be

the velocity of the wind, which is supposed to be small, then allowance may be

made for JV if in the formula F=AV^-2BVv we write V+kW'^IV for V, where k

is ^ or f according as the moment of inertia of the anemometer about its axis is

very small or very great. The anemometer is supposed to be without friction.

This theorem is due to Sir G. Stokes : a demonstration is given in the Proceedings

of the Royal Society for May, 1881.

Ex. 3. An anemometer without friction is acted on by a gusty wind whose

velocity may be represented by the formula V {1 + a sin nt), where a is so small that

its square can be neglected. Show that the velocity of any cup will be represented

by an expression of the form v {1+ a cos n^ sin n{t- ^)}, so that the anemometer

follows all the changes in the force of the wind after an interval ^. Here

In
AV^-2BVv-Cv^=0, and tan?ii3= ^ .^.-^—p^^ , where a is the distance of the

' ^ 2a{BV+Cv)
centre of a cup from the axis, and I is the moment of inertia of the machine

about the axis.

The velocities of the currents of air in mines are usually determined by the aid

of anemometers of a somewhat different construction. The principle of these is

similar to that of Whe.well's anemometer. They are formed of several light vanes

placed on a horizontal axis like the sails of a windmill on a small scale but more

numerous. The axis is attached to a dial or some other apparatus by which the

number of revolutions made by the little windmill can be read off. If V be the

velocity of the wind and v the reading of the anemometer it is found by experiment

that between certain limits V—av + b, where a and 6 are two constants which depend

on the pattern of the anemometer and the friction which the wind has to overcome.

The reader may consult a paper by Mr Snell in the Engineer, June 23, 1882.

The Annals of the Astronomical Society of Harvard College, Vol. xl. contains

an appendix by S. P. Fergusson on anemometer comparisons made in the years

1892—94 in Massachusetts. There is also a paper by C. Chree on the theory of the

Robinson cup anemometer, Phil. Mag., 1895.

7—2



CHAPTER lY.

MOTION IN TWO DIMENSIONS.

On the Equations of Motion,

130. The position of a body in space of two dimensions may
be determined by the coordinates of its centre of gravity, and
the angle some straight line fixed in the body makes with some
straight line fixed in space. These three have been called the

coordinates of the body, and it is our object to determine them
in terms of the time.

It will be necessary to express the effective forces of the body
in terms of these coordinates. The resolved parts of these

effective forces parallel to the axes have been already found in

Art. 79, all that is now necessary is to find their moment about
the centre of gravity. If {x\ y') be the coordinates of any particle

of mass m referred to rectangular axes meeting at the centre of

gravity and parallel to the axes fixed in space, this moment has

been shown in Art. 76 to be equal to h, where

h = ^m {x'y — y'x).

Let be the angular coordinate of the body, i.e. the angle

some straight line fixed in the body makes with some straight line

fixed in space. Let (/, c^') be the polar coordinates of any particle

in referred to the centre of gravity of the body as origin. Then

r is constant throughout the motion, and </>' is the same for every

particle of the body and equal to 6. Thus the angular momentum A,

exactly as in Art. 88, is

h=^tm {x'y' - y'x') = ^m (r''j>') = (Xmr'')4>'

= Mm,
where Mk"^ is the moment of inertia of the body about its centre

of gravity.

The angle 6 is the angle some straight line fixed in the body
makes with a straight line fixed in space. Whatever straight

lines are chosen dOjdt is the same. If this is not obvious, it may
be shown thus. Let OA, O'A' be any two straight lines fixed in

the body inclined at an angle a to each other. Let OB, O'B' be

two straight lines fixed in space inclined at an angle y8 to each
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Other. Let AOB = e, A'D'E^O', then e'-\-^ = e + a. Since a

and /3 are independent of the time, 6 = 6'. By this proposition

we learn that the angular velocities of a body in two dimensions

are the same about all points.

131. The general method of proceeding will be as follows.

Let (x, y) be the coordinates of the centre of gravity of any
body of the system referred to rectangular axes fixed in space,

M the mass of the body. Then the effective forces of the body
dj^x 6}y

are together equivalent to two forces measured by M-^-, M -j—^

acting at the centre of gravity and parallel to the axes of co-

d'^0
ordinates, together with a couple measured by Mk"^ -j— tending to

turn the body about its centre of gravity in the direction in which

6 is measured. By D'Alembert's principle the effective forces of

all the bodies, if reversed, will be in equilibrium with the impressed

forces. The dynamical equations may then be formed according

to the ordinary rules of statics. See Art. 83.

Suppose we wish to resolve the forces parallel to the axes of

X and y and to take moments about the centre of gravity. Let
the impressed forces acting on the body, together with the re-

actions due to the other bodies if any, be equivalent to the forces

X and Y acting at the centre of gravity and a couple L. The
equations of motion of that body are evidently

It is found useful in statics to be able to resolve in other

directions besides the axes and to be able to take moments about

any point we please. In this way we often greatly shorten and
simplify the solution. Thus if we wish to avoid the introduction

into our equations of some unknown reaction we take moments
about the point of application or use the principle of virtual

velocities. So in dynamics we are at liberty to resolve our forces

and take moments at pleasure. For example, if we take moments
about a point G whose coordinates are (f, rj) we have an equation

of the form

where L' is the moment about C of the impressed forces. In this

equation (f, tj) may be the coordinates of any point whatever,

whether fixed or moving.

In resolving our forces we may replace the Cartesian ex-

pressions by the polar forms ^
] j^ - ^ f;;^] [

^^^
^~~iTt\ dt)
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for the resolved parts parallel and perpendicular to the radius

vector. If V be the velocity of the centre of gravity, p the radius

of curvature of its path, we may sometimes also use with advantage

the forms M -r: and M- for the resolved parts of the effective

forces along the tangent and radius of curvature of the path of

the centre of gravity.

As a guide to a proper choice of the directions in which to

resolve the forces or of the points about which we should take

moments we may mention two important cases.

132. First, we should search if there be any direction fixed in

space in which the resolved part of the impressed forces vanishes.

By resolving in this direction we get an equation which can be
immediately integrated. Suppose the axis of x to be taken in

this direction ; let M, M\ &c. be the masses of the several bodies,

w, x', &c. the abscissae of their centres of gravity, then by Art. 78

or 131, we have M^^+M'^ + ... =0,

djc dor
which by integration gives M-j~ + M' -j- + = (7,

where C is some constant to be found from the initial conditions.

This equation may be again integrated if necessary.

This result might have been derived from the general principle

of the conservation of the motion of translation of the centre of

gravity laid down in Art. 79. For, since there is no impressed force

parallel to the axis of x, the velocity of the centre of gravity of

the whole system resolved in that direction is constant.

133. Next, we should search if there be any point fixed in

space about luhich the moment of the impressed forces vanishes.

By taking moments about that point we again have an equation

which admits of immediate integration. Suppose the point to be
taken as origin, and the letters to have their usual meaning, then
by the first article of this chapter we have

V (i^/ d'y d''x\ j.^j,d'd]
0,

the S referring to summation for all the bodies of the system.

Integrating we have

M"(4-»i)+»'f}-<'.

4
where G is some constant to. be determined by the initial con-

ditions of the question.

This equation expresses the fact that if the impressed forces
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have no moment about any fixed point, the angular momentum
about that point is constant throughout the motion. This result

follows at once from the reasoning in Art. 78.

134. Angular Momentum. As we shall have so frequently

to use the equation formed by taking moments, it is important
to consider other forms into which it may be put. Let the point

about which we are to take moments be fixed in space, so that

it may be chosen as the origin of coordinates. Then the moment
of the effective forces on the body M is

where ^ and ^ are the coordinates of the centre of gravity.

The attention of the reader is directed to the meaning of the

several parts of this expression. We see that, as explained in

Art. 78, the moment of the effective forces is the differential

coefficient of the moment of the momentum about the same point.

The moment of the momentum by Art. 75 is the same as the moment
about the centre of gravity together with the moment of the whole
mass collected at the centre of gravity, and moving with the velocity

of the centre of gravity. The moment round the centre of gravity

is by the first article either of Chap. ill. or Chap. iv. equal to

Mk^ -J- a,nd the moment of the collected mass is M (x~- — y-^].
dt \ dt ^ dtj

Hence in space of two dimensions we have for any body of mass M
angular momentum round] _ nj f

dy dx\ ^, ^ ^^

the origin
J

~ '^ T^ ~ ^ d~t)
^'^^ Tf

If we prefer to use polar coordinates, we can put this into

another form. Let (r, 0) be the polar coordinates of the centre

of gravity, then

angular momentum round) t.^ .d4> n/n^dO

the origin
J

dt dt

If V be the velocity of the centre of gravity, and p the per-

pendicular from the origin on the tangent to the direction of

its motion, the moment of momentum of the mass collected at

the centre of gravity is Mvp, so that we have again

angular momentum round) ,, n/n^dd

the origin
J

^ dt

It is clear from Art. 75 that this is the instantaneous angular

momentum of the body about the origin whether it is fixed or

moving, though in the latter case its differential coefficient with

regard to t is not the moment of the effective forces.

Since the instantaneous centre of rotation may be regarded as
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a fixed point, when we have to deal only with the coordinates and
with their first differential coefficients with regard to the time, we
have

ansfular momentum round the) ,, , « T.\dd

instantaneous centre j at

If Mk'^ be the moment of inertia about the instantaneous
do

centre, this last moment may be written Mk'^-j-.

In taking moments about any point, whether it be the centre

of gravity or not, it should be noticed that the Mk'^ in all these

formula? is the moment of inertia with regard to the centre of

gravity, and not with regard to the point about which we are

taking moments. It is only when we are taking moments about
the instantaneous centre or about a fixed point that we can use

the moment of inertia about that point instead of the moment
of inertia about the centre of gravity, and in these cases our

expression for the angular momentum includes the angular mo-
mentum of the mass collected at the centre of gravity.

135. General Mode of Solution. Suppose we form the

equations of motion of each body by resolving parallel to the axes

of coordinates and by taking moments about the centre of gravity.

We shall get three equations for each body of the form

Mx = i^ cos (/> + E cos -l/r + ...\

My = F sin
<f)
+ E sin yjr -\- ...V (1),

Mk'S^ Fp + Rq +...J

where F is one of the impressed forces acting on the body, whose
resolved parts are F cos

<f),
F sin cf>, and whose moment about

the centre of gravity is Fp, and R is any one of the reactions.

These we shall call the dynamical equations of the body.

Besides these there will be certain geometrical equations

expressing the connections of the system. As every such forced

connection is accompanied by a reaction, and every reaction by
some forced connection, the number of geometrical equations will

be the same as the number of unknown reactions in the system.

Having obtained the proper number of equations of motion
we proceed to their solution. Two general methods have been
proposed.

First Method of Solution. Differentiate the geometrical equa-

tions twice with respect to t, and substitute for x, y, 6 from

the dynamical equations. We shall then have a sufficient number
of equations to determine the reactions. This method will be

of great advantage whenever the geometrical equations are of

the form Ax + By + Cd = D (2),
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A, B, C, D being constants. Suppose also that the dynamical
equations are such that when written in the form (1) they contain

only the reactions and constants on the right-hand side without any
X, y, or 6. Then, when we substitute in the equation

Ax + By + Ce = 0,

obtained by differentiating (2), we have an equation containing

only the reactions and constants. This being true for all the

geon\etrical relations, it is evident that all the reactions will be

constant throughout the motion and their values may be found.

Hence, when these values are substituted in the dynamical equa-

tions (1), their right-hand members will all be constants and the

values of x, y, and 6 may be found by an easy integration.

If however the geometrical equations are not of the form (2),

this method of solution will usually fail. Thus suppose a geo-

metrical equation to take the form

x' + f = c\

containing squares instead of first powers, then its second differ-

ential equation will be

XX + yy + x^ + y'^ =
]

and, though we can substitute for x, y, we cannot in general

eliminate the terms x^ and if.

136. The reactions in a dynamical problem are in many
cases produced by the pressures of some smooth fixed obstacles

which are touched by the moving bodies. Such obstacles can only

push, and therefore if the equations show that such a reaction

changes sign at any instant, it is clear that the body will leave the

obstacle at that instant. This will occasionally introduce discon-

tinuity into our equations. At first the system moves under
certain constraints, and our equations are found on that suppo-

sition. At some instant to be determined by the vanishing of

a reaction one of the bodies leaves its constraints, and the

equations of motion have to be changed by the omission of that

reaction. Similar remarks apply if the reaction be produced by
the pressure of one body against another.

It is important to notice that when this first method of solu-

tion applies, the reactions are constant throughout the motion, so

that the above- discontinuity can never occur. In this case, then,

if one body he in contact with another, they will either separate at the

beginning of their motion or will always continue in contact. Such
reactions are also independent of the initial conditions, and are

the same as if the system were placed in any position at rest

137. Suppose that in a dynamical system we have two bodies

which press on each other with a reaction R; let us consider

how we are to form the corresponding geometrical equation.
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We have clearly to express the fact that the velocities of the

points of contact of the two bodies resolved along the direc-

tion of R are equal. The following proposition will he often

useful. Let a body be turning about a

point Q with an angular velocity 6 = (t>

in a direction opposite to the hands of a

watch, and let G be moving in the direc-

tion GA with a velocity V. It is required

to find the velocity of any point P re-

solved in any direction PQ making an
angle <^ with GA. In the time dt the

whole body, and therefore also the point

P, is moved through a space Vdt parallel

to GA, and during the same time P is moved perpendicular to

GP through a space w . GP . dt. Resolving parallel to PQ, the

whole displacement of P
= ( Fcos </) + ft) . GP sin GPN) dt.

If GN =p be the perpendicular from G on PQ, we see that the

velocity of P parallel to PQ is Fcos <^ + cop.

It should be noticed that this expression is independent of the

position of P on the straight line PQ. Itfolloivs that the velocities

of all points in any st7^aight line PQ resolved along PQ are the

same. This result will be evident if we remember that all the

points in the straight line PQ are rigidly connected together, so

that if the resolved velocities of the points in it were unequal, the

line PQ would alter in length.

When therefore we require the velocity of any point P in any
direction PQ we may replace P by any other point in the line PQ
so situated that its resolved velocity is more easily found. Usually

the point N is the most convenient point to use, for without

quoting a formula, its velocity resolved along PQ is seen by
inspection to be Fcos (^ + wp.

If {x, y, 6), {x, y', 0') be the coordinates of the two bodies,

q, q' the perpendiculars from the points {x, y), {x, y') on the direc-

tion of any reaction R, -v/r the angle the direction of R makes with
the axis of x, the required geometrical equation will be

i; cos i/r + i/ sin ^/r -I- ^g' = x' cos \/r + y' sin ^1^ + d'q'.

If the bodies be perfectly rough and roll on each other without
sliding, there will be two resolved reactions at the point of contact,

one normal and the other tangential to the common surface of the

touching bodies. For each of these we shall have an equation
similar to that just found. But if there be any sliding friction

this reasoning will not apply. The latter case will be considered

a little further on.
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138. Second Method of Solution. Suppose that in a dynamical
system two bodies of masses M, M', are pressing on each other

with a reaction R. Let the equations of motion of M be those

marked (1) in Art. 135, and let those of M' be obtained from
these by accenting all the letters except R, yjr and t, and writing
— R for R, yfr and t being of course unaltered. Let us multiply

the equations of motion of M by 2d), 2y, 20 respectively, and
those of M' by corresponding quantities. Adding all these six

equations, we get

2M(xx + yi) + ¥06) + &c. = 2F{x cos <^ + y sin +p^) + &c.

+ 2R {x cos -v/r + y sin i/r + qQ) — 2R {x cos \/r + y' sin -v/r + qQ').

The coefficient of R will vanish by virtue of the geometrical

equation obtained in the last article. Similar reasoning will

apply to all the reactions between each two of the moving bodies.

Suppose the body M to press against some external fixed

obstacle, then R acts only on the body i¥, and the coefficient

of 2R will be restricted to the part included in the first

bracket. But the velocity of the point of contact resolved along

the direction of R must vanish, and therefore the coefficient of R
is again zero.

Let A be the point of application of the impressed* force F,

and let the velocity of J. resolved along the direction of action of i^

be /. Then we see that the coefficient of 2F is / It also follows

from the definition of df that Fdf is what is called in statics the

virtual moment of the force F.

We have thus a general method of obtaining an equation free

from the unknown reactions of perfectly smooth or perfectly

rough bodies. The rule is, multiply the equations having Mx,

My, M¥0, &c, on their left-hand sides by x, y, 6, &c., and add
together all the resulting equations for all the bodies. The
coefficients of all the unknown reactions will be found to be zero

by virtue of the geometrical equations.

The left-hand side of the equation thus obtained is clearly

a perfect differential. Integrating we get

M[x' + y''-^m']+^Q. = G-\'2jFdf+
where C is the constant of integration.

In practice it is usual to omit all the intermediate steps and
to write down the equation in the following manner

:

l.M{x^ +f + ¥d^} = G+2U,
where U is the integral of the virtual moment of the forces.

This is called the equation of Vis Viva.

138 a. Another proof. If we make use of the theorems concerning work which

are proved in statics, we may somewhat simphfy the preceding proof by resolving

each rigid body into its elementary particles.
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Let m be the mass of any particle; x, y its coordinates; wX, viY the resolved

forces. Then mx = mX, my = mY.

Multiplying these by x, ij respectively and summing them throughout the whole
system of particles, we deduce by integration

Sm (i2 + ^2) ^ (7 + 2J2m {Xdx + Ydy).

The left-hand side is the vis viva of the body and the right-hand side is twice the

integral of the virtual moments of the forces which act on the particles.

In this mode of proof the forces on the right-hand side include (1) the internal

reactions of the several particles which make up each body, (2) the mutual reactions

of the bodies on each other, (3) the pressures due to any external geometrical con-

ditions imposed on the system.

It is proved in statics that the virtual moments of the internal reactions are

zero, provided the bodies are so rigid that the particles which compose each body
keep at invariable distances from each other. It is also proved that the virtual

moments of the reactions between the moving bodies with certain exceptions destroy

each other. Lastly it is shown that the pressures due to geometrical conditions do
not appear in the work function, j^rovided these conditions do not involve the time

explicitly.

Omitting all these pressures and now including in the expressions mX, mY only

the external impressed forces which act on the system, let U represent the integral.

We then have as before ^llmv-=C+ U.

The chief objection to this arrangement of the proof is that the limitations on
the principle are not distinctly brought into view. In the chapter on vis viva a

modification of this second proof is given which being founded on the principle of

virtual work appears to have many advantages. By using this principle we at once

arrive at a general rule to determine what forces do or do not appear in the equation

of vis viva. A list of the forces which may be omitted is also given in the chapter

just referred to.

As the equation of vis viva is one of the most useful in dynamics, it is important

to view it in as many ways as possible. The reader will accordingly find it ad-

vantageous to study the proof founded on virtual work before proceeding further.

He will probably adopt it as the best proof of the equation of vis viva.

139. Vis Viva of a Body. The left-hand side of the equa-
tion proved in the last article is called the vis viva of the whole ,

system. Taking any one body M, we may say that I

If the whole mass were collected into its centre of gravity and
were to move with the velocity of the centre of gravity, k would
be zero, and the vis viva would be reduced to the two first terms.

These terms are therefore together called the vis viva of transla-

tion, and the last term is called the vis viva of rotation.

If V be the velocity of the centre of gravity, we may write this

vis viva of if = Mv' + Mk' f^V

.

equation vis viva of if = Mv^ + Mk'^ I
-7-

J
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If we wish to use polar coordinates, we have

vi„i...,M-MJS)-..(f)Vt.g)],

where (r, cf)) are the polar coordinates of the centre of gravity.

If p be the distance of the centre of gravity from the instanta-

neous centre of rotation of the body, pdd/dt is clearly the velocity

of the centre of gravity, and therefore

vis viva of ir= M(p" + F) (-j-j .

139 a. Another proof. If we adopt the second of the two proofs of the principle

of vis -viva given in the last article, it becomes necessary to establish the theorem of

this article in some other way. To do this we notice that 2»i {x^'+y^) is a quadratic

function of the variables. Hence by the generalized theorem of parallel axes

(Art. 14), this expression is equal to the sum of two terms, (1) its value when the

whole mass is collected at the centre of gravity G, viz. Mv'^, and (2) its value when
the body is referred to G as origin, viz. Smy'^. In this latter term if w be the

angular velocity of the body round G, the relative velocity of any particle is v'= ru},

where r is its distance from G. Hence Smi^'^^Smr^. w^. We therefore have as

before vis viva of ilf= Mv"^ + Mh? w^.

The fundamental theorem of this article has been ascribed to Koenig who pub-

lished it in the Acta Eruditorum. The following converse of the theorem was given

by Cauchy, Exercices MathSmatiques, seconde ann^e, p. 104.

Ex. 1. If P be a point fixed in a rigid body and moving with it and be such

that the vis viva of the body is equal to the vis viva due to the translation of P
together with the vis viva of the motion relative to P, prove that P lies on the circle

described on GI as diameter, where I is the instantaneous centre of rotation and G
the centre of gravity.

To prove this we notice that if w is the angular velocity of the body about I and

Q the position of any particle m, the condition of the question gives

2mg72a,2= Sw?(9P2a;2 + ji^.p/2^2.

Dividing by w^ and substituting for the two terms with S their values given in

Art. 13, we have GP = GP^ + PI^, which proves the proposition. In three

dimensions the point P must lie on the cylinder having for base the circle described

on the perpendicular drawn from G on the instantaneous axis.

Ex. 2. Prove also that in the last example the velocity of P is equal to the

resolved part of the velocity of G in the direction of the motion of P. 0. Bonnet,

Memoires de VAcademie de Montpellier, Tome i. p. 141.

140. Force Function and Work. The function U in the

equation of vis viva is called the force function of the forces. It

may always be obtained, when it exists, by writing down the virtual

moment of the forces according to the rules of statics, integrating

the result and adding a constant. This definition is sufficieqt for

our present purpose ; for a more complete explanation the reader

is referred to the beginning of the chapter on Vis Viva.

When the forces are functions of several coordinates, it may
be supposed that it will often happen that the virtual moment
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cannot be integrated until the relations between these coordi-

nates have been found by some other means. But it will be shown
in the chapter on Vis Viva that this is not so. In nearly all the
cases we have to consider the virtual moment will be a perfect

differential. In the remarks which follow in this and in the next
three articles it will be convenient to suppose that the function U
exists, and is a known function of the coordinates of the system.

In a subsequent chapter we shall discuss more particularly

the various forms which the force function may assume. For the

present we shall merely show how to find its form for a system of

bodies under any constraints which are falling through the action

of gravity alone.

Let X, y be the horizontal and vertical coordinates of any
particle of the system and let the latter coordinate be measured
downwards. Let m be the mass of the particle. The virtual

moment is therefore '%mgdy. The force function may therefore be
written U=j^mgdy = ^mgy -\-G = gy'^m + G,

where y is the depth of the centre of gravity of the whole system
below the axis of x.

Sometimes to avoid the constant G we take the integral be-

tween limits. The force function is then called the work of the

forces as the system passes from the position indicated by the
lower limit to that indicated by the upper limit.

The result just arrived at may therefore be stated thus. If as

a system moves from one position to another, its centre of gravity

descends a vertical space h, the work done hy gravity is Mgh, where
M is the whole mass of the system.

We notice that this result is independent of any changes in

the arrangement of the bodies which constitute the system, and
depends solely on the vertical space descended by the centre of

gravity.

141. Principle of Vis Viva. Sometimes there are several

ways in which a system may move from one position to another.
Perhaps we do not want the intermediate motion but only the
motion in the later position when that in the earlier is given. In
such a case we avoid the introduction of the constant G in the
equation of vis viva by taking the integral in Art. 138 between
limits. Thus we say that

the change in] _ ftwice the work done

the vis viva
J | by the forces.

In this equation the change in the vis viva is found by subtracting
from the vis viva in the final position the vis viva in the first. In
finding the work done by the forces, the upper limit of the integral
(as already explained) depends on the final position of the system
and the lower limit depends on the initial position.
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The great importance of this equation is that we have a result

freefrom the reactions or constraints of the system. The manner
in which the system moves from the first position to the last is a

matter of indifference. So far as this equation is concerned, we
may change the mode of motion in any way by introducing or

removing any constraints or reactions, provided only that they are

such as do not appear in the equation of virtual moments as used
in statics.

We must notice that some reactions will not disappear from
the equation of virtual velocities in statics, for example, /r•^c^^o?^

between two surfaces which slide over each other. In forming the
equation of vis viva in dynamics this kind of friction, when it

occurs, will appear along with the other forces on the right-hand
side of the equation.

As the system moves from one given position to another, it is

evident that the change in the vis viva produced by each force

is twice the integral of the virtual moment of that force. It

follows that the whole change is the sum of the changes produced
by the separate forces. Taking then any one force F, we see that,

when its direction makes an acute angle with the direction of the

motion of the point A of the body at which it acts, F and df
liave the same sign, and the integral in the equation of vis

viva is positive. The effect of the force is therefore to increase

the vis viva. But when the direction of the force is opposed to

the direction of the motion of A, i.e. when the force makes an
acute angle with the reversed direction of the motion of A, the

•effect of the force is to decrease the vis viva. This rule will enable

us to determine the general effect of any force on the vis viva

of the system.

142. Suppose, for example, a body to move or roll under the

action of gravity with one point in contact with a fixed surface,

which is either perfectly rough or perfectly smooth, so that there

•can be no sliding friction. Let it be started off in any manner,
so that the initial vis viva is known. The vis viva decreases or

increases according as the centre of gravity rises above or falls

below its original level. As the body moves the pressure on the

surface will change and may possibly vanish and change sign. In
this case the body will leave the surface. The centre of gravity

by Art. 79 will then describe a parabola and the angular velocity

of the body about its centre of gravity will be constant. Presently

the body may impinge again on the surface, but until such
impact occurs the equation of vis viva is in no way affected by the

body leaving the surface. But the case is different when the body
impinges on the surface. To make this point clearer, let F be the

reaction of the surface, A the point of the body at which it

acts, and Fdf its virtual moment as in Art. 138. Then as the
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body moves on the surface, df is zero, and when the body has
left the surface, F is zero, so that during the motion before the im-
pact occurs the virtual moment Fdf is zero for the one reason or the
other. The reaction therefore does not appear in the equation

of vis viva. But when the body impinges on the surface, the

point A is approaching the surface and the reaction F is resist-

ing the advance of A so that neither F nor df is zero. Here we
measure F in the same manner as in the first part of the motion,

regarding it as a very great force which destroys the velocity

of J. in a very short time (Art. 84). During the period of com-
pression, the force F resists the advance of A, and therefore the

vis viva of the body is decreased. But during the period of

restitution the force assists the motion of A, and thus the vis

viva is increased. We shall show further on that the vis viva

is decreased by an impact except in the extreme case in which the

bodies are perfectly elastic, and we shall investigate the amount
lost. As a general rule we may notice that the equation of vis viva

is altered by an impact.

We may find a superior limit to the altitude y to which the

centre of gravity can rise above its original level. The equation of

vis viva may be written

/vis viva in any\ /initial vis\ _ ^itj -

\ position / V viva /
^'^'

where M is the mass of the body. Now the vis viva can never be
negative, hence the centre of gravity cannot rise so high that

2Mgy > initial vis viva.

In order that the centre of gravity should reach this altitude it

is necessary that the vis viva of the body should vanish, i.e. both
the velocity of translation of the centre of gravity and the angular
velocity of the body must simultaneously vanish. This cannot
in general occur if the body jump off the surface, for the

angular velocity and the horizontal velocity of the centre of

gravity will not usually both vanish at the moment of the jump^
and both will remain constant, as explained above, during the

parabolic motion. After the subsequent impact a new motion may
be supposed to begin with a diminished vis viva and therefore a
diminished superior limit to the altitude of the centre of gravity.

143. Sometimes there is only one way in which the system
can move. In such a case all we have to find is the velocity of

the motion. The geometry of the system will determine the x, y, 6

of each body in terms of some one quantity which we may call </>.

The vis viva of the body M, as given by Art. 139, will now take
the form
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where P is a known function of the coordinates of M. The
equation of vis viva will therefore take the form

and thus d(l)/dt can be found for any given position of the system.

It follows that, if there is only one way in which the system
can move, that motion will he determined by the equation of vis

viva. But, if there be more than one possible motion, we must
find another integral of the equations of the second order. What
should be done will depend on the special case under considera-

tion. The discovery of the proper treatment of the equations is

often a matter of great difficulty. The difficulty will be increased

if, in forming the operations, care has not been taken to give

them the simplest possible forms.

144. Examples of these Principles. The following ex-

amples have been constructed to illustrate the methods of applying
the above principles to the solution of dynamical problems. In some
cases more solutions than one have been given, to enable the reader
to compare different methods. The mode of forming each equation
has been «ninutely explained. Running remarks have been made
which it is hoped will clear up those difficulties which generally

trouble a beginner. The attention of the student is therefore

particularly directed to the different principles used in the follow-

ing solutions.

A homogeneous sphere rolls directly down a perfectly rough inclined plane under

the action of gravity. It is required to find the motion.

Let a be the inclination of the plane to the horizon, a the radius of the sphere,

wi/r its moment of inertia about a horizontal diameter. Let be that point of the

inclined plane which was initially touched by the sphere, and N the point of contact

at the time t. Then it is obviously convenient to choose for origin, and ON for

axis of X.

The forces which act on the sphere are, first, the reaction jR perpendicularly to

ON, secondly, the friction F acting at N along NO and N^ y
vig acting vertically at G the centre. The effective ^^^^ ^ '^/o
forces are nix, my acting at G parallel to the axes of a;

/^
/
x "r

and y, and a couple mlc^d tending to turn the sphere

round G in the direction NA. Here 6 is the angle y ^/^~~--/N

which any straight line fixed in the body makes with a

straight line fixed in space. We shall take the fixed

straight line in the body to be the radius GA, and the

fixed straight line in space the normal to the inclined —
plane. Then d is the angle turned through by the sphere.

Eesolving along and perpendicular to the inclined plane we have

mx=mg sin a - F (1),

my= -mgcosa +R (2).

Taking moments about N to avoid the reactions, we have

max + mk^d=mgaama (3).

R. D. 8
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Since there are two unknown reactions F and E, we shall require two geome-

trical relations. Because there is no slipping at N we have

x = ae (4).

Also, because there is no jumping, y= a (5).

Both these equations are of the form required in the first method. Differ-

entiating (4) we get x = ad. Joining this to (3) we have x= ., -.^^g sin a (6).

2 5
Since the sphere is homogeneous, k^= ~a^, and we have if^-^'sina.

o 7

If the sphere had been sliding down a smooth plane, the equation of motion

would have been a; =^ sin a, so that two-sevenths of gravity is used in turning the

sphere, and Jive-sevenths in urging the sphere dowmcards.

1 5
Supposing the sphere to start from rest we have clearly x= -. ^gsin a . t'-, and

2 7

the whole motion is determined.

In the above solutions only a f^w of the equations of motion have been used,

and if the motion only had been required it would have been unnecessary to write

down any equations except (3) and (4). If the reactions also are required; we must

use the remaining equations. From (1), (2) and (5) we have

2
F=-rngsina, R = mg cos a.

It is usual to delay the substitution of the value of k^ in the equations until the

end of the investigation, for this value is often very complicated. But there is

another advantage. It serves as a verification of the signs in our original equations,

for if equation (6) had been

we should have expected some error to exist in the solution. It seems clear that the

acceleration could not be made infinite by any alteration of the internal structure of

the sphere.

Ex. If the plane were imperfectly rough with a coefficient of friction fi less

than f tan a, show that the angular velocity of the sphere after a time t from rest

would be -^ — t.

2 a

145. A homogeneous sphere rolls down another perfectly rough fixed sphere.

Find the motion.

Let a and 6 be the radii of the moving and fixed spheres, respectively, C and

the two centres. Let OB be the vertical radius of the fixed sphere, and = z BOC.
Let F and R be the friction and the normal reaction at N. Then, resolving

tangentially and normally to the path of C, we have

m {a + 6) <p=mg sin (f>-F. (1),

m (a + b) <j)'^ = mg cos <f>-R (2)

.

Let A be that point of the moving sphere which originally coincided with B.

Then if 6 be the angle which any fixed line, as CA, in the body makes with any

fixed line in space, as the vertical, we have by taking moments about C
mk^e =Fa (3).

It should be observed that we cannot take 6 as the angle ACO because, though
CA is fixed in the body, CO is not fixed in space.

The geometrical equation is clearly a(d-<l)) = h^ (4).
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No other is wanted, since in forming equations (1) and (2) the constancy of the
distance CO has been already assumed.

The form of equation (4) shows that we can apply the first method. We thus
/c2

obtain F=
'' + a-

mg sin <p, and are finally

led to the equation {a + h)(p= ^g sin 0.

By multiplying by 20 and integrating

we get after determining the constant,

the rolling body being supposed to start

from rest at a point indefinitely near B.

This result might also have been de-

duced from the equation of vis viva.

The vis viva of the sphere i8m{v^ + k'^d^\

and v = {a + b)(j). The force function by
Art. 140 is mgy, if y be the vertical space

descended by the centre. We thus have

(a + b)^ <p-^ + k^e^= 2g {a + h) {1 - cos (f)),

which is easily seen to lead, by the help of (4), to the same result.

To find where the body leaves the sphere we must put R = 0. This gives by (2)

(a + b) (p'^=g cos (p; .: ^j^-g {1 - cos <p) = g cos (p ; .: cos0=:^^. It may be remyked
that this result is independent of the magnitudes of the spheres.

Ex. 1. If the spheres had been smooth the upper sphere would have left the

lower sphere when co8 = §.

Ex. 2. A rod rests with one extremity on a smooth horizontal plane and the

other on a smooth vertical wall at an inclination a to the horizon. If it then slips

down, show that it will leave the wall when its inclination is sin~^ (f sin a).

Ex. 3. A beam of length a is rotating on a smooth horizontal plane about one

extremity, which is fixed, under the action of no forces except the resistance of the

atmosphere. Supposing the retarding effect of the resistance on a small element of

length dx to be Adx (vel.)'^, then the angular velocity at the time t is given by

--H-A^«- [Queens' CoU.

Ex. 4. An inclined plane of mass M is capable of moving freely on a smooth
horizontal plane. A perfectly rough sphere of mass m is placed on its inclined face

and rolls down under the action of gravity. If x' be the horizontal space advanced

by the inclined plane, x the part of the plane rolled over by the sphere, prove that

{M+m)x'=mx cos a, tx- x' cosa= ^gt^sma,

where a is the inclination of the plane to the horizon.

Ex. 5. Two equal perfectly rough spheres are placed in unstable equilibrium,

one on the top of the other ; the lower sphere resting on a perfectly smooth table.

A slight disturbance being given, show that the spheres will continue to touch each

other at the same points, and that, if 6 be the inclination to the vertical of the

straight line joining the centres, {k^-{-a^-^a'^s\n'^d)d^= 2ga{l-cosd).

Ex. 6. Two unequal perfectly smooth spheres are placed in unstable equili-

brium one on the top of the other ; the lower sphere resting on a perfectly smooth
table. A very slight disturbance being given to the system, show that the spheres

will separate when the straight line joining the centres makes an angle with the

vertical given by the equation r?icos'*0=(ilf +7n) (3cos0-2), where M is the mass
of the lower and m of the upper sphere.

8—2
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Ex. 7. A sphere of mass M and radius a is constrained to roll on a perfectly

rough curve of any form and initially the velocity of its centre of gravity is V. If

the initial velocity were changed to F', show that the normal reaction would be

increased by i)f(F'=^- V^)j{p-a) and that the friction would be unaltered, p being

the radius of curvature of the curve at the point of contact.

Ex. 8. A uniform rod of length 2a is placed at an inclination a to the vertical

with one extremity touching a horizontal plane. If the rod start from rest show

that its angular velocity w when it becomes horizontal is given by 2ao}^= Sg cosa

whether the plane is perfectly smooth or perfectly rough. Show also that the rod

will in neither case leave the plane.

Ex. 9. A straight tunnel is constructed from London to Paris. Show that a

sphere starting from rest at one terminus will arrive at the other in about forty-two

minutes if the tunnel is smooth, but will take about eight minutes longer if the

tunnel is perfectly rough. The sphere is supposed to move solely under the action

of gravity, which inside the earth is supposed to vary as the distance of the sphere

from the centre of the earth. Would the time be the same from London to Vienna ?

Ex. 10. A heavy uniform chain occupies a smooth tube of small section whose

medial line is a quadrant of a circle with one bounding radius vertical. If the chain

start from rest show that its velocity v on emerging from the tube is given by

2Trv^= ga{Tr'^ + S).

Ex. 11. A heavy chain occupies a smooth tube of small section whose form is

the semi-cardioid r = a(l + cos^) bounded by the axis. The axis is horizontal,

one end of the chain is at the apse and its length is 2a, prove that the velocity of

emergence is given by lOv^=ag (52-9 ^3). [Coll. Exam. 1877.

Ex. 12. A fine smooth tube AB of length I, whose curvature is everywhere

continuous, is held so that the lower end J5 is on a smooth table, and the tangent

there is horizontal. The whole of the tube is occupied by a uniform string, the

remainder of which is held coiled up at ^ : the string is released and the tube is

drawn along with finite acceleration and in such a way that the string runs through

the tube and is deposited at rest on the table in a straight line. Show that so long

as all the string is not uncoiled, the length ^ on the table after a time t is

^=(Z-a)logcosh^^^

"wliere a and h are the lengths of the horizontal and vertical projections of AB.

[Math. Tripos, 1903.

As the tube moves each element of string will have a velocity v along the tube

together with an equal velocity v with the tube. Eeverse the acceleration / of the

tube and take account of the infinitesimal impact when an element ds= vdt of un-

coiled string enters the tube. Kesolving along the tube we have

{^ + l + vdt){v + dv) = {^ + l)v + {gh+fa+f^)dt.

Since f=dvldt, this is {I- a)dvldt + v^=gb.

Solving this equation we find v and if | is the length on the table v = d^jdt. The

constants of integration are determined by i? = 0, ^= 0, when t= 0. See Art. 300.

Ex. 13. A perfectly rough cylindrical grindstone of radius a is rotating with

uniform acceleration about its axis which is horizontal. Show that, if a sphere in

contact with its edge can remain with its centre at rest, the angular acceleration

of the grindstone must not exceed 5gl2a. [Coll. Exam. 1877.

146. A rod OA can turn about a hinge at 0, while the end A rests on a smooth

wedge which can slide along a smooth horizontal plane through 0. Find the motion.
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Let a= the angle of the wedge, 3/=its mass and x = OC. Let Z=:the length

of the beam, m= its mass and d= AOC. Let i2 = the reaction at A. Then we have

the dynamical equations, Mx = Rsin a (1),

nik'^d = Rl. cos (a - 6) -mg~ cos 9 (2),

and the geometrical equation, xsina = l . sin {a- $) (3).

It is obvious that we must apply the second method of solution. Hence

2Mxx + 2mfc2 dd= - mgl cos dd + 2R {sin ax + 1 cos {a - e) d }

.

The coefficient of R is seen to vanish by differentiating equation (3). Integrating

we have Mx^ + mk^^^=C-mglsme.

This result might have been written down at once hy the principle of vis viva.

For the vis viva of the wedge is clearly Mx"^ and that of the rod mk^d^. If y be the

altitude above OC of the centre of gravity of the rod OA, twice the force function

is C

-

2mgy by Art. 140. Since y = ^lsmd, this reduces to the result already written

down. Substituting for x from (3) we have

M J^ cos2 {a-d) + mk^\&^-
sm-a '

C-m^^sin^ .(4).

If the beam start from rest when 6 = ^, then C=mgl sin ^.

This equation cannot be integrated any further. We cannot therefore find 6 in

terms of t, but the angular velocity of the beam, and therefore the velocity of

the wedge, is given by the above equation.

147. Tioo rods AB, BC are hinged together at B and can slide freely on a

smooth horizontal plane. The extremity A of the rod AB is attached hy another

hinge to a fixed point on the table. An elastic string AC, whose unstretched length is

equal to AB or BC, joins A to the extremity C of the rod BC. Initially the two rods

and the string form an equilateral triangle and the system is started with an angular

velocity Q round A. Find the greatest length of the elastic string during the motion.

Find also the angular velocities of the rods lohen they are at right angles, and the

least value of (2 that this position may he possible.

The following solution may appear at first sight rather long. The object is to

illustrate the different methods of using the principles of angular momentum and

vis viva. They are here minutely explained as this is the first example of the kind.

It is however usual in practice to write down the equations (1) and (2) derived from

these principles with hut little if any explanation.

Let 2a be the length of either rod, mk" its moment of inertia about its centre of

gravity, so that k'^ = ^a^. Let B and E be the middle points of the rods, and let

X, y be the coordinates of E referred to A as origin.

The only forces on the system are the reaction of the hinge at A and the tension

of the elastic string AC. If we search for any direction in which the sum of the

resolved parts of these vanishes, we can find none, since the direction of the
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reaction is at present unknown. But since the lines of action of both forces

pass through A, their moments about A vanish, and therefore, by Art. 133, the

angular momentum about A is constant throughout the motion and equal to its

initial value. Let a>, w' be the angular velocities of AB, BC at any instant t. The
angular momentum of BC about ^ is •

m{xi/-yx + k^ia'), Art. 134. The angular

momentum of AB is by the same article

in{k^ + a^)u}, since AB is turning about A
as a fixed point. The initial values of

these are respectively m [Sa^ + k^) O, and
vi{k^+ a^)Q, since w, w' and 6 are each

initially equal to 12 and r is initially equal

to the perpendicular from A on the oppo-

site side of the equilateral triangle formed

by the system. Hence

m {k^ + a^) io +m {xy -yx + k^u')

= m{2k^ + 4a^)Q (1).

We may obtain another equation by

the use of the principle of vis viva. The
vis viva of the rod BC is m {x^ + y^ + k^w'^),

Art. 139. The vis viva of AB is by the

same article m{k^ + a^) u'^ since it is turning round -4 as a fixed point. The

initial values of these are respectively m {Sa^ + k^) Q"^ and 7ii(k^ + a^)Q^. If T be

the tension of the string, p its length at time t, the force function of the tension is

p
( - T) dp. According to the rule given in statics to calculate virtual moments,

/:

the minus sign is given to the tension because it acts so as to diminish p ; and the

limits are 2a to p because the string has stretched from its initial length 2a to p. Ey

Hooke'slaw T=E ^ - so that, by integration, the force function= -E —

•

2a
' './-—- . 4^

Since the reaction at A does not appear. Art. 141, the equation of vis viva is

(p-2a)2
m (A;2 + a2) oj^ + m {x'^+ y^+k^io"'} = m {2k'' + 4:a^) n'^-E

2a
(2).

There are only two possible independent motions of the rods. We can turn AB
about A and BC about B, all motions, not compounded of these, being incon-

sistent with the geometrical conditions of the question. Two dynamical equations

are sufficient to determine these, and we have just obtained two. All the other

equations which may be wanted must be derived from geometrical considerations.

Let i/',
\f/'

be the inclinations of the rods AB, BC to the axis of x and let

= ^'- i/'. We have

x= 2a cos
\f/
+ acos ^\ ?/ = 2a sin i/' + a sin ;/^',

i = - 2a sin \}/(i}-a sin ^'w', y = 2a cos \p(i) + a cos xp'u'.

The equations of angular momentum and vis viva then become

m (fe2 + 5a2 + 2a2 cos 0)w + m(/c2+ a2 4- 2a2 cos 0)aj'= m(2i'2 + 4a^)« (3),

m(/c2 + 5a2)w-'-fm(/c2+ a2)a;'2-f4wa2«a;'cos0= m(2A;2-f4a2)fi2-E'-^^^ ...(4).

These equations determine w, w' in terms of the subsidiary angle 0.

It is required to find the greatest length of the elastic string during the motion.

At the moment when p is a maximum p= and the whole system is therefore
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moving as if it were a rigid body. We therefore have for a single moment w = a;'.

The equations (3) and (4) become, when we have substituted for k^ its value |a"-^,

(lO + 6cos0)a;= 7i2, (lO + 6cos0) a>'-^=:7fi'^- ^^.j ()t)-2a)2.

Eliminating w and remembering that /)= 4acos^0, we have

I

.

E (3/)2 + 16a2) (p - 2a) = 28mn^a^ {p + 2a).

This cubic has one positive root greater than 2a.

It is also required to find the motion at the instant when the rods are at right

angles. At this moment (p= h'rr, and hence (3) and (4) become

3E
ma ^^ '

From these equations we easily find w and a>'. It is clear that the values of a>, w'

are not real unless 7fi"^ > 10 (^^2 - 1)2 E\ma.

Another solution. We may often save ourselves the trouble of some elimination

if we form the equations derived from the principles of angular momentum and vis

viva in a slightly different manner. The rod BG is turning round B with an angular

velocity w', while at the same time B is moving perpendicularly to AB with a

velocity 2aw. The velocity of E is therefore the resultant of aw' perpendicular to

BC and 2aw perpendicular to AB, both velocities, of course, being applied to the

point E. When we wish our results to be expressed in terms of w, ta' we may use

these velocities to express the motion of E instead of the coordinates [x, y).

Thus in applying the principle of angular momentum, we have to take the

moment of the velocity of E about A. Since the velocity 2aw is perpendicular to

AB, the length of the perpendicular from A on its direction is ^JB together with the

projection of BE on AB, which is 2a + a cos 0. Since the velocity aw' is perpen-

dicular to BE, the length of the perpendicular from A on its line of action is BE
together with the projection of AB on BE, which is a + 2a cos <p. Hence the angular

momentum of the rod BC about A is, by Art. 134,

w/c^w' + 2maw (2a + a cos 0) + mow' (a + 2a cos </>).

The principle of angular momentum for the two rods gives therefore

m (F + 5a2 + 2a2 cos 0) w + m (
k^+ a^ + 2a^ cos

<f>)
w'=m {2k'^ + ia^) ft.

The right-hand side of this equation, being the initial value of the angular momen-
tum, is derived from the left-hand side by putting cos0=: -^ and w= w'= ft.

In applying the principle of vis viva, we require the velocity of E. Eegarding it

as the resultant of 2aw and aw' we see that, if v be its value,

v^={2ab})"+ (aw')2 + 2 . 2aw . aw' cos <p.

The initial value being found, as before, by putting cos0=-^, w=:w' = fi, the

principle of vis viva gives, by Art. 141,

m {k- + oa:^) o}^ + m {k- + a^) u'^ + 4ma^ uu' cos
<f)
= m {2k" + ia^) n^ - E ^^~ ^'

,

Za

the force function being found in the same manner as before. Since = w'-w
and p = 4acos^<p, we have just three equations to find w, w', and 0. If these

quantities are all that are required, as in the two cases considered above, this form

of solution has the advantage of brevity.

Ex. 1. Two rods AB, BC oi equal mass are hinged together at B and the

extremity A is fixed. They fall from any initial position under the action of gravity.

If their lengths are respectively 2tt and 26 and their inclinations to the horizon at

any time d, 0, prove that

^ { 16a2^ -f- 4^2 + 6a6 cos (0 - ^) (^ -h 0) } =9a(5r cos ^ -f- 36/7 cos 0,

8tt2 $-^ + 262 02 + 6a6 cos {<p-d)d(p= %ag sin d + Sbg sin <p+C,
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The first equation is obtained by taking the angular momentum about A for both

bodies as explained in Art. 78. The second is the equation of vis viva. [Coll. Ex.

Ex. 2. A uniform rod of length 2a has a particle attached to it by a string b

;

the rod and string are placed in a straight line on a smooth table, and the particle

is projected with a velocity V perpendicularly to the string, prove that the greatest

angle
<f)

that the string can make with the rod is given by sin-|0= a (l + 7i)/12&,

where n is the ratio of the mass of the rod to that of the particle. Prove also

that the angular velocity then is Vl{a + b). [Coll. Ex.

The common centre of gravity G moves in a straight line with uniform velocity.

The vis viva and the angular momentum about G are each constant.

Ex. 3. Three equal uniform bars, formed of such material that any particle

repels any other with intensity proportional to the product of their masses and

directly as the distance between them, are loosely jointed at their ends so as to form

an equilateral triangle. If one of the connexions at the angles be severed, prove

that the angular velocity of either of the outer bars when all three are in a straight

line is ^/(S'^) times their angular velocity when they are at right angles to the

middle bar. [Math. Tripos, 1878.

Ex. 4. Four equal rods OA, AC, CB, BO are freely hinged at their ends so as

to form a rhombus and the angle AOB is a. The system rotates in its own plane

with an angular velocity U about which is fixed in space, the corners 0, C being

connected by a string. The string gives way and w, w' are the angular velocities of

the rods at any subsequent time. Prove that

(w-a>')2= 2(l + f cosa)
\ W -t 0} J

148. The hob of a heavy pendulum contains a spherical cavity which is filled

with water. It is required to determine the motion.

Let be the point of suspension, G the centre of gravity of the solid part of the

pendulum, MK^ its moment of inertia about 0, and let OG = h. Let G be the centre

of the sphere of water, a its radius and OC= c. Let m be the mass of the water.

If we suppose the water to be a perfect fluid, the action between it and the case

must, by the definition of a fluid, be normal to the spherical boundary. There will

therefore be no force tending to turn the fluid round its centre of gravity. As the

pendulum oscillates to and fro the centre of the sphere will partake of its motion,

but there will be no rotation of the water.

The effective forces of the water are by Art. 131 equivalent to the effective force

of the whole mass collected at its centre of gravity together with a couple mk-u,

where w is the angular velocity of the water, and mk^ its moment of inertia about

a diameter. But u has just been proved zero, hence this couple may be omitted.

It follows that in all problems of this kind where the body does not turn, or turns

with uniform angular velocity, we may collect the body into a single particle placed

at its centre of gravity.

The pendulum and the collected fluid now form a rigid body turning about

a fixed axis, hence if 6 be the angle made by CO a fixed line in the body with the

vertical, the equation of motion by Art. 89 is

{MIO + mc^) e + {Mh + mc) g sin ^= 0,

where, in finding the moment of gravity, 0, G and C have been supposed to lie in

a straight line. The length U of the simple equivalent pendulum is, by Art. 92,

3IK-' + vic^
L': Mh+ mc



ART. 149.] CHARACTERISTICS OF A BODY. 121

Let mk^ be the moment of inertia of the sphere of water about a diameter.

Then, if the water were to become solid and to be rigidly connected with the case,

the length L of the simple equivalent pendulum would be, by similar reasoning,

MK^ + mjc^ + k^)

~ Mh + mc
It appears that L'<L, so that the time of oscillation is less than when the

whole is solid.

That L' should be less than L follows from the principle of vis viva. For if,

with the same arc, gravity has to do the additional work of rotating the sphere of

water, the pendulum must move more slowly.

149. Characteristics of a body. If we refer to the

equations of motion of a body given in Art. 135, we see that

the motion depends on (1) the mass of the body, (2) the position

of the centre of gravity, (3) the external forces, (4) the moments
of inertia of the body about straight lines through the centre

of gravity, (5) the geometrical equations. Two bodies, however
different they may really be, which have these characteristics the

same, will move in the same manner, i.e. their centres of gravity

will describe the same path, and their angular motions about their

centres of gravity will be the same. It is often convenient to use

this proposition to change the given body into some other whose
motion can be more simply found.

For example, let a body have an eccentric spherical cavity,

filled with a heavy fluid. Since the sphere of fluid either does

not rotate or rotates with uniform angular velocity, the motion is

unaltered by collecting the fluid into a particle placed at the

centre. Thus (the particle being always at the same point C of

the body) the system has been simplified into a single rigid body.

As for the fourth characteristic we may observe that the

moment of inertia of the body and the particle about any axis

differs from that of a solidified system about the same axis by
mk^ which is the moment of inertia of the fluid about a diameter.

When the density of the fluid is the same as that of the body,

this is independent of the position of the cavity. This however is

not a simplification of any importance.

The motion of a uniform triangular area moving under the

action of gravity is another example. If we replace the area by
three wires forming its perimeter but without weight, the geome-
trical conditions of the motion will in general be unaltered, and if

we also place at the middle points of these wires three particles,

each one-third of the mass of the triangle, this body will have

all its characteristics the same as that of the real triangle, and
may replace it in any problem.

Ex. 1. A triangular area at rest is struck by a blow perpendicular to its plane

at the middle point of one side, show that the instantaneous axis bisects the other

two sides ; but if the blow be delivered at a corner the instantaneous axis divides

in the ratio of 3 : 1 each of the sides which meet at that corner.
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This is not strictly a case of motion in two dimensions, but we may deduce the

results from first principles, by taking moments about a straight line which passes

through the point of application of the blow and one of the equivalent particles.

Ex. 2. A triangular area ABC oscillates about one side AB as a horizontal

axis under the action of gravity, show that the pressures on the fixed axis are

equivalent to a vertical pressure at a point O which bisects AB, and a pressure in

the plane of the triangle which bisects the distance between and the projection N
of G on AB. The first is ^W, the second is equal to the tension of a string

pendulum whose length is ^ CN and bob weight § W, where W is the whole weight.

When a string connecting two parts of a dynamical system

passed over a rough pulley, it was formerly the custom to take

account of the inertia of rotation by replacing the pulley by
another of the same size but without mass and loaded with a

particle at its circumference. If a be the radius of the pulley,

k its radius of gyration about the centre, m its mass, the mass
of the particle is mk^/a^, so that for a cylindrical pulley the mass
of the particle is half that of the pulley. This mass must then

be added on to the other particles attached to the string. For
example, if two heavy masses M, M' are connected by a string

passing over a cylindrical pulley of mass m, which can turn freely

about its axis, the equation of motion is

m\^ = (M-

where v is the velocity. Here the inertia of the pulley is taken

account of by simply adding \m to the mass moved. If the pulley

be moveable in space as well as free to rotate, its inertia of trans-

lation is as usual taken account of by collecting the whole mass
into its centre of gravity. As this representation of the inertia

of rotation is not often used now, the demonstration of the above

remarks, if any be needed, is left to the reader.

Ex. 3. A rod AB whose centre of gravity is at the middle point C of AB has

its extremities A and B constrained to move along two straight lines Ox, Oy
at right angles and is acted on by any forces. Show that the motion is the same as

if the whole mass were collected into its centre of gravity and all the forces reduced

in the ratio a^+k^ : a?, where 2a is the length AB and k the radius of gyration

about the centre of gravity.

Ex. 4. A circular disc whose centre of gravity is in its centre rolls on a perfectly

rough curve under the action of any forces, show that the motion of the centre is

the same as if the curve were smooth and all the forces were reduced in the ratio

d^-\-lc- : a^, where a is the radius of the disc and k its radius of gyration about

the centre. The systems start from rest. But the normal pressures on the curve in

the two cases differ by Xk^l{a^+k^), where X is the force on the disc resolved

along the normal to the rough curve.

150. On the stress at any point of a rod. A rod OA
being in'equilibrium under the action of any forces, it is required to

determine the action across any section of the rod at P. This

action may be conceived to be the resultant of the tensions
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positive or negative of the innumerable fibres which form the

material of the rod. We know by statics that these may be

compounded into a single force R acting at any point Q which we
may choose and a couple G. Since each portion of the rod is in

equilibrium, these must also balance all the external forces which
act on the rod on one side of the section at P. If the section be
indefinitely small it is usual to take Q in the plane of the section,

and these two, the force M and the couple G, will together measure
the stress at the section.

If the rod be bent by the action of the forces, the fibres on

one side will all be stretched and on the other compressed. The
rod will begin to break as soon as these fibres have been suffi-

ciently stretched or compressed. Let us compare the tendencies

of the force R and the couple G to break the rod. Let A be the

area of the section of the rod, then a force F pulling the rod will

cause a resultant force R = F, and will produce a tension in the

fibres which, when referred to a unit of area, is equal to F/A. The
same force F acting on the rod at a distance p from P will

cause a couple G = Fp, which must be balanced by the couple

formed by the tensions. Let 2a be the mean breadth of the

rod, then the mean tension produced by G referred to a unit of

F p
area is of the order -j >- . Now if the section of the rod be very

small p/a will be large. It appears therefore that the couple, when
it exists, will generally have much more effect in breaking the

rod than the force. This couple is therefore often taken to

measure the whole effect of the forces to break the rod. The
tendency of the forces to break a rod OA at any point P is measured
numerically by the moment about P of all the forces which act on

either of the segments OP, PA of the rod.

The resolved part of the force R perpendicular to the rod is

called the shear. This is equal to all the forces which act on either

of the segments OP, PA, resolved perpendicular to the rod.

If the rod be in motion the same reasoning will, by D'Alem-
bert's principle, be applicable

;
provided that we include the re-

versed effective forces among the forces which act on the rod.

In most cases the rod will be so little bent that in finding

the moment of the impressed forces we may neglect the effects

of curvature.

If the section of the rod be not very small, this measure of

the " tendency to break " becomes inapplicable. It then becomes
necessary to consider both the force and the couple. The case

does not come within the limits of the present treatise, and the

reader is referred to works on elastic solids.

In the case of a string the couple vanishes and the force acts
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along a tangent to the string. The stress at any point is therefore

simply measured by the tension.

151. Ex. 1. A rod OA, of length 2a, and inass m, lohich can turn freely about

one extremity 0, falls in a vertical plane under the action of gravity. Find the

tendency to break at any point P.

Let du be any element of the rod distant ?t from P and on the same side of P as

the end A of the rod, and let OP= x. Let d be the angle the rod makes with the

vertical at the time t. The effective forces on du are

du, ,d^d ^ du
, JddY

respectively perpendicular to and along the rod. The impressed force is m ^ g acting

vertically downwards. Let L be the stress-couple at P measured clockwise when

acting on PA. By D'Alembert's principle, the moment of the effective forces

on PA about P is equal to the moment of gravity plus that of the couple L. Hence

- du
, ^

d^d
I-

du • a , T

the limits being from m= to u — la-x. This equation may also be obtained

by equating - L to the moment of gravity plus that of the reversed effective forces

on PA. Also, taking moments about 0, the equation of motion is

XT 1 £ J 7-^.7 sin d ,^ .„

Hence we easily find L = „ ,^
x (2a - xf.

To find where the rod, supposed equally strong throughout, is most likely to

break, we must make L a maximum. This gives dLldx — Q and therefore 3a; = 2a.

The point required is at a distance from the fixed end equal to one-third of the

length of the rod. Its position is independent of the initial conditions.

To find the shear at P we resolve perpendicularly to the rod. We have

I-
du

, , d^6 r du . . -.

^''^2a^^ + ")d^=-^"^2a^'^^^-^'

where Y is the shear and the limits are the same as before. This gives

^ 7ng sin ^

16a2
(2«-a^)(2a-3a:),

which vanishes when the tendency to break is a maximum, and is a maximum at a

distance from the fixed end equal to two-thirds of the length of the rod.

To find the tension at P we resolve along the rod. If the tension X when acting

on PA be measured in the direction OA, we have

r du , . fdd\^ . du ^ -^

If the rod start from rest at an inclination a to the vertical, we find, by integrating

the equation of motion,
(
;.-

)
= ^"- (cos a - cos d). Hence

X=^,^{1a-x) { -4a cos ^-1-3 (cos a-cos ^)(2a-fic)}.

From these equations we may deduce the following results. (1) The magnitudes

of the stress couple and the shear are independent of the initial conditions.
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(2) The magnitude of either the couple or the shear at any given point of the rod

varies as the sine of the inclination of the rod to the vertical. (3) The ratio of the

magnitudes of the stress couples at any two given points of the rod is always the

same, and the same proposition is also true of the shears. (4) The tension depends

on the initial conditions, and, unless the rod starts from rest in the horizontal

position, the ratio of the tensions at any two given points varies with the position

of the rod.

When a tall chimney has to be taken down, it is usual to remove some bricks

at the base on one side, replacing each by a wooden prop. When these have been

set on fire the chimney, being unsupported on one side, falls like the rod OA and

usually breaks at some point of its length. If the chimney were equally strong

throughout its length the point of fracture should be one-third up. In an instan-

taneous photograph seen by the author this was nearly true.

Ex. 2. AV is a fixed smooth vertical rod, AC a rod freely jointed to ^F at the

fixed point A, BC a rod freely jointed to ^C and arranged so that B can slide on

AV, and a string is attached to the joint C, carrying a mass M. The system

rotates with a uniform angular velocity w about AV. Obtain equations to find the

inclinations {9, </>) of AC and the string to the vertical, and show that the bending

moment at a point P on ^C at a distance x from A is

^^^^^^l^sin d {3^-0,2 (x + a) cos d],

where a is the length, m the mass of each of the rods AC and BC.

[Coll. Exam., 1904.

The system is turning uniformly round A V, hence the only effective force on an
element dm of mass of the rod AC distant u from ^F is u^udm. All these parallel

forces are evidently equivalent to a resultant ^mw^a sin ^ tending from AV and

acting at a point distant 2a/3 from A. See also Arts. 47, 114.

Let X, Y be the horizontal and vertical components of the reaction at A, let

x = AP. By taking moments about P for the portion AP of the rod AC we find

(if A is above B)

L= - mur^ sin d cos d^^ + mg sin ^ ;.— Xx cos d+Yx 8\nd= 0.
6a 2a

This is also numerically equal to the moment of the effective forces on PC together

with that of the reactions at the end C of the rod taken with proper signs. But

both these moments vanish when P is at C, hence L =0 when x = a. Putting a;= a,

we have two equations which immediately lead to the given value of L.

The result is not independent of M, for this mass enters into the equation

implicitly through d which has not been determined above.

152. Ex. 1. A rigid hoop completely cracked at one point rolU on a perfectly

rough horizontal plane and is acted on by no forces but gravity. Prove that the

lorench couple at the point of the hoop most remote from the crack ivill be a maximum
whenever, the crack being lower than the centre^ the inclination of the diameter

through the crack to the horizon is tan''^ 2/7r. [Math. Tripos, 1864.

Let w be the angular velocity of the hoop, a its radius. The velocity of any
point P of the hoop is the resultant of a velocity aw parallel to the horizontal plane

and an equal velocity au along a tangent to the hoop. The first is constant in

direction and magnitude and therefore gives nothing to the acceleration of P. The
latter is constant in magnitude but variable in direction and gives aw^ as the

acceleration, which is directed along a radius of the hoop. Let A be the cracked

point, B the other end of the diameter, C the centre, 6 the inclination of ACB to
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tbe horizon. Let PP' be any element on the upper half of the chcle, BCP=
(f>

Then the wrench couple, or tendency to break, at B is proportional to

/
[- aur^a sin

(f> + g {a cos d - a cos {(p + 6)]] ad<p= - 2a^ui^ + ga^ (ttcos 6 + 2 sin 6).

This is a maximum when tan 6 = 2JTr.

Ex. 2. Two of the angles of a heavy square lamina, a side of which is a, are

connected with two points equally distant from the centre of a rod of length 2a, so

that the square can rotate about the rod. The weight of the square is equal to the

weight of the rod, and the rod when supported by its extremities in a horizontal

position is on the point of breaking. The rod is then held by its extremities in a

vertical position, and an angular velocity w is impressed on the square. Show that

the rod will break if aw- > Sg. [Coll. Exam.

Let B, C be corners of the square ; A, D the ends of the rod ; 3Ig the weight of

the square. First, place the rod ABCD in a horizontal position, the stress couple

is greatest at the middle point and is equal to ^Mga, the weight of the portion

OA being collected at its centre of gravity B. This is therefore the breaking stress.

Next, place the rod in a vertical position, the moment of its own weight about any

"

point P in the rod being zero, the stress couple L at P is equal to the moment
of some of the reactions at ^, J5, C, D. Hence L is a linear function of the distance

X of P from A and can have no maxima or minima at any point except A, B, C, D.

The stress couples at ^,D evidently vanish and at B, G are respectively equal to the

moments of the reactions at A, D. The reaction at the highest point A being

greater than that at D, the rod breaks at B. The given result is obtained by

equating the moment of the reaction at A about B to the breaking stress.

Ex. 3. A semicircular wire AB of radius a is rotating on a smooth horizontal

plane about one extremity A with a constant angular velocity w. If a0 be the arc

between the fixed point A and tlie point where the tendency to break is greatest,

prove that tan = 7r - 0. If the extremity B be suddenly fixed and the extremity A
let go, the tendency to break is greatest at a point P where ^ tan PBA =PBA.

[Math. Tripos, 1886.

Ex. 4. A wire in the form of the portion of the curve r= a (1 + cos d) cut off by

the initial line rotates about the origin with angular velocity w. Prove that the

IT 12v/2
tendency to break at the point d= - is measured by m _— lo^a^. [St John's Coll.

Ex. 5. A heterogeneous rod OA is swung as a pendulum about an horizontal axis

through 0. Prove that if the rod break it will be at a point P determined by the

condition that the centre of gravity of PA is the centre of oscillation of the pendulum.

[Math. Tripos, 1880.

On Friction between Imperfectly Rough Bodies.

153. Components of a Reaction. When one body rolls

on another under pressure, the two bodies yield slightly, and are

therefore in contact along a small area. At every point of this

area there is a mutual action between the bodies. The elements
just behind the geometrical point of contact are on the point of

separation and may tend to adhere to each other, those in front

may tend to resist compression. The whole of the actions across

the elements are equivalent to (1) a component R, normal to the



ART. 155.] FRICTION BETWEEN IMPERFECTLY ROUGH BODIES. 127

common tangent plane, and usually called the reaction
; (2) a

component F in the tangent plane usually called the frictioyi
;

(3) a couple L about an axis lying in the tangent plane, which
we shall call the couple of rolling friction

; (4) if the bodies have
any relative angular velocity about their common normal, a couple
N about this normal as axis which may be called the couple of
tiuisting friction.

The two couples are found by experiment to be in most cases

very small and are generally neglected. But when the friction

^orces are also small it may be necessary to take account of them.
We shall therefore consider first the laws which relate to the
friction forces, as being the most important, and afterwards those
which relate to the couples.

154. Laws of Friction. In order to determine the laws
of friction forces we must make experiments on some simple cases
of equilibrium and motion. Suppose then a symmetrical body to
be placed on a rough horizontal table and acted on by a force so

placed that every point of the body is urged to move or does move
parallel to its direction. It is found that if the force be less than
a certain amount the body does not move. The first law of friction

is therefore that the friction acts in such a direction and has such
a magnitude as to be just sufficient to prevent sliding.

Next, let the force be gradually increased, it is found by
experiment that no more than a certain amount of friction can
be called into play, and that when more is required to keep the
body from sliding, sliding begins. The second law of friction

asserts the existence of this limit to the amount of friction which
can be called into play. Its value is called the limiting friction.

The third law of friction found by experiment is that the
magnitude of the limiting friction bears a ratio to the normal
pressure which is very nearly constant for the same two bodies in

contact, but is changed when either body is replaced by another
of different material. This ratio is called the coefficient offriction
of the materials of the two bodies. Its constancy is generally
assumed by mathematicians.

Though all experimenters have not entirely agreed as to the
absolute constancy of the coefficient of friction, yet it has been
found generally that, if the relative motion ot the tw^o bodies be
the same at all points of the area of contact, the coefficient of
friction is nearly independent of the extent of the area of contact

and of the relative velocity.

155. Coulomb has pointed out a distinction which exists

between statical friction and dynamical friction. The friction

which must be overcome to set a body in motion relatively to

another is greater than the friction between the same bodies luhen
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in motion under the same pressure. He found also that if the
bodies remained in contact for some time under pressure in a

position of equilibrium, the friction which had to be overcome was
greater than if the bodies were merely placed in contact and
immediately started from rest under the same pressure. In some
bodies the difference between the statical and the dynamical
friction was found to be very slight, in others it was considerable*.

The experiments of Morin in general confirmed its existence. Ac-
cording to some experiments of Fleeming Jenkin and J. A. Ewing,
described in the Phil. Trans, for 1877, the transition from statical

to dynamical friction is not abrupt. By means of an apparatus

which differed essentially from any previously employed they were
able to make definite measurements of the friction between surfaces

whose relative velocity varied from about one hundredth of a foot

per second to about one five-thousandth of a foot per second.

Between the limits of these evanescent velocities the coefficient

of friction was found to be decreasing gradually from its statical

to its dynamical value as the velocity increased.

The experiments of Coulomb and Morin were made with bodies

moving at moderate velocities, but some experiments have been
lately made by Capt. Douglas Galton on the friction between cast-

iron brake blocks and the steel tyres of wheels of engines moving
with great velocities. These velocities varied from seven feet to

eighty-eight feet per second, i.e. from five to sixty miles per hour.

Two results followed from his ex:periments : (1) the coefficient of

friction was very much less for higher than for lower velocities,

(2) the coefficient of friction became smaller after the wheels had
been in motion for a few seconds. See the Report of the British

Association for the meeting in Dublin, 1878. The reader will find

an account of some experiments on rolling friction by Prof. Osborne
Reynolds in the Phil. Trans, for 1876.

156. When bodies are said to be perfectly 7vugh it is usually

meant that they are so rough that the amount of friction necessary

to prevent sliding under the given circumstances can certainly be
called into play. The coefficient of friction is therefore practically

infinite. By the first law of friction, the amount which is called

into play is that which is just sufficient to prevent sliding.

157. Application of the la-ws of Friction. Let us now
extend the theory deduced from these experiments to the case in

which a body moves or is urged to move in any manner in one
plane. It is a known kinematical theorem, which will be proved
at the beginning of the next chapter, that such a motion may
be represented by supposing the body to be turning round some

* The results of Coulomb's experiments are given in his Theorie des machines

simples, Memoires des Savants etrangers, tome x. This paper gained the Prize

of the Academie des Sciences in 1781 and was published separately in Paris, 1809.
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instantaneous centre of rotation. Let be the centre of rotation,

then any point P of the body is moving or tends to move in

a direction perpendicular to OP.

The friction at P, by the first rule just given, must also act

perpendicular to OP but in the opposite direction. If P move,
the amount of friction at P is limiting friction and is equal

to yLtP, where P is the pressure at P and fi the coefficient of

friction. Thus in a moving body the direction and the magnitude
of the friction at every sliding point are known in terms of the
coordinates of and the pressure at the point.

Suppose for example that it is required to find the least couple

required to move a heavy disc resting by several pins on a hori-

zontal table, the pressures at the pins being known. By resolving

in two directions and taking moments about a vertical axis we
obtain three equations. From these we can find the required
couple and the two coordinates of 0.

It sometimes happens that coincides with one of the points
of support of the body. In this case the friction at this point of
support is not limiting. It is only just sufficient in amount to

prevent the point from sliding.

Ex. A heavy body rests by three pins A, B, C on a rough horizontal table, the
pressures at the pins being P, Q, R. If the body be acted on by a couple so that it

is just on the point of moving, show that the centre of rotation is at a point O such
that the sines of the angles AOB, BOG, COA are as R, P, Q. But if the point
thus determined does not lie within the triangle ABC, the centre of rotation coincides
with one of the pins. These results follow immediately from the triangle of forces.

158. Discontinuity of Friction. The reader should. par-
ticularly notice the discontinuity just mentioned. The friction at
any point of support which slides is fjuR, where R is the normal
pressure. But if the point of support does not slide, the friction

is some quantity F, which is unknown, but must be less than
fiR. Its magnitude must be found from the equations of motion.

Let a moving body be placed with one point A in contact
with a fixed rough plane and let the initial velocity of A be zero.

The point A may either begin to slide on the plane or the body
may only roll. To determine which of these motions occurs, we
may adopt either of two methods.

In the first method, we investigate the friction required to
keep A at rest. Assuming then that the body rolls, we write
down the equations of motion. The friction F is unknown, but
we have a geometrical equation to express the condition that the
tangential velocity of A is zero. Solving these equations we find
the ratio F/P. If this ratio is less than the coefficient of friction fi,

enough friction can be called into play to keep A at rest. The
body therefore will begin to roll and will continue to roll as long as

R. D. 9
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the ratio F/R continues to be less than fi. If the ratio F/R is greater

than fjb the body slides at A. When this happens the equations

written down do not represent the true motion, and we adopt the

second method.

In the second method, we form the equations of motion on the

supposition that the point A slides on the plane. The friction is

then fiR instead of F and the geometrical equation which expresses

the fact that there is no slipping at A is absent. Solving these

equations we find the tangential velocity of the point A of the

body. If this velocity is not zero and is opposite to the direction

in which the friction fiR acts when fi has a proper sign given to

it, the true motion has been found. The body will slide at A and
will continue to slide as long as the velocity at A does not vanish.

When this occurs we again use the first method.

159. Discontinuity may also arise in other ways. When, for

example, one body is sliding over another, the friction is opposite

to the direction of relative motion, and numerically equal to the

normal reaction multiplied by the coefficient of friction. If then,

during the course of the motion the direction of the normal reaction

should change sign, while the direction of motion remains unaltered,

or if the direction of motion should change sign while the normal
reaction remains unaltered, the sign of the coefficient offriction must
be changed. This may modify the dynamical equations and alter

the subsequent solution. The same cause of discontinuity operates

when a body moves in a resisting Tnedium, the law of resistance

being an even fuTwtion of the velocity, i.e. any function which does

not change sign when the direction of motion is changed.

160. Indeterminate Motion. In some cases the motion
may be rendered indeterminate by the introduction of friction.

Thus we have seen in Art. 112 that, when a body swings on two
hinges, the pressures on the hinges resolved in the direction of

the straight line joining them cannot be found. The sum of these

components can be found, but not either of them. But there

is no indeterminateness in the motion. If however the hinges

were imperfectly rough, there would be two friction couples, one

at each hinge, acting on the body, their common axis being the

straight line joining the hinges. The magnitude of each would be

equal to the pressure multiplied by a constant depending on the

roughness of the hinge. If the hinges were unequally rough, the

magnitude of the resultant couple would depend on the distribution

of the pressure on the two hinges. In such a case the motion of

the body would be indeterminate.

161. Examples of Friction. Ex. 1. A homogeneous sphere is placed at rest

on a rough inclined plane, the coefficient of friction being [jl, determine whether the

sphere will slide or roll.

Let F be the friction required to make the sphere roll. The problem then
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becomes the same as that discussed in Art. 144. We have, therefore, F=^R tana,
where a is the inchnation of the plane to the horizon.

If then ^ tan a be not greater than fi, the solution given in the article referred

to is the correct one. But if fi<f tana the sphere begins to slide on the inclined

plane. The subsequent motion is given by the equations

mx=mg sin a - fiR, = - mg cos a + R, max + nik^d = mga sin a.

Eliminating R and remembering that the sphere starts from rest, we have after

integration x — ^gt^ {sin a- /jt,coa a), d = ^/j,-t^cosa.

The velocity of the point of the sphere in contact with the plane is

X - ad = gt (sin a-^fx cos a).

But since, by hypothesis, m is less than f tan a, this velocity can never vanish.

The friction therefore will never change to rolling friction. See also Art. 136. The
motion has thus been completely determined.

Ex. 2. A uniform rod is placed at rest with one end in contact with a horizontal

plane whose coefficient of friction is /a. If the inclination of the rod to the vertical

is a, show that it will begin to slide if ;U (1 + 3 cos^a) < 3 sina cos a. [Coll. Ex. , 1881.

Determine also if the rod will slide when /a has this limiting value.

Considering only the last part of the question let d be the angle the rod makes
with the vertical at any subsequent time. We find on solving the equations of

motion that the friction F necessary to prevent the sliding is given by

J^ _ sin ^ cos ^ + 2 sin (cos 6 - cos a)

R~ ^- sin^^ + 2 cos d (cos 6 - cos a)

when ^ = a, this makes i^=/;ii2. We now put ^ = a + ^ where ^ is a small angle. We
find after some easy reductions

-= Jl
2(l + 7cos2a)^

R ^ (

"^
sin 2a (5 + 3 cos 2a)''''

Now ^ is positive, and if 1 + 7 cos 2a is also positive more friction will be

required after a short time to keep the end of the rod at rest than called into

play.

162. A homogeneous sphere is rotating about a horizontal diameter, and is gently

placed on a rough horizontal plane, the coefficient of friction being fi. Determine
the subsequent motion. •

Since the velocity of the point of contact with the horizontal plane is not zero,

the sphere evidently begins to slide, and the motion of its centre is along a

straight line perpendicular to the initial axis of rotation. Let this straight line be

taken as the axis of x, and let d be the angle between the vertical and that radius of

the sphere which was initially vertical. Let a be the radius of the sphere, mk^ its

moment of inertia about a diameter, and 12 the initial angular velocity. Let jR be

the normal reaction of the plane. Then the equations of motion are clearly

mx = fiR, =mg-R, mk'^d=-/jiRa (1),

whence we have x-fx,g, ad= -^fxg (2).

Integrating, and remembering that the initial value of & is Q, we have

x = \^gt\ d= Qt-%fx^-i^ (3).

But it is evident that these equations cannot represent the whole motion, for

9—2
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they make x, the velocity of the centre of the sphere, increase continually, a result

quite contrary to experience. The velocity of the point of the sphere in contact

with the plane is x-ad= - aU + i/^gt.

This vanishes at a time <i=y — (4)-

At this instant the friction suddenly changes its character. It now becomes

of magnitude only sufficient to keep the point of contact of the sphere at rest. Let

F be the friction required to effect this. The equations of motion will then be

mx = F, =mg-R, mk^e=-Fa (5),

and the geometrical equation will be x = ad.

Differentiating this twice, and substituting from the dynamical equations, we

get F{a^+k^) = 0, and therefore F=0. That is, no friction is required to keep

the point of contact of the sphere at rest, and therefore none will be called into

play. The sphere will therefore move uniformly with the velocity which it had

at the time fj . Substituting the value of t^ in the expression for x obtained from

equations (3) we find that this velocity is fafi. It appears therefore that the

sphere will move with a uniformly increasing velocity for a time faiijfig and will

then move uniformly with a velocity faQ. It may be remarked that this velocity is

independent of fi.

If the plane be very rough, fi is very great and the time t^ is very small. Taking

the limit when ;* is infinite we find that the sphere begins immediately to move with

its uniform velocity.

163. In this investigation the couple of rolling friction has been neglected (see

Art. 153). Its effect is to diminish the angular velocity. The velocity of the lowest

point of the sphere tends to be no longer zero, and thus a small sliding friction is

required to keep that point at rest. Suppose the moment of the friction-couple

to be measured by/wip, where/ is a constant. Introducing this into the equations

(5) the third is changed into

mk'^6= - Fa -fmg,

the others remaining unaltered. Solving these as before we find F= —/ f

.

a^ + k^

Hence F is negative and retards the sphere. The effect of the couple is to call into

play a friction-force which gradually reduces the sphere to rest.

As the sphere rolls we may wish to determine the effect of the resistance of the

air. The chief part'of this resistance may be pretty accurately represented by
a force m^v^ja acting at the centre in the direction opposite to motion, v being the

velocity of the sphere and /3 a constant whose magnitude depends on the density of

the air. Besides this there is also a small friction between the sphere and the air

whose magnitude is not known so accurately. Let us suppose it to be represented

by a couple whose moment is myv'^ where 7 is a constant of small magnitude. The
equations of motion can be solved without difficulty, and we find

tan-.. ^/to_tan->F ^/g±5= -'L^f^^W fg V fg a^+^^

where V is the velocity of the sphere at the epoch from which t is measured.

164. Friction couples. In order to determine by experi-
ment the magnitude of rolling friction, let a cylinder of mass M
and radius r be placed on a rough horizontal plane. Let two
weights whose masses are P and P+_p be suspended by a fine

I
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thread passing over the cylinder and hanging down through a slit

in the horizontal plane. Let F be the force of friction, L the

couple at the point of contact A of the cylinder with the horizontal

plane. Imagine p to be at first zero, and to be gradually increased

until the cylinder just moves. When the cylinder is on the point

of motion, we have by resolving horizontally F=0, and by taking

moments L =pgr. Now in the experiments of Coulomb and Morin

p was found to vary as the normal pressure directly, and as r

inversely. When p was great enough to set the cylinder in motion,

Coulomb found that its acceleration was nearly constant, whence
it followed that the rolling friction was independent of the

velocity. M. Morin found that it was not independent of the

length of the cylinder.

The laws which govern the couple of rolling friction are similar

to those which govern the force of friction. The magnitude is

just sufficient to prevent rolling. But no more than a certain

amount can be called into play, and this is called the limiting

rolling couple. The moment of this couple bears a constant ratio

to the magnitude of the normal pressure. This ratio is called

the coefficient of rolling friction. It depends on the materials in

contact, it is independent of the curvatures of the bodies, and, in

some cases, of the angular velocity.

No experiments seem to have been made on bodies which touch
at one point only and have their curvatures in different directions

unequal. But, since the magnitude of the couple is independent
of the curvature, it seems reasonable to assume that the axis of the

rolling couple, when there is no twisting couple, is the instantaneous

axis of rotation.

165. In order to test the laws of friction let us compare the

results of the following problem with experiment.

Friction of a carriage. A cairiage on n pairs of wheels is dragged on a level

horizontal plane by a horizontal force 2P with uniform motion. Find the magnitude

of P.

Let the radii of the wheels be respectively r^ , r^, &c., their weights w-^, w^, &c.,

and the radii of the axles pj, p^, &c. Let 2]F be the whole weight of the carriage,

2Qj, 2Q2. &c. the pressures on the several axles, so that W^'ZQ. Let the pressures

between the wheels and axles be JRj, R^, &c. and the pressures on the ground

jRj', R^, &c. Let G be the common centre of any wheel and axle, B their point of

contact, and A the point of contact of the wheel with the ground. Let the angle

ACB = d, supposed positive when B is behind AG. Let /jl be the coefficient of the

force of sliding friction at B and / the coefficient of the couple of rolling friction

at A. The equations of equilibrium for any wheel, found by resolving vertically

and taking moments about A, are

R' = Q +w (1), fiR (r cos d - p)-Rr sin d=fR' (2).

The friction force at A does not appear because we have not resolved horizontally.

The equations of equilibrium of the carriage, found by resolving vertically and

horizontally, are

RGoad+ fiRsind^Q (3), S (-R sin^-/*iJcos^) +P=0 (4).
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The effective forces have been omitted because the carriage is supposed to move
uniformly, so that the Mi) of the carriage and the wft'ci of the wheel are both

zero. The first three of these equations give, by eliminating R and R',

IX (
cos 6 --

cos ^ + /A sin 6 K-i) <^'-

This gives the value of d. In most wheels pjr and wjQ are both small as well as/.

In such a case ixco&d-B\a.d is a small quantity. If therefore ^u^tane we have

d=e very nearly. The third and fourth of the equations give, by eliminating R,

fismd + cosd^ (fjL smd + 008$ r^ r^

the latter by equation (5). If pjr be small, it will be sufficient to substitute for 6 in

the first term its approximate value e. This gives

P=s|sin.-^Q+/«±"} (6).

Here we have neglected terms of the order {pjr)^ Q.

If all the wheels are equal and similar we have, since ^Q=W,

P= 8me- ^+/ (7).

Thus the force required to drag a carriage of given weight with any constant

velocity is very nearly independent of the number of wheels.

In a gig the wheels are usually larger than in a four-wheel carriage, and there-

fore the force of traction is usually less. In a four-wheel carriage the two fore

wheels must be small in order to pass under the carriage when turning. This will

cause the term sineQiPj/rj in the expression for P, depending on the radius r^ of

the fore wheel, to be large. To diminish the effect of this term, the load should be

so adjusted that its centre of gravity is nearly over the axle of the large wheels,

when the pressure Qi in ttie numerator will be small.

Numerous experiments were made by a French engineer, M. Morin, at Metz in

the years 1837 and 1838, and afterwards at Courbevoie in 1839 and 1841, with a

view to determine with the utmost exactness the force necessary to drag carriages

of different kinds over ordinary roads. These experiments were undertaken by

order of the French Minister of War, and afterwards under the direction of the

Minister of Public Works. The effect of each variation was determined separately,

thus the same carriage was loaded with different weights to determine the effect of

pressure, and dragged on the same road in the same state of moisture. Then, the

weight being the same, wheels of different radii but of the same breadth were used,

and so on.

The general result was that for carriages on equal wheels, the resistance varied

as the pressure directly, and the diameter of the wheels inversely, whilst it was

independent of the number of wheels. On wet soils the resistance increased as the

breadth of the tire decreased, but on solid roads the resistance was independent of

the breadth of the tire. For velocities which varied from a foot pace to a gallop, the

resistance on wet soils did not increase sensibly with the velocity, but on solid roads

it did increase with the velocity if there, were many inequalities on the road. As
an approximate result it was found that the resistance might be expressed by a

function of the form a + bV, where a and b were two constants depending on the

nature of the road and the stiffness of the carriage, and V was the velocity.
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M. Morin's analytical determination of the value of P does not altogether agree

with that given here, but it so happens that this does not materially affect the

comparison between theory and observation. See his Notions Fondamentales de

Mecanique, Paris, 1855. It is easy to see that M. Morin's experiments tend to

confirm the laws of rolling friction stated in a previous article.

166. Problems on Friction. Ex. 1. A homogeneous sphere is projected

without rotation directly up an imperfectly rough plane, the inclination of which

to the horizon is a, and the coefficient of friction /x. Show that the whole time

duriog which the sphere ascends the plane is the same as if the plane were smooth,

and that the time during which the sphere slides is to the time during which it rolls

as 2 tan a : 7//.

Ex. 2. A homogeneous sphere rolls down an imperfectly rough fixed sphere,

starting from rest at the highest point. If the spheres separate when the straight

line joining their centres makes an angle with the vertical, prove that

cos + 2;u sin
<f>
= Ae^^'^,

where ^ is a function of /x only. [Coll. Exam.

Proceeding as in Art. 145, we show that R remains positive and that the sphere

rolls until 2 sin 0//*= 17 cos 0- 10. The sphere then slides and R changes sign

when satisfies the equation given in the question.

Ex. 3. A rough cylinder of mass 2nm capable of motion about its horizontal

axis has a particle of mass m and coefficient of friction /x placed on it vertically

above the axis. The system is then slightly disturbed. Show that the particle will

slip on the cylinder after it has moved through an angle 6 given by

{n + 3) cos ^ - 2 = n sin dlfx..

Ex. 4. A homogeneous sphere of mass M is placed on an imperfectly rough

table, the coefficient of friction of which is fi. A particle of mass m is attached to

the extremity of a horizontal diameter. Show that the sphere will begin to roll or

slide according as u is greater or less than „,,„ ,p^^rr^^—^~~o • I^ /* be equal to

this value, show that the sphere will begin to roll if 5m^ <. M^ + llMm.

Ex. 5. A ring of radius a is fixed on a smooth horizontal table ; a second ring

is placed on the table inside the first and in contact with it, and is projected with

velocity F, but without rotation, in a direction parallel to the tangent at the point

of contact. Find the time that elapses before slipping ceases between the rings if

the coefficient of friction between them is fx and prove that the point of contact will

in this time describe an arc of length (a log 2)//*. Discuss the motion that will

ensue if at the moment slipping ceases the fixed ring be released and left free

to move, and prove that during the time that the inner ring rolls half round the

outer one the centre of the latter will be displaced a distance -zr^ (a-b) Jlw^+4,)

where m, M. are the masses of the inner and outer rings and h is the radius of the

inner ring. [Math. Tripos, 1900.

Ex. 6. A rod AB has two small rings at its extremities which slide on two

rough horizontal rods Ox, Oy at right angles. The rod is started with an angular

velocity when very nearly coincident with Ox. Show that, if the coefficient of

O 2 / Q O^
friction is less than J2, the motion of the rod is given by ^=~— log f 1 + n_ 2 )
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until tan d= 2/;u,, and that when the rod reaches Oy its angular velocity is w, where

and d is the angle the rod makes with Ox. What is the motion if yu,2>2

?

We deduce from the equations of motion that when /a^<2, both the reactions at

the beginning of the motion act outwards from the quadrant in which the rod lies.

During the motion one reaction changes sign while the corresponding friction con-

tinues to act in the same direction as before : the angular velocity is found not to

vanish.

167. Rigidity of Cords. After having used the apparatus

with a fine cord described in Art. 164 to determine the laws of

friction, Coulomb replaced the cord by a stiffer one and repeated

his experiments with a view to obtain a measure of the rigidity

of cords. His general result may be stated as follows. Suppose
a cord ABGD to pass over a pulley of radius r, touching it at B
and G, and moving in the direction ABGD. Then the rigidity

may be represented by supposing the cord to be perfectly

flexible, and the tension T of the portion AB of the cord which
is about to be rolled on the pulley to be increased by a quantity

R. The force R measures the rigidity and is equal to ,

where a and h are constants depending on the nature of the cord.

It appears therefore that, in the equation of moments about
the axis of the pulley, the rigidity of the cord which is being wound
on the pulley is represented by a resisting couple of magni-
tude a+bT, where T is the tension of the cord which is being
bent, and a, b are two constants depending on the nature of

the cord. The rigidity of the cord which is being unwound will

be represented by a couple whose magnitude is a similar function

of the tension of that cord. But as its magnitude is very much
less than the first it is generally omitted.

Besides the experiments just alluded to, Coulomb made many
others on a different system. He also constructed tables of the
values of a and b for ropes of different kinds. The degrees of

dryness and newness and the number of independent threads
forming the cord were all considered. Rules were given for com-
paring the rigidities of cords of different thicknesses.

On Impulsive Forces.

168. Equations of motion. In the case in which the
impressed forces are impulsive the general principle enunciated in

Art. 131 of this chapter requires but slight modification.

Let (u, v), {v! , v) be the velocities of the centre of gravity of

any body of the system resolved parallel to any rectangular axes
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respectively just before and just after the action of the impulses.

Let o) and «' be the angular velocities of the body about the

centre of gravity at the same instants. Let Mk^ be the moment of

inertia of the body about the centre of gravity. Then the effective

forces on the body are equivalent to two impulsive forces

measured by M{u—u) and M{v' — v) acting at the centre of

gravity parallel to the axes of coordinates together with an
impulsive couple measured by Mk'^ (co' — co).

The resultant effective forces of all the bodies of the system
may be found by the same rule. By D'Alembert's principle

these are equivalent to the impressed forces. The equations of

motion may then be found by resolving in such directions and
taking moments about such points as may be found most con-

venient.

To take an example, let a single body be acted on by a blow
whose components are X, Y and whose moment round the centre

of gravity is L. The equations of motion are evidently

M(u'-u) = X, M{v-v)=Y, Mk'{co'-(D) = L.

In many cases it will be found that by using the principle of

virtual work the elimination of the unknown reactions may be

effected without difficulty.

169. We notice that these expressions for the effective forces

depend on the differences of the momenta just before and just

after the action of the impulses. We may therefore conveniently

sum up the equations obtained by resolving in any direction and
taking moments about any point in the two following forms :

/Res. Lin. Mom.\ /Res. Lin. MomA _ /Resolved

\

V after impulse / \ before impulse / V impulse /
'

/Ang. Momentum\ /Ang. MomentumN _ /Moment of\

V after impulse / V before impulse /
~

V impulse /
*

An elementary proof of these two results is given in Art. 87.

The expression for the Linear Momentum is given in Art. 74,

and various expressions used for Angular Momentum are given

in Art. 134.

When a single blow or impulse acts on a system, we may
conveniently take moments about some point in its line of action,

and thus avoid introducing the impulse into the equations. We
then deduce from the equation of moments that the angular
momentum of a system about any point in the line of action of an
impulse is unaltered by that impulse.

170. Ex. 1. A string is ivound round the circumference of a circular reel, and
the free end attached to a fixed point. The reel is then lifted up and let fall so that,

at the moment when the string becomes tight, it is vertical and a tangent to the reel.

The whole motion being supposed to be parallel to one plane, determine the effect

of the impulse.
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The reel in the first instance falls vertically without rotation. Let v be the

velocity of the centre at the moment when the string becomes tight ; v', w' the

velocity of the centre and the angular velocity just after the impulse. Let T be

the impulsive tension, mk^ the moment of inertia of the reel about its centre of

gravity, a its radius.

In order to avoid introducing the unknown tension into the equations of motion,

let us take moments about the point of contact of the string with the reel ; we

then have m{v' -v) a + mk^u)'= (1).

Just after the impact the part of the reel in contact with the string has no

velocity. Hence v'-a<a' = (2).

Since k^=— , we have w' — - -
, v'= -t7. If it be required to find the impulsive

2 Sao
tension, we have by resolving vertically vi {v' -v)= - T, .•. T — ^viv.

To find the subsequent motion. The centre of the reel begins to descend

vertically, and there is no horizontal force on it. Hence it will continue to descend

in a vertical straight line, and throughout all the subsequent motion the string is

vertical. The motion may therefore be easily investigated as in Art. 144. If we

put a = ^ir, and F for the finite tension of the string, it may be shown that F is one-

third of the weight, and that the reel descends with a uniform acceleration ^g.

The initial velocity v' of the reel has been found in this article, so that the space

descended in a time t after the impact is v't+lgf^.

Ex. 2. A sphere with any initial conditions moves in a vertical plane which

intersects a fixed inclined plane along the line of greatest slope. If the sphere be

rough and elastic prove that the expression U—au + k^w-agtsina is unaltered by

any impact on the plane and is constant throughout the motion, where w is the angular

velocity of the sphere, u the velocity of its centre resolved parallel to and down the

plane at any time t, a the radius and a the inclination of the plane to the horizon.

We notice that the impulse acts at the point of contact. Taking moments about

this point we have aw' + h^oo'= au + /c^w,

u', w' being the values of w, w after the impact. The expression U is therefore

unchanged by an impact.

No geometrical equation has been used in arriving at this result. It is therefore

true whether the body be elastic or not and whether it rolls or slides.

If the body rebound and leave the plane, its centre of gravity will describe a

parabola. We know that u - gt sin a and u will then each be constant. The

expression U therefore remains unchanged during the parabolic motion.

If the body again impinges on the plane we see as before that the expression U
is unaltered by this second or any subsequent impulse.

If the body simply rolls or slides on the plane without rebounding we have as

in Art. 144 max + mk^di = mga sin a.

Hence by integration the expression U remains unchanged during this motion.

If after any number of rebounds the sphere passes over some part of the plane

which is so rough and inelastic that the sphere rolls we have in addition the

equation u = aw. Joining this equation to the condition that the expression U is

equal to its initial value, we have two equations to find the values of u and w.
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171. Impact of a single Inelastic body. A disc of any
form is moving in its own plane in any manner. Suddenly a point

U on it is seized and made to move in some given manner. Find
the initial motion of the disc.

Let Oijc, Oy be two rectangular directions to which it is con-

venient to refer the motion. As explained in Art. 168, let {u, v)

be the resolved velocities of the centre of gravity G in these

directions and co the angular velocity of the body just before the

motion of is changed. Thus if Ox can be chosen conveniently

parallel to the direction of the motion of the centre of gravity we
have the simplification v = 0. Let {u\ v) be the resolved velocities

(»f the centre of gravity in the same directions and &>' the angular
velocity just after the change. Let {x, y) be the coordinates of

the centre of gravity referred to the axes Ox, Oy at the instant of

the change, and let OG = r.

Since the angular momentum of the body about the point of

space through which is passing is unchanged by the blow, we
have, by Art. 134,

M{xv' - yu + Fw') = M(xv- yu + k^oy).

Let {V, V) be the resolved parts of the velocity of just

after the change. Then we have by Art. 137,

u = V" — yw', V =V' \- xw.

From these three equations we easily find

{¥ 4- r^) ay' = x{v-V')-y{u- U') 4- k'ay.

Let L, L' be the moments round the centre of gravity G of the
velocities of just before and just after the fixing, then

Z = (w + yw) y — {v — xco) X, L' = U'y — V'x.

The equation to find w becomes

{k^ + r^){w -w)=L'-L,
here L, L\ co, co' are all measured the same way round G. Another
roof is given in Art. 207.

If the point he suddenly fixed we have U' = 0, V = 0, and

then we find {k^ + r"^) cj' =xv —yu-\- k^w.

To find the blow at necessary to produce the given change.

Let X, Y be the components of the blow parallel to the axes
|0a;, Oy, Then by Art. 168 we have, resolving parallel to the

es M{u'-u) = X, M{v'-v)=^Y.

If we take the axis of x to pass through the centre of gravity,

have 2/ = 0. We then find by substitution

X = -M{u-U'\ Y=MjJ^^{rw-v+Vy
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171 a. Ex. 1. A circular area is turning about a fixed point A on its circum-

ference. Suddenly A is loosed and another point B on the circumference is fixed.

If AB is a quadrant show that the angular velocity is reduced to one-third of its

value. If AB is a third of the circumference the area is reduced to rest.

Ex. 2, A disc, moving in its own plane, is reduced to rest by suddenly fixing a

point O. Prove that O lies in a straight line which is parallel to the direction

of motion of the centre of gravity G and is distant fc^o/w from it, where u is the

velocity of G.

172. Work of an impulse. A body of mass M is acted on

at a given point P by an impulsive force R. To find the change in

the vis viva.

An impulse is the limit of a great force acting for a very short

time (Art. 84), and from this definition we may deduce the work
done by the impulse and thence the loss or gain of vis viva (Art.

141). This is the course adopted in the first section of Chap. vii.

We shall however here deduce the result directly from the equa-

tions of impulses given in Art. 169.

Let the axis of ^3? be parallel to and distant y from the line of

action of the impulse. Then, the origin being at the centre of

gravity, the equations of motion are by Art. 168

u'-u^RjM, v'-v = ^, a)'-co = -RylMk\

The gain of vis viva is by Art. 189

= R{2{u-y(o)-^R (y^ + k^)IMk^}.

But by (1) u -co'y = u-(oy + R(y^ + k')IMk'' ;

.*. gain of vis viva = i^ {{u — y(d) + {u —yco')] (2).

The gain of kinetic energy is of course the half of this

quantity. If V and V are the velocities of the point of applica-

tion of the blow resolved in the direction of the blow just before and
just after the impulse, then the gain of kinetic energy is ^{V' -\- V) R.

This result is due to Kelvin.

In the same way the vis viva of the relative motion is

M (u -uf +M (v' - vf + Mk^ (co' - (of

R^ R^y^

It follows immediately that the kinetic energy of the relative motion

of the system just before and just after the action of the impulse

RisUr- V)R.

Both these results and the two last examples in Art. 173 b are special cases of

much more general theorems, which apply to any system of bodies and any number
of impulses. These, with some others equally important, are given at the end of

Chapter vii., with demonstrations founded on the principle of virtual velocities.
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172 a. If the impulse R make an angle ^ with the axis of a?,

\et X = R cos </), F = i^ sin be its components. Let also ( V^, Vy),

( Vx, ^y) be the components of the velocities of the point P just

before and just after the blow. The gain of kinetic energy then

becomes by similar reasoning

i,X{V,+ V^) + \Y{Vy+Vy') (3).

When therefore we find the gain of energy due to the com-

ponents X, Y we may treat each component separately as if it

were the only impulse acting on the body and then add the

results.

In some cases of impact the direction of the impulse R is not fixed in space.

To use the rule in Art. 172 we resolve each element dR of R into two fixed directions ;

let these components be dX, dY. The body may now be regarded as acted on by

two impulses X, Y, the direction of each being constant. The gain of energy due to

these is given by (3). There is a further discussion of this point in Arts. 192—196,

327—329, and in the first section of Chap. vii.

173. Impact of two bodies. When two bodies impinge on

each other, we may deduce from Art. 172 an expression for the

gain or loss of kinetic energy. Let S be the magnitude of the

blow, which we suppose fixed in direction during the whole

impact, Art. 172 a. Since S is negative for the impinging body,

the gain of energy is

where Fj, F/ are the components of velocity of the point of

impact of the striking body, V^, V^ those for the body struck, and

f7=Fi— F2, U' —V-^ —V^ are the velocities of the point of

contact of the striking body relative to those of the body struck,

all resolved in the direction of the blow on the latter body. The

loss of kinetic energy is therefore the product of the blow by the

mean of the resolved relative velocities just before and just after

impact.

When the bodies are smooth and inelastic, there is only a normal

reaction R, which is such that the bodies do not separate just

after impact. Hence U' =0 and the loss of energy is ^RU, where

U is the relative normal velocity of the points of contact just

before impact.

When the bodies are sufficiently rough to destroy sliding there

is also a frictional impulse F, which is such that the tangential

velocities of the two bodies become equal. Hence U' is again

zero and the loss of energy due to the friction is ^FU, where U is

now the relative tangential velocity of the points of contact before

: impact. In this case, if S be the resultant blow, and the bodies

; are inelastic, the loss of energy is \SU where U is here the relative

: velocity of the points of contact resolved in the direction of the
' blow >Sf, Art. 172.

\

\
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173 tt. If the impwging bodies are smooth with a coefficient of
restitution e, we may obtain a corresponding rule for the loss of

energy. We see by Art. 172 that the resolved velocity of the

point of application of a blow is

u' - co'y = u - coy -{- E (y^ + k^)IMIc^.

Hence, when two smooth bodies impinge, the normal velocities

of the points of contact (and therefore also the relative normal

velocity) are, at any stage of the impact, linear functions of the

reaction up to that stage (Art. 179). We write therefore

where U is the normal relative velocity just before impact, U"
that at any stage defined by the magnitude of R, and L is a

constant which is independent of R but depends on the form

of the impinging bodies. At the instant of greatest compression

(Art. 179) when R^Rq, U" = 0. When the impact is concluded

and R = RQ{\-\-e), let U' he the normal relative velocity. We
thus have

0=U + LRo, U'=U + LR,{l^e), .-. U' = -eU.

The ratio of the normal relative velocities of the points of contact

just after and just before impact is therefore equal to — e.

By (4) of Art. 173, the loss of kinetic energy due to an impact
is ^8{U \- U'). Hence, if /S represent the whole blow, that is

R(i{l + e), the loss of kinetic energy is \8U {\ — e), where U is the

normal relative velocity just before impact.

173 h. Ex. 1. Prove that the loss of kinetic energy at the impact of two per-

fectly rough inelastic uniform spheres of masses M-^, M^, is —
^ f" ^ , where

u, V are the relative velocities before impact of the points of contact tangentially

and normally. [Coll. Exam. 1904.

Ex. 2. A disc at rest is acted on by an impulse in its own plane. Prove that

the vis viva generated by the impulse is greater when the body is free than when it

is constrained to turn round some fixed point.

Ex. 3. Two straight lines Ox, Oy are drawn at right angles in the plane of a

disc which is at rest. Suddenly the point is made to move with a given velocity

in the direction Ox. Prove that the vis viva generated when the body is free

is less than if it were constrained to turn about a fixed point C which lies in Oy.

174. Examples of different kinds of Impacts. Ex. 1. An inelastic sphere

of radius a, sliding with a velocity F on a smooth horizontal plane, impinges on

a perfectly rough fixed point or peg at a height c above the plane. Show (1) that

unless the velocity V be greater than / 2gc r^ the sphere will not jump over

the peg. Supposing the velocity V to have this value show (2) that the sphere

c a^ + k^
will immediately leave the peg if - be greater than - -.,

—

^ . In this latter case
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show (3) that the sphere will again hit the peg after a time t, given by the lesser

root of the equation ^gH- - U ^inagt+U'^-ag co%a = 0, where U'^= 2gc-^—p *^^

cosa= 1— . Show also that the roots of this quadratic are real and positive.

Ex. 2. A rough inelastic sphere rolls down over the rungs of a sloping ladder

without slipping or jumping, leaving each rung in turn as it impinges on the next.

Show that the descent may be made without gathering or losing speed only if the

slope 6 of the ladder is less than the acute angle d^ given by the equation

tan (^0 + *) cota= 2-sin% / ( 1 + -^ j i

and greater than the acute angle d^ given by the equation

tan ^i/2= sina (1 -cosa) (cos2a + -^j;

r being the radius of the sphere, k its radius of gyration about a diameter and

2r sin a the distance between consecutive rungs of the ladder.

[Math. Tripos, 1898.

Let w be the angular velocity with which the sphere begins to turn round any

rung just after impact, and u>' that with which it arrives at the next rung. The

principle of vis viva supplies one equation connecting w, co' and 6. We have a

second equation because the angular momentum is not altered by the impact,

Art. 171. We obtain an inferior limit to the value of w because the vis viva must

be sufficiently great to carry the centre of gravity over its highest position. We
have a superior limit because the angular velocity must not be so great that the

sphere leaves the rung before it arrives at the next rung.

Ex, 3. A rectangular parallelepiped of mass 37n, having a square base ABCD,
rests on a horizontal plane and is moveable about CD as a hinge. The height of

the solid is 3a and the side of the base a. A particle m moving with a horizontal

velocity v strikes directly the middle of that vertical face which stands on ^J5

and lodges there without penetrating. Show that the solid will not upset unless

9v^>5Sga. [King's Coll.

Ex. 4. A vertical column in the form of a right circular cylinder rests on

a perfectly rough horizontal plane. Suddenly the plane is jerked with a velocity V
in a direction making an angle e with the horizon. Show that the column will not

be overturned unless (1) the direction of the jerk be such that a parallel to it drawn

through the centre of gravity does not cut the base, and (2) the velocity of the

jerk be greater than U, where U is given by U^= lgl {15 + cos^ d) . .

COS i 1/ "t" 6)

Here 21 is the length of a diagonal of the cylinder and 6 is the angle any diagonal

makes with the vertical.

Ex. 5. If the velocity of the jerk of the horizontal plane be exactly equal to U,

find the vertical pressure of the cylinder on the plane. Show that the cylinder

will not continue to touch the plane during the whole ascent of the centre of

gravity unless 1 + ^ sin ^ < 3 cos 6. What is the general character of the motion

if this condition is not satisfied?

Let the cylinder touch the ground at the point A of the rim, and let <p be the

angle made by the diagonal through A with the vertical. Then by the principle of

I
vis viva we have {k'^ + l^)<p^= C- 2gl cos <p,
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cylinder vanishes when the centre of gravity is at its highest we have C= '2gl. Let

viR be the vertical reaction at A, where m is the mass of the cylinder. Then

-~r, {I cos ^) =R- g. From these equations we find

R—^ = 3cos20-2cos0 + ^cos2^ + | sin2^.

If R vanish we have cos = ^ (1 ± i sin 6). In order that R may keep one sign both

these values of must be excluded by the circumstances of the case, i.e. both these

values of <p must be greater than 6. This leads to the result given above.

175. Earthquakes. The last two problems are interesting from their connection

with Mallet's theory of earthquakes. Let us suppose that the action of an earth-

quake on any building may be represented by such a motion of the base as that

of the plane just described. Then the direction and the magnitude of the equivalent

jerk are both independent of the building operated on, and depend only on the

nature of the earthquake at the place.

On these principles Mr Mallet has constructed a seismometer of great simplicity.

A set of six right cylinders is turned in some hard material such as boxwood.

The cylinders are all of the same height but vary in diameter. They stand upright

on a plank fixed to a level floor in the order of their size, with a space between

each pair greater than their height, so that when one falls it does not strike its

neighbour. "When a shock passes, some of the cylinders are overturned and some

left standing. Suppose the jerk to knock over the narrow based cylinders 4, 5, 6,

leaving the broader based cylinders 1, 2, 3 standing, then the jerk must have been

greater than that required to overturn cylinder No. 4, but not great enough to

overturn cylinder No, 3.

The formula used is that given in Ex. 4, which is ascribed by Mr Mallet to

Dr Haughton. The value of e is small when the origin or focus of the earthquake

is distant, so that as a first approximation we may put e = 0. It does not appear

to have been noticed that if we are to use this formula for the standing cylinders

they must be such as to satisfy the conditions given in Ex. 5.

In December, 1857, an earthquake of great violence occurred in the southern

provinces of Italy. Mr Mallet visited the place early in the next year for the

express purpose of determining the circumstances of the shock. The problem to

be solved was to some extent a mechanical one. Given the positions of the over-

turned columns and buildings, to find the depth and position of the focus or origin

of the earthquake, the velocity of the earthquake wave, and the magnitude of the

jerk at any place. In this case the depth of the focus was about three miles

below the surface of the earth, the velocity of the wave was about 800 feet per

second, while the velocity of the jerk, which upset several buildings, was as little as

12 feet per second. This last is about the same velocity as that acquired by a

particle falling from rest under gravity through a height of between two and three

feet. See The Great Neapolitan Earthquake of 1857, two volumes, 1862, by R. Mallet.

The observations made during the earthquake of Dec. 1884 in Spain and that of

August 1886 at Charleston indicated a depth of focus very much greater than that

above given. See Flammarion, L'Astronomic, Oct. 1887.

The column seismometer described above has not been very successful in

practice. The displacement of the earth is not a simple rectilinear motion, but

rather a prolonged series of motions in different directions. These give rotational

motions to the columns which therefore fall in different directions. A model, by
means of a long copper wire, of the actual path of a point on the earth's surface

during a severe earthquake in Jan. 1887 in Japan has been constructed by Prof.
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Sekiya and is described in Nature, Jan. 26, 1888. Whatever degree of accuracy this

may have, it tends to show the complicated nature of the displacement. For an
account of modern seismometers the reader may consult Milne's Earthquakes, 1886,

Nature, April 12, and July 26, 1888, and Phil. Mag., April 1887. Some experi-

ments in connection with earthquakes are also described in the Proceedings of the

Royal Society for Dec. 1881. The velocities and amplitudes of the waves of direct

and transverse vibration were separately determined. The motion of a point on the

earth's surface was found to be such as would result from the composition of two

harmonic motions of different periods and in different directions.

176. Impact of a Compound Inelastic body. Four equal rods each of length

2a and mass m are freely jointed so as to form a rhombus. The system falls from
rest with a diagonal vertical under the action of gravity and strikes against a fixed

horizontal inelastic plane. Find the subsequent motion. See Art. 408.

Let AB, BG, CD, DA be the rods and let ^C be the vertical diagonal impinging
on the horizontal plane at A. Let V be the velocity of every point of the rhombus
just before impact and let a be the angle any rod makes with the vertical.

Let u, V be the horizontal and vertical velocities of the centre of gravity and or

the angular velocity of either of the upper rods just after impact. Then the-

effective forces on either rod are equivalent to the force m {v - V) acting vertically

aiid mu horizontally at the centre of gravity and a couple mk^w tending to increase

tlie angle a. Let R be the impulse at C, the direction of which by the rule of

symmetry is horizontal. To avoid introducing the reactions at B into our equa-
tions, let us take moments for the rod BG about B and we have

mk^o} +m (v-V) a sin a -mua cos a= - R .2a cos a (1).

Either of the lower rods begins to turn round its extremity ^ as a fixed point.

If w' be its angular velocity just after impact, the moment of the momentum about

A just after impact is m{k^ + a^)io' and just before is mFa sin a. The difference

of these two is the moment about A of the effective forces on the rod. We may
now take moments about A for the two rods AB, BG together and we have

m(A;2 + a") u' - mVa sin a - mk^bj + m {v - V) a sin a + mu. Sa cos a=R .4a cos a... (2).

The geometrical equations may be found thus. Since the two rods must make
equal angles with the vertical during the whole motion we have ci>'= a; (3).

Again, since the two rods are connected at B, the velocities of their extremities

must be the same in direction and magnitude. Resolving these horizontally and

vertically, we have w + aw cos a= 2aa;' cos a (4),

v-au sin a= 2aw' sin a (5).

These five equations are sufficient to determine the initial motion.

Eliminating R between (1) and (2), and substituting for u, v, w' in terms of w

from the geometrical equations, we find io= ^ . —t^—^ . „ , (6).
2 a (1 + 3 sm^a)

In this problem we might have avoided the introduction of the unknown
reaction R by the use of virtual work. Let us give the system such a displacement

jt that the inclination of each rod to the vertical is increased by the same quantity 5a.

The virtual work of any couple, such as rnk'^oj, is found by multiplying its moment
by the angular displacement, viz. da. The work of any force, such as mu, is found

by multiplying its magnitude by the linear displacement of the point of application.

The principle of virtual work then gives

mk^uda -m{v-V)8{Sa cos a) + mu8 (a sin a)+m {k^ + a^) u'5a + mVd (a cos a) = 0,

R. D. 10
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which reduces to {2k^ + a^)w- Va sin a + 3 (v - F) a sin a + wa cos a = 0,

and the solution may be continued as before.

Ex. 1. Show that the direction of the impulsive action at the hinge B makes
with the horizon an angle whose tangent is (3 sin^a - 2) cot a.

Ex. 2. If the coefficient of restitution of the plane be e, show that the value of w
given by (6) must be multiplied by 1 + e ; see Art. 404.

To find the subsequent motion. This may be found very easily by the method
of Vis Viva. But in order to illustrate as many modes of solution as possible,

we shall proceed in a different manner. The effective forces on either of the

upper rods are represented by the differential coefficients mv, nit, mk-oj, and
the moment for either of the lower rods is m(k'^ + a^)u. Let 6 be the angle any

rod makes with the vertical at the time t. Taking moments in the same way as

before, mk^Cj + mva sin 6 - mua cos 6= -R . la cos 6 + mga sin ^ (1)',

m{k^ + a'^) <j}' -mk"(b + mva sin d + mu . Sa cos d =R . 4acos6 + 2mgasm 6... (2)'.

The geometrical equations are the same as those given above, with d written

for a. Eliminating R and substituting for u, v, we get

(2A;2 + a2) -^ + a2j98in^^ (w sin ^) + cos^ -. (wcos^)i ='igasm6;

then multiplying both sides by w= ^ and integrating, we get

{2 {k^ + a2) + 8a2 sin^ d}u}^ = C-Sga cos d.

Initially, when 6 = a, co has the value given by equation (6). Hence we find

that the angular velocity w when the inclination of any rod to the vertical is 6

is given by (i^33i„.,)„.^9F^
. ^±^ + ?? (cos a - cos «).

^ ' 4a2 1 + 3 sm^'a a ^ '

176 a. As a further example of the use of virtual velocities in cases of impact,

let us suppose that the rhombus of rods described above is placed at rest on a smooth

table and is struck by a given blow at a given point of one of the rods in a direction

perpendicular to that rod. It is required to find the initial motion of each rod.

Let E, F, G, H he the centres of gravity of the rods AB, BC, CD, DA taken in

order, 2a the acute angle at the corners B or D. Let w be the initial angular velocity

of AB or CD, w' that of BC or AD ; let V be the initial velocity of the centre of

gravity of the system. Let a blow R be applied at a point K of the rod CD in a

direction perpendicular to that rod, where CK=a + x.

We reduce the initial motion of to rest by applying to every particle of the

system a reversed velocity V. Since 4mF=i? this is equivalent to applying to a

blow R opposite to that at K.

The effective force at the centre of gravity of each of the rods AB, CD is maw'

acting in a direction perpendicular to the straight line joining that point to 0, and

the effective couple is mk'^w. Those for the rods BC, DA are maw and mk^w'. We
now use the principle of virtual velocities and displace the system through an

angle 5^ ; keeping F and H fixed. Then

{2maw') (add) + (2mA;V) 8d= R{a cos 2a8d).

Next displace the system, keeping E and G fixed, we find

{2mau}) (add) + {2mk'^w) 36 = R {x5d).

These equations give

2m (a2+ A;2) w'= Ra cos 2a, 2m {a^ + k^)w= Rx.
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Two separate displacements are necessary for the solution of the problem, because

we have to find the two unknown quantities w and w'.

177. Ex. 1. A square is moving freely about a diagonal with angular velocity w,

when one of the angular points not in that diagonal becomes fixed ; determine the

impulsive pressure on the fixed point, and show that the instantaneous angular

velocity will be w/7. [Christ's Coll.

Ex. 2. Three equal rods placed in a straight line are jointed by hinges to one

another ; they move with a velocity v perpendicular to their lengths ; if the middle

point of the middle one become suddenly fixed, show that the extremities of the

other two will meet in a time Airajdv, a being the length of each rod. [Coll. Exam.

Ex. 3. The points ABCD are the angular points of a square ; AB, CD are two

equal similar rods connected by the string BC. The point A receiving an impulse

in the direction AD, show that the initial velocity of A is seven times that of the

point D. [Queens' Coll.

Ex. 4. A series of equal beams AB, BC, CD is connected by hinges; the

beams are placed on a smooth horizontal plane, each at right angles to the two

adjacent, so as to form a figure resembling a set of steps, and an impulse is given

at the end A along AB : find the impulsive action at any hinge. [Math. T.

Result. If X^ be the impulsive action at the n^^ angular point, show that

^2n+i - 5^2n+2 " ^^2n+s= ^ ^nd that Zg^+g " ^^2n+i " ^^sn= 0. Thencc find X^ .

Ex. 5. Two uniform rods AB, BC of equal length and mass, smoothly

hinged at B, lie upon a smooth horizontal table ; the end A is struck so as to begin

to move with a given velocity in a direction which makes angles 6, <p respectively

with the rods, show that, if sin (20- ^)=: 3 sin ^, AB will begin to move without

rotation. [Coll. Exam. 1880.

Take moments for the rod BC about B and for both rods about A according to

the rule in Art. 169.

Ex. 6. Three equal and similar rods moveable about one common extremity

are held at right angles to each other so that the three other extremities are in a

horizontal plane with the common extremity either above or below. Show that if

they are dropped on a smooth inelastic horizontal plane, the velocity of their centre

of gravity is diminished by one-half.

Ex. 7. A uniform circular disc of mass m touches internally a uniform circular

ring of mass M. An impulse is applied to the ring, directed towards its centre, at

a point the angular distance of which from the point of contact is a( <7r/2). Show
that if the bodies are inelastic and rough, the disc will at first roll or slide according

as the coefficient of friction is greater or less than tan a (lf+m)/{3U+2m).
[Math. Tripos, 1904.

Ex. 8. Three uniform rods AB, BD, DC of equal mass freely jointed at B and

D are at rest forming the opposite sides and a diagonal of a square ABCD. A blow

I J is applied at A in the direction DA. Prove that the kinetic energy imparted is

TTT — where m is the mass of a rod. [Math. Tripos, 1902.
114 VI

178. Tlie blow before and behind. A free inelastic lamina of any form is

\turning in its own plane about an instantaneous centre of rotation S, and impinges on

\an obstacle at P situated in the straight line joining the centre of gravity G to S. To

Ind the point P when the magnitude of the blow is a maximum. Poinsot, Sur la

[percussion des corps, Liouville's Journal, 1857 ; translated in the Annals of

\Philosophy, 1858.

10—2
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Firstly, let the obstacle P he a fixed point. Let GP = x, and let R be the force of

the blow. Let SG=h, and let w, w' be the angular velocities about the centre of

gravity before and after the impact. Then /iw is the linear velocity of G just before

the impact ; let v' be its linear velocity just after the impact. We have

-Rx , , R .,,
a? - (0= ,,,., , v-hu}=--- (1),

and supposing the point of impact to be reduced to rest, v' + X(jo' = (2).

From these equations we find R in terms of x and make R a maximum. We
thus find two values of x, one positive and the other negative. Both these corre-

spond to points of maximum percussion, but in opposite directions. There is a

point P with which the body strikes in front and a point P' with which it strikes in

rear of its own translation in space more forcibly than with any other point.

The two points P, P' are equally distant from S, and if be the centre of

oscillation with regard to <S as a centre of suspension, SP^ = SG . SO. If P be made
a point of suspension, P' is the corresponding centre of oscillation, and PP' is

harmonically divided in G and 0. Also the magnitudes of the blows are inversely

proportional to the distances from G.

Secondly, let the obstacle be a free particle of mass m. Then, besides the

equations (1), we have the equation of motion of the particle m. Let V be its

velocity after impact, then mV'= R. The point of contact in the two bodies will

have after impact the same velocity, hence instead of equation (2) we have

V = v' + xoj'. We then find x as before by making R a maximum. There are

two values of x.

There are other singular points in a moving body whose positions may be

found ; thus we may inquire at what points a body must impinge against a fixed

obstacle, firstly, that the linear velocity of the centre of gravity may be a maximum,
and secondly, that the angular velocity may be a maximum. These points,

respectively, have been called by Poinsot the centres of maximum reflexion and

conversion. These points are however not of sufficient importance to require a

detailed discussion.

Ex. A free lamina of any form is turning in its own plane about an instanta-

neous centre of rotation S, and impinges on a fixed obstacle P situated in the

straight line joining the centre of gravity G to S. Find the position of P, firstly,

that the centre of gravity may be reduced to rest, secondly, that its velocity after

impact may be the same as before but reversed in direction.

Result. In the first case, P coincides either with G, or with the centre of

oscillation. In the second case if SG — h, x = GP the points are found from the

equation 2hx^= k^ (x-h). [Poinsot.

179. Elastic smooth bodies. Two bodies impinge on each

other, to explain the nature of the action which takes place.

When two spheres of any hard material impinge on each

other, they appear to separate almost immediately, and a finite

change of velocity is generated in each by the mutual action.

This sudden change of velocity is the characteristic of an im-

pulsive force. Let the centres of gravity of the spheres be

moving before impact in the same straight line with velocities

u and V. Then after impact they will continue to move in the

same straight line; let u, v be their velocities. Let m, m' be
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the masses of the spheres, R the action between them, then we
have by Article 168,

,
R , R . ,

u —u = — , v—v = —, (1).m m
These equations are not sufficient to determine the three

quantities u\ v', R. To obtain a third equation we must consider

what takes place during the impact.

Each of the balls is slightly compressed by the other, so that

they are no longer perfect spheres. Each also in general tends

to return to its original shape, so that there is a rebound. The
period of impact may therefore be divided into two parts. Firstly,

the period of compression, during which the distance between the

centres of gravity of the two bodies is diminishing, and secondly

the period of restitution, in which the distance between the centres

of gravity is increasing. The second period terminates when the

bodies separate.

The arrangement of the particles of a body being disturbed by
impact, we ought in strictness to determine the relative motions

of the several parts of the body. Thus we might regard each body
as a collection of free particles connected by mutual actions. These
particles being set in motion might continue always in motion
oscillating about some mean positions in the body.

It is however usual to assume that the changes of shape and
structure are so small that the effect in altering the position of the

centre of gravity and the moments of inertia of the body may be

neglected ; also that the whole time of impact is so short that the

displacement of the body in that time may be neglected. If for any
bodies these assumptions are not true, the effects of their impact

must be deduced from the equations of the second order. We
may therefore assume that at the moment of greatest compression

the centres of gravity of the two spheres are moving with equal

velocities.

The ratio of the magnitude of the action between the bodies

during the period of restitution to that during compression is

found to be different for bodies of different materials. It depends

on the quickness or slowness with which the bodies tend to regain

their original shapes. If they do this very slowly the separation

takes place while the bodies are still regaining their proper forms,

and in this case the action during restitution is less than that

during compression. If the bodies return to their original forms

so quickly that the separation only occurs when they have regained

their natural forms the action during restitution is equal to that

during compression.

In some cases the force during the period of restitution may be
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neglected. The bodies are then said to be inelastic. In this case

we have just after the impact u' = v\ This gives

r, mm' , V 1 , mu + m'v
Jti^-^ , (u — V), whence u = 1-

.

m + m m-\-m

If the force of restitution cannot be neglected, let R be the

whole action between the balls, Rq the action up to the moment
of greatest compression. The magnitude of R must be found by
experiment. This may be done by determining the values of u and
v\ and thus determining R by means of equations (1). Such
experiments were made in the first instance by Newton, and led to

the result that RjRo is a constant ratio depending on the materials

of the balls. Let this constant ratio be called l-\-e. The quantity

e is never greater than unity ; in the limiting case when e = \ the

bodies are said to he perfectly elastic. The constant e is called

sometimes the coefficient of elasticity and sometimes the coefficient

of restitution.

The value of e being supposed known the velocities after

impact may be easily found. The action Rq must be first calcu-

lated as if the bodies were inelastic, when the whole value of R
may be found by multiplying by 1 + e. This gives

T^ mm! , . ,, .

m + m^ ^

whence u and v may be found by equations (1).

180. As an example, let us consider how the motion of the reel discussed in

Art. 170 would be affected if the string were so slightly elastic that we could apply

this theory.

Since the point of the reel in contact with the string has no velocity at the

moment of greatest compression, the impulsive tension found in the article referred

to, measures the whole momentum communicated to the reel from the beginning of

the impact up to the moment of greatest compression. By what has been said in

the last article, the whole momentum communicated from the beginning to the

termination of the period of restitution will be found by multiplying the tension

found in Art. 170 by 1 + e, if e be the measure of the elasticity of the string. This

gives T= ^mv{l + e). The motion of a reel acted on by this known impulsive force

is easily found. Resolving vertically we find m{v' -v)= -^mv {1 + e). Taking

moments about the centre of gravity, mkW = ^mva (1 + e), whence v' and w' may
be found.

Ex. A uniform beam is balanced about a horizontal axis through its centre

of gravity, and a perfectly elastic ball is let fall from a height h on one extremity

;

determine the motions of the beam and the ball.

Result. Let M, m be the masses of the beam and the ball, 2a the length of the

beam, F, V the velocities of the ball at the moments just before and after impact,

w' the angular velocity of the beam. Then ta =—r^—„ , , V'=V . ^

.

^ •' (M+ Sm)a 3m +M
181. Rough bodies. Hitherto we have only considered the

impulsive action normal to the common surface of the two bodies.
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Tf the bodies are rough an impulsive friction will clearly be called

into play. Since an impulse is only the integral of a very great

force acting for a very short time, we might suppose that impulsive

friction obeys the laws of ordinary friction. But these laws are

founded on experiment, and we cannot be sure that they are

correct in the extreme case in which the forces are very great.

This point M. Morin undertook to determine by experiment at

the express request of Poisson. He found that the frictional

impulse between two bodies which strike and slide bore to the

normal impulse the same ratio as in ordinary friction, and that

this ratio was independent of the relative velocity of the striking

bodies. M. Morin's experiment is described in his Notions Fonda-
mentales de Mecanique, 1855, and a short account is given in the

following article.

182. A box AB which can be loaded with shot so as to be of

any proposed weight has two vertical beams AC, BD erected on

its lid ; CD is joined by a cross-piece and supports a weight
equal to mg attached to it by a string. The weight of the loaded

box is Mg. A string ^^i^ passes horizontally from the box over

a smooth pulley E and supports a weight at F equal to {M -{in)gfi.

The box can slide on a horizontal plane and therefore (the coefficient

of friction being /x) having been once set in motion, it moves
in a straight line with a uniform velocity which we will call V,

Suddenly the string supporting mg is cut, and this weight falls

into the box and immediately becomes fixed to the box. There
clearly is an impulsive friction called into play between the box
and the horizontal plane. If the velocity of the box immediately
after the impulse be again equal to V, the coefficient of impulsive

friction is equal to that of finite friction.

The argument may be made evident as follows. Let t be the

time of the fall. When the weight strikes the box, it has a hori-

zontal velocity equal to V and a vertical velocity equal to gt. The
box itself has a horizontal velocity V+ ft, where

/=
^img

Let F and R be the horizontal and vertical components of the
impulse between the box and the horizontal plane. There will

be an impulse between the falling weight and the box and an
impulsive tension in the string AFF; by means of these the

momenta generated by the external blows F and R are spread
over the whole system. Let V be the common velocity of the

whole system just after the impulses F and R are completed.

This velocity V' is found by experiment to be equal to V. Re-
solving horizontally and vertically as in Art. 168, we have

[M-\-m + (M + m)fi} V - [M + (M -\-m) fjL\{V+ft)-mV:=^-F,
mgt = R.
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Putting F'= Fand substituting for/, we find that F=/jlR.

We may notice (though it is not necessary to the argument) that the resultant

impulse between the box and the falling weight is vertical because the horizontal

component of the velocity of the weight is V both before and after the impulse.

183. Let us generalize the theory of impact explained in Art.

179. Let two bodies of any form impinge on each other at some
point A, and let the changes of shape and structure be neglected

as before. The relative tangential and normal velocities of the
points of contact of the two bodies when calculated by the rule in

Art. 137 are not zero. These are called the relative velocities of

sliding and compression. Thus two reactions will be called into

play, a normal force and a friction, the ratio of these two being /j,,

the coefficient of friction. As the impact proceeds the relative

normal velocity gets destroyed, and is zero at the moment of

greatest compression. Let R be the whole momentum transferred

normally from one body to the other in this very short time. This
force R is an unknown reaction, to determine which we have the

geometrical condition that just after impact the normal velocities

of the points in contact are equal. This condition must be ex-

pressed in the manner explained in Art. 137.

The relative sliding velocity at A is also diminished. If it

vanishes before the moment of greatest compression, then during
the rest of the impact there is called into play only so much friction

and in such a direction, as is necessary (if any be necessary) to

prevent the points in contact at A from sliding, provided that

this amount is less than the limiting friction. Let F be the
whole momentum transferred tangentially from the one body to

the other. This reaction F is to be determined by the condition

that just after impact the tangential velocities of the points

in contact are equal. If, however, the sliding motion does not
vanish before the moment of greatest compression, the whole
of the friction is called into play in the direction opposite to that

of relative sliding, and we have F = fjuR. Generally we may dis-

tinguish these two cases in the following manner. In the first

case it is necessary that the values of F and R found by solving

the equations of motion should be such that F< fxR. In the
second case, the final relative velocity of the points in contact at

A must be in the same direction after impact as before. These
are however not sufficient conditions, for it is possible that, in the

more complicated cases, the sliding may change, or tend to change,
its direction during the impact. See Art. 187.

184. If the impinging bodies be elastic, there may be both
a normal reaction and a friction during the period of restitution.

Sometimes we shall have to consider this stage of the motion as a
separate problem. The motions of the bodies at the moment of

greatest compression having been determined, these are to be
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regarded as the initial conditions of a new state of motion under
different impulses. The friction called into play during restitu-

tion must follow the same laws as that during compression. Just

as before, two cases will present themselves ; there will be sliding

either during the whole period of restitution or during only a

portion of it. These cases' are to be treated in the manner already

explained.

185. There is one very important difference between the con-

ditions of compression and restitution. During the compreSvsion

the normal reaction is unknown. The motion of the body just

before compression is given, and we have a geometrical equation

expressing the fact that the relative normal velocity of the points

in contact is zero at the termination of the period of compression.

From this geometrical equation we deduce the force of compres-

sion. The motion of the body just before restitution is thus

found, but the motion just after is what we have to deter-

mine. For this we have no geometrical equation, but the normal
force of restitution bears a given ratio to the normal force of

compression, and is therefore known.

186. Historical Summary. The problem of the impact of two smooth inelastic

bodies is considered by Poisson in his TraitS de Mecanique, Seconde Edition, 1833.

The motion of each body just before impact being supposed given, he forms six

equations of motion for each body to determine the motion just after impact.

These contain thirteen unknown quantities, viz., the resolved velocities of the

centres of gravity of the bodies along three rectangular axes, the resolved angular

velocities of the bodies about the same axes, and, lastly, the mutual reaction of the

two bodies. Thus the equations are insufficient to determine the motion. A
thirteenth equation is then obtained from the principle that tlie impact terminates

at the moment of greatest compression, i.e. at the moment when the normal

velocities of the points of contact of the two bodies which impinge are equal.

When the bodies are elastic, Poisson divides the impact into two periods. The
first begins at the first contact of the bodies and terminates at the moment of

greatest compression. The second begins at the moment of greatest compression

and terminates when the bodies separate. The motion at the end of the first period

is found exactly as if the bodies were inelastic. The motion at the end of the

second period is found from the principle that the whole momentum communicated
by one body to the other during the second period bears a constant ratio to that

communicated during the first period of the impact. This ratio depends on the

elasticity of the two bodies and can be found only by experiments made on some
bodies of the same materials in simple cases of impact.

When the bodies are rough, and slide on each other during the impact, Poisson

remarks that there will also be a frictional impulse. This is to be found from the

principle (Art. 181) that the magnitude of the friction at each instant must bear a

constant ratio to the normal pressure and the direction must be opposite to that of

the relative motion of the points in contact. He applies this to the case of a sphere,

either inelastic or perfectly elastic, impinging on a rough plane, the sphere turn-

ing before the impact about a horizontal axis perpendicular to the direction of

motion of the centre of gravity. He points out that there are several cases to be

considered
; (1) when the sliding is the same in direction during the whole of the
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impact and does not vanish, (2) when the sliding vanishes during the impact and
remains zero, (3) when the sliding vanishes and changes sign. This third case,

however, contains an unknown quantity and his formulae therefore fail to determine

the motion. Poisson points out that the problem becomes very complicated if the

sphere have an initial rotation about an axis not perpendicular to the vertical plane

in which the centre of gravity moves. This case he does not attempt to solve, but

passes on to discuss at greater length the impact of smooth bodies.

M. Coriolis in his Jen de Billard (1835) considers the impact of two rough spheres

sliding on each other during the whole of the impact. He shows that if two rough

spheres impinge on each other the direction of sliding is the same throughout the

impact.

M. Ed. Phillips in the fourteenth volume of Liouville's Journal, 1849, considers

the problem of the impact of two rough inelastic bodies of any form when the

direction of the friction is not necessarily the same throughout the impact, assuming

that the sliding does not vanish during the impact. He divides the period of impact

into elementary portions and applies Poisson's rule for the magnitude and direction

of the friction to each elementary period. He points out how the solution of the

equations may be effected, and in particular discusses the case in which the two

bodies have their principal axes at the point of contact parallel each to each and

also each body has its centre of gravity on the common normal at the point of

contact. He deduces for this case two results, which will be given in the chapter

on Momentum.

M. Phillips does not examine in detail the impact of elastic bodies, though he

remarks that the period of impact must be divided into two portions which must be

considered separately. These however, he considers, do not present any further

peculiarities when the same suppositions are made.

The case in which the sliding vanishes and the friction becomes discontinuous,

does not appear to have been examined by him.

In this chapter we shall discuss the theory of impulses only so far as motion in

one plane is concerned. In the chapter on Momentum, the theory will be taken up

again and extended to bodies of any form in space of three dimensions.

187. General Problem of impact. Two bodies of any
forin impinge on each other in a

given manner. It is required to

find the motion just after impact.

The bodies are smooth or rough,

inelastic or elastic.

Let Q, 0' be the centres of

gravity of the two bodies, A the

point of contact. Let U, V be

the resolved velocities of G just

before impact, parallel respective-

ly to the tangent and normal at

A ; u, V the resolved velocities

at any time t after the commence-
ment of the impact, but before

its termination, so that t is in-

definitely small. Let II be the

angular velocity of the body,

whose centre of gravity is G,
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just before impact, a» the angular velocity after the interval t.

These are to be taken as positive when the rotation is like the

hands of a watch. Let M be the mass of the body, k its radius of

gyration about G. Let ON be a perpendicular from G on the

tangent at A, and let AN= x, NG — y. Let accented letters

denote corresponding quantities for the other body.

188. Let the bodies be inelastic and so rough that at the

termination of the impact the relative velocity of sliding and the

relative velocity of compression are both zero (see Art. 156). In

this case, taking t to be equal to the whole duration of the impact,

the letters u, v, co, u\ v', w will refer to the motion just after

impact. We then have, by Art. 137,

u — yod — u' — y'w = )

V -{• X(D — V' — Xdi = OJ
'

Resolving parallel to the tangent and normal at the point of con-

tact we have, by Art. 169,

M(u-U) + M'(u-U') = 0]

M(v-V) + M\v' -r) = o\

and by taking moments for each body about the point of contact

AIk'(ay-n) + M{u- U)y-M(v-V)x = 0]

M'k'' (« - O') - M' (u - U') y' - M' {v - V) x = Oj

These six equations are sufficient to determine the motion just

after impact.

189. If the bodies Sive perfectly smooth and inelastic, the first

of these six equations does not hold, and instead of the third we
have the two equations

u-U=0, u-U'^0,
obtained by resolving parallel to the tangent for each body

separately.

190. If the bodies are smooth and elastic we must introduce

the normal reaction into the equations. We write down the equa-

tions (1) and (2) as given below in Art. 191, except that ^=0.
Then equation (4) gives the velocity G of compression at any
instant of the impact. Putting (7 = 0, w^e have, by equation (6),

the value of R up to the moment of greatest compression, viz.

Ji = Co/a'. Multiplying this by 1 -f e we have, by Art. 179, the com-
plete value of R for the whole impact. Substituting this value of

R in equations (1) and (2), we find the values of ^, v, co, u', v\ w

.

191. Next, let the bodies be imperfectly rough and elastic. In
this case, as explained in Art. 158, the friction which can be
called into play is limited in amount. The results obtained in

Art. 188 will not apply to the case in which this limited amount of

friction is insufficient to reduce the relative sliding to zero. To



156 MOTION IN TWO DIMENSIONS. [CHAP. IV.

determine this, we must introduce the frictional and rormal im-
pulses into the equations.

Let jR be the whole momentum communicated to the body M
in the time t of the impact by the normal pressure, and let F be
the momentum communicated by the frictional pressure. We
shall suppose these to act on the body whose mass is M in the
directions N'G, NA respectively. Then they must be supposed to

act in the opposite directions on the body whose mass is M'.

Since R represents the whole momentum communicated to

the body M in the direction of the normal, the momentum com-
municated in the time dt is dR. As the bodies can only push
against each other, dR must be positive, and, by Art. 136, when
dR vanishes, the bodies separate. Thus the magnitude of R may
be taken to measure the progress of the impact. It is zero at the
beginning, gradually increases throughout, and is a maximum at

the termination of the impact. It will be found more convenient
to choose R rather than the time t as the independent variable.

The dynamical equations are by Art. 169

M{u-U)=--F \

M{v-V) = R (1),

Mk- {(o-n) = Fy + Ro)]

M'{u'-U') = F \

M'{v'-V')^-R \ (2).

M'k''{ay'-a')=Fy'-Rx]

The relative velocity of sliding is by Art. 137

S = u-yco — u' — y'w (8),

and the relative velocity of compression is by the same article

C —v +d?V — V — xw (4).

Substituting in these equations from the dynamical equations

we find S = So-aF-bR (5),

C=Co-bF-aR (6),

where So= U-yQ.- U' -y'D.' (7),

G,= V'+x'n'-V-xn (8),

""' m^W^mF'^WF^ ^^^'

"^ ~M'^W"' M^'^Mll^ ^^^^'

Mk'' M'k''
^^^-
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These may be called the constants of the impact. The first

two, So, Go represent the initial velocities of sliding and com-
pression. These we shall consider to be positive ; so that the

body M is sliding over the body M' at the beginning of the com-

pression. The other three constants a, a', b are independent of

the initial motion of the striking bodies. The constants a and a
are essentially positive, while b may have either sign. It will be

found useful to notice that aa' > b\

192. Iioss of Energy. By treating the equations (1) and (2) in exactly the

same manner as those in Art. 172, we find that the gain of kinetic energy due

to the impact is - FSo-RCo + h{aF^ + 2bFR + a'R^) (1),

where S^, Cq, a, b, a' stand for the quantities given in equations (7) to (11). By
multiplying (5) and (6) by F and R respectively we obtain

aF^ + 2bFR + a'R^= F{SQ-S)+R{Co-C).
The loss of kinetic energy is therefore

^^F{So + S) + iR{Co + C) (2).

Here F, R are the whole tangential and normal forces called into play, as explained

in the following articles. Also Sq, Cq are the tangential and normal relative

velocities of the points of contact just before impact and S, C the corresponding

velocities just after impact. This result includes in a convenient form all those

discussed in Art. 173.

The expression (1) gives the loss of energy in terms of the relative velocities

before impact and of the forces. We may eliminate the forces and express the loss

of energy solely in terms of the relative velocities before and after impact. The

result is
1 {aCo^ - 26^0 Cq+ a'So") -{aC^- 2bSC + a'S^)

2 aa' - b^

L

193. The Representative Point. It often happens that

6 = 0, and in this case the discussion of the equations is very

much simplified. But certainly in the general case, and even in

the simple case when 6 = 0, it is found more easy to follow the

changes in the forces if we adopt a graphical method.

The point which we have to consider is this. As R proceeds from

zero to its final maximum value by equal continued increments dR,
F proceeds also from zero by continued increments dF, which may
not always be of the same sign and which are governed by a dis-

continuous law, viz. either dF= ± /judR, or dF is just sufficient to

prevent relative motion at the point of contact, as explained in

Art. 158. We want therefore some rule to discover the value of F.

To determine the actual changes which occur in the frictional

impulse as the impact proceeds, let us draw two lengths AR, AF
along the normal and tangent at A in the directions NG, AN re-

spectively, to represent the magnitudes of R and F at any moment
of the impact. Then, if we consider AR and AF to be the co-

ordinates of a point P referred to J.i^, ^i^ as axes of R and F, the

changes in the position of P will indicate to the eye the changes
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that take place in the forces during the progress of the impact.

At the beginning of the impact the forces R and F are zero,

the representative point P is therefore situated at the origin A.
As the impact proceeds the force R continually increases, hence
the abscissa AR of P will also continually increase, i.e. the motion
of the representative point resolved parallel to the axis of R
will be always in the positive direction of the axis of R. The
ordinate P of P is measured in the direction opposite to that

in which the friction acts on the body M ; it follows that the

motion of the representative point resolved parallel to the axis

of F will indicate to the eye the direction in which the body M
is sliding. This may sometimes be in one direction during the

impact and sometimes in the other.

It will be convenient to trace the two loci determined hy S = 0,

G = 0. By reference to (5) and (6) we see that they are both
straight lines. These we shall call the straight lines of no sliding

and of greatest compression. To trace them, we must find their

intercepts on the axes of F and R. Take

AG = ^, AS = ^, AC' = ^, AS' = ~\
a a

then SS\ CC will be these straight lines. Since a and a are

necessarily positive, while b has any sign, we see that the inter-

cepts on the axes of P and R respectively are positive, while their

intercepts on the axes of R and P must have the same sign.

Since aa' > ¥, the acute angle made by the line of no sliding with

the axis of P is greater than that made by the line of greatest

compression, i.e. the former line is steeper to the axis of P than
the latter. It easily follows that the two straight lines cannot
intersect in the quadrant contained by RA produced and FA
produced.

194. In the beginning of the impact the bodies slide over

each other, hence, as explained in Art. 158, the whole limiting

friction is called into play. The point P therefore moves along

a straight line AL, defined by the equation F= /jlR, where fi is

the coefiicient of friction. The friction continues to be limiting

until P reaches the straight line SS\ If Po be the abscissa of

Sf

this point we find Rq = ^ , . This gives the whole normal

blow, from the beginning of the impact, until friction can change
from sliding to rolling. If Rq is negative, the straight lines AL
and SS' do not intersect on the positive side of the axis of P.

In this case the friction is limiting throughout the impact.

If Po is positive the representative point P reaches SS\ After

this only so much friction is called into play as suffices to

prevent sliding, provided that this amount is less than the limiting

friction. If the acute angle which SS' makes with the axis of ii
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is less than tan"^ ^, the friction dF necessary to prevent sliding is

less than the limiting friction iidR. Hence P must travel along

88' in such a direction that the abscissa R continues to increase

positively. In this case the friction does not again become limiting

during the impact.

But if the acute angle v^hich 88' makes with the axis of R
is greater than tan~^ /x, the ratio of dF to dR is numerically

greater than yLt, and more friction is necessary to prevent sliding

than can be called into play. The friction therefore continues

to be limiting, and P, after reaching 88', must travel along a

straight line, making the same angle with the axis of R that AL
does. This straight line must lie on the opposite side of 88'

because the acute angle which 88' makes with AR is greater than

the angle LAR. Also since the point P has crossed 88' the

direction of relative sliding and therefore the direction of friction

is changed. In this case it is clear that the friction continues

limiting throughout the impact.

An example of each of these three cases is given in the triple

diagram. The figures differ in the position of the line of no
sliding. In all the three figures the representative point travels

from A along a straight line AL such that the angle LAR is

equal to tan~^ //,. In fig. (1) the line of no sliding, viz. 88' , makes
so large an angle with AR that AL does not intersect it in the

positive quadrant. The friction therefore retains its limiting

value throughout the impact. In the other two figures AL and
88' intersect in some point Q. In fig. (2) the angle 88'A is less

than the angle LAR, the representative point therefore after

reaching Q travels along Q8'. In fig. (3) the angle 88'A is greater

than the angle LAR, the representative point therefore after

reaching Q travels along a straight line QB on the other side

of 88' such that the angle QBA is equal to the angle QAR.

When P passes the straight line CC'^ compression ceases and
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restitution begins. But the passage is marked by no peculiarity

except this. If Ri be the abscissa of the point at which P crosses

Fig. 1.

CC, the whole impact, for experimental reasons, is supposed to

terminate when the abscissa of P is Eg = ^i (1 + ^), & being the

measure of the elasticity of the two bodies.

It is obvious that a great variety of cases may occur according

to the relative positions of the three straight lines AL, SS' and
CC. But in all cases the progress of the impact may be traced

by the method just explained, which may be briefly summed up
in the following rule. The representative point P travels along AL
until it meets SS'. It then proceeds either along 88', or along a
straight line making the same angle with the axis of P as AL does,

hut lying on the opposite side of 88'. The one along which it

proceeds is the steeper to the axis of F. It travels along this line in

such a direction as to make the abscissa R increase, and continues

to he in this straight line to the end of the impact. The complete

value ofR for the whole impact is found hy multiplying the ahscissa

of the point at which P crosses CC hy l-\- e. The complete value

of F is the corresponding ordinate of P. 8uhstituting these in the

dynamical equations (1) and (2), the motion just after impact may
he easily found.

If /So = 0, we have 8 = — aF— hP. In this case the line of no
sliding passes through the origin A. If the acute angle which
this straight line makes with the axis of R is less than tan""^ /x, i.e.

if hja is numerically less than fx, the representative point travels

along this straight line in such a direction that its abscissa R
continually increases. The friction is therefore less than its

limiting value throughout the impact.

If the acute angle which the line of no sliding makes with the

axis of R is greater than tan~^ fju, i.e. if hja is numerically greater

than fx, the representative point travels along a straight line AL
making with the axis of R an acute angle LAP equal to tan~^ jx.

This straight line lies on the positive or negative side of AR
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according as S is positive or negative. Since the numerical value

of b is greater than a/ju, and F=± /jlR, the term — bR governs the

sign of S, hence S has the opposite sign to b. It follows that the

straight line AL lies within the acute angle which the line of
no sliding makes with AR. Thus in fig. (1), AL is on the positive

side, in fig. (2) on the negative side of AR. As AL cannot again

meet the line of no sliding the friction has its limiting value

throughout the impact.

R

S'-
F

Fig. 1. Fig. 2.

The representative point continues its journey along either

SS' or AL, as the case may be, to the end of the impact. The
complete value of jR for the whole impact is found by multiplying
the abscissa of the point at which P crosses GO' by 1 + e. The
complete value of F is the corresponding ordinate of P. Sub-
stituting these in the dynamical equations the motion just after

impact may be found.

195. If the bodies are smooth, the straight line AL coincides

with the axis of R. The representative point P travels along

the axis of R, and the complete value of R for the whole impact
is found by multiplying the abscissa of (7 by 1 + e.

If the bodies are perfectly rough (Art. 156), the straight line

AL coincides with the axis of F. The representative point P
travels along the axis of F until it arrives at the point S. It

then travels along the line of no sliding SS' until it reaches the

line CC of greatest compression. If the bodies are inelastic, the

coordinates Pj, F^, of this intersection are the values of R and F
required. Biit if the bodies are imperfectly elastic the representa-

tive point continues its journey along the line of no sliding. The
complete value of R for the whole impact is then R^ = Pj (1 4- e),

and the complete value of F may be found by substituting this

value for R in the equation of the line of no sliding.

196. It is not necessary that the friction should keep the

same direction during the impact. The friction must keep one

sign when P travels along AL. But when P reaches SS\ its

direction of motion changes, and the friction dF called into play

in the time dt may have the same sign as before or the opposite.

But it is clear that the friction can change sign only once during

R. D. 11
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the impact. If 6 = 0, the straight line SS' is perpendicular to the

axis of F, and in this case it is clear that the friction cannot

change sign.

It is possible that the friction may continue limiting through-

out the impact, so that the bodies slide on each other throughout.

The necessary conditions are that either the straight line SS'
must be less steep to the axis of F than AL, or the point P
must not reach the straight line SS' until its abscissa has be-

come greater than i?.2. The condition for the first case is that

h must be greater than /j.a. The abscissae of the intersections

of AL with SS' and CC are respectively Rq =

On

S.
and

R,=

afjL + b

The necessary conditions for the second case are
b/jb + a''

that Ri must be positive, and Rq either negative or positively

greater than i^i(l + e).

197. Ex. 1. Rebound of a baU. A spherical ball, moving without rotation on

a smooth horizontal plane, impinges tvith velocity V against a rough vertical wall

tchose coefficient of friction is fi. The line of motion of the centre of gravity before

incidence making an angle a with the normal to the wall, determine the motion just

after impact.

This is the general problem of the motion of a spherical ball projected without

initial rotation against any rough elastic plane. Thus it applies to a billiard ball

impinging against a cushion, or to a "fives" ball projected against a wall, or to

a cricket ball rebounding from the ground. When the ball has any initial rotation

the problem is, in general, a problem in three dimensions and will be discussed

further on.

In the figure the plane of the paper represents a horizontal plane drawn

through the centre of the ball. The vertical plane against which the ball impinges

intersects the plane of the paper in AS.

Let u, V be the velocities of the centre at any time t after the commencement

of the impact resolved along and perpendicular to the wall. Let w be the angular

velocity at the same instant. Let jR and F be the normal and frictional blows from

the beginning of the impact up to that instant. Let M be the mass and r the

radius of the sphere. Then we have

M{u-Vsina)= -F, M{v + Vcos a) = R, Mk^o}= Fr.
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r^+k^ F
The velocity of sliding of the point of contact is /Sf=M-rw= Fsina j-^— ^ .

The velocity of compression of the point of contact is C= -v= Fcos « - jjv

•

Measure a length AS in the figure to represent -^—pMFsina, and a length

^C to represent MFcosa, along the axes of F and R respectively. Then SB and

CB drawn parallel to the directions of R and F will be the lines of no sliding and

of greatest compression. Also we see that tan JS^ C= -^—Tg tan a = ^ tan a. In the

beginning of the impact the sphere slides on the wall, hence the representative

point P, whose coordinates are R and F, begins to describe the straight line F=ixR.

If /*> f tan a, this straight line cuts the line of no sliding SB in some point L
before it cuts the line of greatest compression. Hence the representative point

describes the broken line ALB. At the moment of greatest compression, F and R
sxe the coordinates of B.

Therefore F=^MVQina, R = MVcoQa.

These results are independent of /i because we see from the figure that more

"than enough friction could be called into play to destroy the sliding motion.

If ju < f tan a, the straight line F=fiR cuts the line of greatest compression CB
in some point H before it cuts the line of no sliding. The friction is therefore

insufficient to destroy the sliding. At the moment of greatest compression F and R

are the coordinates of H, F=iJ.MVcos o, R=MV cos a.

If the sphere be inelastic we have only to substitute these values of F and R in the

equations of motion to find the values of u, v, w just after impact.

If the sphere be imperfectly elastic with a coefficient of elasticity e, the repre-

sentative point P will continue its progress until its abscissa is given by

R=MV cos a {I + e).

Take AC to represent this value of R, and draw CB' parallel to CB. Then, as

2 tan a
I)efore, we see that tan B'AC= ^ -z .

7 1+e

If yu.>~ , the representative point describes some broken line like ALB',

and cuts SB' before it cuts B'C. In this case F and R are the coordinates of B',

F=fMVsma, R =MV cos a (l + e).

U fM< ~
, the representative point describes some unbroken line like AHK,

and cuts B'C before it cuts SB'. In this case F and R are the coordinates of K,

F=iJ,MVcosa{l + e), R=MV cos a {l + e).

Let /3 be the angle the direction of motion of the centre of the ball makes with

the normal to the wall after impact, then tan^^w/i;. We see therefore that

» ^ ^ 5 tan a tana- u (l + e) ,. .
^^ i ^i. 2 tan a

tan p= -
, or= ^--^ — , accordmg as fi is greater or less than -

.

Ex. 2. An imperfectly elastic cricket ball is projected so that it is rotating

with an angular velocity ii about a horizontal axis perpendicular to the plane of

i -.the parabola described by its centre. Just before it strikes the ground the velocity

11—2
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of the centre is V, and the direction of motion makes an angle a with the normal.

Show that the angle of rebound j8 is given by either

5 2 ril
e tan 6= ^ tan a + - -^ , or = tan a- a(l + e),

^ 1 7 F cos a
"^^

jaccording as fi is greater or less than - jtan a ~ ~
| .

Ex. 3. A sphere of radius a rolls on the ground with velocity U and impinges

normally against a vertical wall whose coefificients of friction and elasticity are ft

and e. If /a (1 + e) > f the sliding will terminate before the end of the period of

impact, and the sphere will therefore rebound with a horizontal velocity - TJe and

a vertical velocity f U [this follows by taking moments about the point of contact].

The centre of the sphere will then describe a parabola and the sphere will after-

wards impinge on the ground. If the ground be inelastic and have a coefficient of

friction /*' < e + y the sliding will not terminate before the end of the impact. At

the end of the impact the centre of the sphere has a velocity - U {e-^/x') and the

angular velocity is (2 - Bfi') Ujla. The friction continues to act as a finite force so

that the sphere finally rolls on the ground with a uniform velocity -^U {e- ^*-).

Ex. 4. A thin uniform hemispherical shell of radius a with its base vertical is

rotating with an angular velocity fi about a horizontal axis through its centre of

gravity parallel to the base. It is placed with a point on its base in contact with a

fixed rough horizontal plane. Prove that if the coefficient of elasticity is equal to

e and the coefficient of friction is greater than 2, the point of contact with the plane

begins after the impact to move vertically with a velocity -^aeil.

198. Ex. 1, Show that the representative point P as it travels in the manner
described in the text must cross the line of greatest compression, and that the

abscissa R of the point at which it crosses this straight line must be positive.

Ex. 2. Show that the conic whose equation referred to the axes of R and F is.

aF'^ + 2bFR + a'R^=e, where e is some constant, is an ellipse, and that the straight

lines of no sliding and greatest compression are parallel to the conjugates of the

axes of F and R respectively. Show also that the intersection of the straight

lines of no sliding and greatest compression must lie in that angle formed by the

conjugate diameters which contains or is contained by the first quadrant.

Ex. 3. Two bodies, each turning about a fixed point, impinge on each other,,

find the motion just after impact.

Let G, G', in the figure of Art. 187, be taken as the fixed points. Taking

moments about the fixed points, the results will be nearly the same as those given

in the case considered in the text.

Initial Motions.

199. Breakage of a support. Let a system of bodies be in

equilibrium and let one of the supports suddenly give way. It is

required to find the initial motions of the several bodies and the

initial values of the reactions which exist between them.

The problem of finding the initial motion of a dynamical

system is the same as that of expanding the coordinates of the

moving particles in powers of the time t. Let {x, y, 6) be the

coordinates of any body of the system. For the sake of brevity
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let the suffix zero denote initial values. Thus ^o denotes the
initial value of x. By Taylor's theorem we have

f" ... f
^ = a-|-a7oj2 + ^o|3 + (1):

the term i^o is omitted because we suppose the system to start

from rest.

Firstly, let only the initial values of the reactions he required.

The dynamical equations contain the coordinates, their second
differential coefficients with regard to t, and the unknown
reactions. There are as many geometrical equations as re-

actions. From these we have to eliminate the second differential

coefficients and find the reactions. The process, which is really

the same as the first method of solution described in Art. 135,
is as follows.

Write down the geometrical equations, differentiate each twice

and then simplify the results by substituting for the coordinates

their initial values. Thus, if we use Cartesian coordinates, let

</> {x, y, 6) = be any geometrical relation, we have since Xq = 0,

2/0 = 0, ^0 = 0, dcl> d4> d<f>. _

The process of differentiating the equations may sometimes
be much simplified when the origin has been so chosen that the

initial values of some at least of the coordinates are zero. We
may then simplify the equations by neglecting the squares and
products of all such coordinates. For if we have a term x^, its

second differential coefficient is 2 {xx + x^), and if the initial value
of X is zero, this vanishes.

The geometrical equations must be obtained by supposing the

bodies to have their displaced positions, because we require to

differentiate them. But this is not the case with the dynamical
equations. These we may write down on the supposition that

each body is in its initial position. These equations may be
obtained according to the rules given in Art. 135. The forms
there given for the effective forces admit in this problem of some
simplifications. Thus, since ro = 0, </)o

= 0, the accelerations along
and perpendicular to the radius vector take the simple forms ro

and r^o- So again the acceleration v^/p along the normal vanishes.

If, for example, we know the initial direction of motion of the

centre of gravity of any one of the bodies, we may conveniently

resolve along the normal to the path. This will supply an equation

which contains only the impressed forces and such tensions or re-

actions as may act on the body. If there be only one reaction,

this equation will suffice to determine its initial value.
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The rule may be shortly stated thus. Write down the geome-

trical equations of the system in its general position. Differentiate

each twice and then simplify the results by substituting for the co-

ordinates their initial values. Write dovm the dynamical equations

of the system supposed to be in its initial position. Eliminate the

second differential coefficients and we shall have sufficient equations

to fijud the initial values of the reactions.

We may also deduce from the equations the values of ^o, Vo, 'Oo>

and thus by substituting in equation (1) we have found the initial

motion up to terms depending on t^.

200. Secondly, let the initial motion be required. As differential

coefficients of a high order sometimes present themselves in this

part of the problem it will be more convenient to use accents

instead of dots to represent the differential coefficients with regard

to the time. Thus 35 will be written x".

The number of terms of the series (1) which it may be necessary

to retain depends on the nature of the problem. Suppose the

radius of curvature of the path described by the centre of gravity

of one of the bodies to be required. We have

{x^-^y"'f
^ x'f-y'x"'

Putting li — x'y" — y'x" we have after differentiation

u' = x'y"'-y'x"\

"x"\u" = xy''' - y'x'-" + a^'y" - y

v:." = x'y" - yV + 2 {x'f - ?/V^).

Substituting in Taylor's Theorem and remembering that

<=0, 2/o'=0,

x'y" - y'x" = \ {x:'yr - x^y^') t' + i (a^oV " ^o^VO ^' + • • -

similarly (x^ + y"")^ = {x^'-' + ypf t^^ ....

If then the body start from rest, the radius of curvature is

zero. But if x^'y"' — x^"y^' = 0, the direction of the acceleration

is stationary for a moment. We then have

— u^Q yo -^0 yo ••

P

To find these differential coefficients we may proceed thus.

Differentiate each dynamical equation twice and then reduce it

to its initial form by writing for x, y, 6, &c. their initial values,

and for x, y', 6' zero. Differentiate each geometrical equation

four times and then reduce each to its initial form. We shall

thus have sufficient equations to determine Xq\ x^", x^"', &c.
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Rq, RJ, R^', &c., where R is any one of the unknown reactions.

It is often of advantage to eliminate the unknown reactions from
the equations before differentiation. We then have only the un-
known coefficients x^', x^'\ &c. entering into the equations.

These operations may in general be much abbreviated by some simple con-

siderations. Let a dynamical equation be of the form

where L, M, N, P are functions of x, y, 6 only. Differentiating twice and putting

Xq=0, 2/o'
= 0, ^o'= 0, we have

L:ro'^ + iH/Zo'" + Nd^'" + A {Lx^" + My^" + ^^^o" + ^) =

1 . ,1 d ,, d „ ,, d

If we write x = Xq + ^, y = yQ + V, <^<2- so that |, tj, &c. are small quantities it is easy

to see that all the terms in L, M, &g. which contain ^'^, r)'^, &c. disappear from the

final equation. When therefore we have to find x^^", y^l^, ^^'^ by differentiating the

dynamical equations, it is only necessary that the coefficients L, M, (&c. should he

correct to the first poicer of the small quantities.

In the same way if (.t, y, d)=Q he b. geometrical equation, we see that its

fourth differential coefficient reduces to

It is therefore only necessary that the geometrical equations should be correct to the

second power of the small quantities.

In the same way if we require the initial values of the sixth differential co-

efficients we must form the dynamical equations correct to the second order and the

geometrical equations to the third order.

We shall afterwards see that these initial differential coefficients may be more

easily deduced from Lagrange's equations.

If we know the direction of motion of one of the centres of

gravity under consideration, we can take the axis of i^ a tangent

to its path. We then have p = ^ , where x is of the second

order and y of the first order of small quantities. We may therefore

neglect the squares of x and the cubes of y. This will greatly

simplify the equations. If the body start from rest we have

Xq = 0, and if x^' = 0, we may then use the formula p = 3 -^ .

Xq

The corresponding formula for p in polar coordinates may be obtained in the

same way. We have when r^ {rfl'd^" - r^'" 6^") —

3(W + r;'2)t

201. Ex. 1. A circular disc is hung up by three equal strings attached to three

points at equal distances on its circumference, and fastened to a peg vertically over

the centre of the disc. One of these strings being cut, determine the initial tensions

of the other two.
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Let be the peg, AB the circle seen by an eye in its plane. Let OA be the

string which is cut, let C be the middle

point of the chord joining the points of

the circle to which the two other strings

are attached. Then the two tensions,

each equal to T, are throughout the

motion equivalent to a resultant tension

n R along CO. If 2a be the angle between

the two strings, we have R=:2Tcosa.

Let I be the length of 0(7, j3 the angle GOG, a the radius of the disc. Let {x, y)

be the coordinates of the displaced position of the centre of gravity with reference

to the origin 0, x being measured horizontally to the left and y vertically down-

wards. Let d be the angle which the displaced position of the disc makes with AB.

By drawing the disc in its displaced position it will be seen that the coordinates

of the displaced position of C are a; - Z sin /3 cos d and y - Z sin /3 sin d. Hence since

the length OC remains constant and equal to Z, we have

X- + y^ -2lsm ^ [x COB e + y smd) = l^ cos^^.

Since the initial tensions only are required, it is sufficient to differentiate this

twice. Since we may neglect the squares of small quantities, we may omit x'^, and

put cos^ = l, 8in^= ^. The process of differentiation will not then be very long,

for it is easy to see beforehand what terms will disappear when we equate the

differential coefficients (x, i/, 6) to zero, and put for {x, y, 6) their initial values

(0, I cos /3, 0). We get ?/o cos ^= sin /3 {xq + 1 cos ^Oq).

This equation may also be obtained by an artifice which is often useful. The
motion of G is made up of the motion of G and the motion of G relatively to G.

Since G begins to describe a circle from rest, its acceleration along GO is zero.

Again, the acceleration of G relatively to G when resolved along GO is GGd cos p.

The resolved acceleration of G is the sum of these two, but it is also equal to

I/q cos j3 - Xq sin /3. Hence the equation follows at once.

In this problem we require the dynamical equations only in their initial form.

These are hixq= Rq sin ^, miJQ= mg - R^cos ^, mk^dQ = R^l sin j8 cos /3,

where m is the mass of the body. Substituting in the geometrical equation we find

_ fc^cosjS
'>~'''^

•
k'^+ l^sin^^cos'^

'

The tension of any string, before the string OA was cut, may be found by the

rules of statics, and is clearly T^ = ^mg sec 7, where 7 is the angle AOG. Hence the

change of tension can be found.

Ex. 2. A number of uniform straight rods of the same weight and length,

freely jointed end to end, are supported in a horizontal straight line, with the

extreme end of the last rod fixed. If the supports are all removed at once, obtain

equations to determine the initial angular accelerations of the different rods and

prove that if a;„, w„+i, w„+2 are those of any three adjacent rods,

w„ + 4w„+i + a>„+2= 0- [Math. Tripos, 1903.

Let a?o , Wj . . . w,^ be the angular accelerations of the m + 1 rods, Uq, u^...Uy^ the

vertical accelerations of their centres, R^ , j

the rods. Since k^=a^l%, we have

iaw„= i?„+i + i?„, 4aw„+i = E„+2 + ^n+i' &c (1),

W„= -Rn+l--Rn + ^» Wn+l=-Rn+2-^n+l + fl'.
&e (2).
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and by geometry m„ + aa;,^ = u^+i - aw„+i

.

These give R^+^_ + 4R^+^ + R^= (3).

It immediately follows by substitution from (1) that Wn+2 + ^'^n+i + '«'»= ^•

To find the initial accelerations Wq ... u)^, we solve the equation of dififerences

(3) by putting R^-Ac'^. This gives 0^ + 4c + 1 = 0, hence if a, j3 are the roots of the

quadratic, R^= Aa''^ + B^. To find A, B vfe examine the geometrical conditions

at the ends. It is given that one end is fixed, hence UQ-~aci}Q= 0, .'. A -B= gj2j^.

If the other end is free, iJ^+^^O, .'. ^a^+i + B|8^+^ = 0. These two conditions

determine A and B.

The problem might also have been solved by Lagrange's method.

202. Ex. 1. Two strings of equal length have each an extremity tied to a

weight G and their other extremities tied to two points ^, B in the same horizontal

line. If one be cut the tension of the other will be instantaneously altered in the

ratio 1 : 2 cos^ ^ C. [St Pet. CoU.

Ex. 2. An elliptic lamina is supported with its plane vertical and transverse

axis horizontal by two weightless pins passing through the foci. If one pin be

released show that, if the eccentricity of the ellipse be 4 v'lO, the pressure on the

other pin is initially unaltered. [Coll. Exam.

Ex. 3. Three equal particles A, B, C repelling each other with any forces, are

tied together by three strings of unequal length, so as to form a triangle right-

angled at ^. If the string joining B and C be cut, prove that the instantaneous

changes of tension of the strings joining BA, CA will be ^TcoaB and ^TcosO
respectively, where B and C are the angles opposite the strings joining CA, AB
respectively, and T is the repulsive force between B and C.

Ex. 4. Two uniform equal rods, each of mass m, are placed in the form of

the letter Z on a smooth horizontal plane, the upper and lower extremities being

connected by equal strings ; show that, whichever string be cut, the tension of the

other is the same function of the inclination of the rods, and initially is f mgf sin a,

where a is the initial inclination of the rods. [St Pet. Coll.

Ex. 5. A horizontal rod of mass m and length 2a hangs by two parallel

strings of length 2a attached to its ends : an angular velocity w being suddenly

communicated to it about a vertical axis through its centre, show that the initial

increase of tension of either string equals ^maw'^, and that the rod rises through

a space a^u^jGg. [Coll. Exam.

Ex. 6. A particle is suspended by three equal strings of length a from three

points forming an equilateral triangle of side 2b in a horizontal plane. If one

string be cut the tension of each of the others will be instantaneously changed in

the ratio ^ 7 o"t^ •

'

[Coll. Exam.
2 (a^ -b^)

I Ex. 7. A sphere resting on a rough horizontal plane is divided into an infinite

i number of solid lunes and tied together again with a string ; the axis through which

! the plane faces of the lunes pass being vertical. Show that if the string be cut

' the pressure on the plane will be instantaneously diminished in the ratio 457r2:2048.

[Emm. Coll. 1871.

Ex. 8. A smooth sphere rests on a horizontal plane and an equal sphere is

supported on it, the line of centres making an angle
(f>
with the vertical

;
prove that

just after the supports are removed the ratio of the pressures on the plane and

between the spheres is 2 : cos 0. [Coll. Exam.
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Ex. 9. A small ring of mass p is strung on a rod, of mass m and length 2a,

capable of turning about one extremity as a fixed point. The system starts from

rest with the rod horizontal and the ring at a distance c from the fixed point. Show
that the polar coordinates of the ring referred to the fixed point are c + ro'^f'*/24 and

6>ot2/2, Find also 6^ , and prove that r^'^=
<76'o + 2c^V^, Thence find the initial radius

of curvature of the path of the particle. [May Exam. 1888.

Ex. 10. A solid hemisphere of mass M rests on a perfectly rough horizontal

plane and a particle of mass m is gently placed on it at a distance c from the

centre. Prove that the initial radius of curvature of the path described by the

particle is ^mc^jMk^, where k is the radius of gyration of the hemisphere about a

tangent at the vertex. [Math. Tripos, 1888.

Ex. 11. A garden roller is at rest on a horizontal plane, rough enough to

prevent sliding, the handle being so held that the plane through the axis of the

cylinder and the centre of gravity of the handle makes an angle a with the

horizon. Show that when the handle is let go the initial radius of curvature of

the path described by the centre of gravity is

c (sin^ a + n cos^ afjn where {n - 1) M {k"^ + aF) = ma-,

c is the distance of the centre of gravity of the handle from the axis of the

cylinder, m its mass, Mk^ the moment of inertia of the cylinder about its axis, and

a its radius. [Math. Tripos, 1894.

Ex. 12, A uniform rod of mass m and length 2a has masses equal to m
attached to its ends. A string, one end of which is attached to the middle point

of the rod, passes over a smooth pulley and sustains at its other end a weight 3m.

The system is in equilibrium, the rod being horizontal. The particle m falls off

from one end of the rod
;
prove that (1) the initial acceleration of the mass 3m

equals Iglll ; (2) the initial angular acceleration of the rod is IQgjVJa
; (3) the

radius of curvature of the initial path of the other end of the rod is 2a (11/18)''^.

[Coll. Exam. 1904.

Ex. 13. A uniform cube of edge 2a and mass M rests symmetrically on two

shelves, each of length 4a and mass fxM and is hinged to one shelf at the edge of

the cube, and the shelves are attached to smooth hinges at a distance 8a apart,

being supported in a horizontal position. If that shelf is released to which the

cube is hinged, prove that the initial pressure on the edge of the fixed shelf is

jfo (45 + 46ju.)
-,).
—

^rn—"— , and that the initial reaction at the hinge to which the cube is
45 + Ib/u

attached is inclined to the horizon at an angle tan-i 5/3. [Coll. Exam. 1904.

On Relative Motion or Moving Axes.

208. In many dynamical problems the relative motion of

the different bodies of the system is all that is required. In such
cases it will be an advantage if we can determine this without
finding the absolute motion of each body in space. Let us suppose
that the motion relative to some one body {A) is required. There
are then two cases to be considered, (1) when the body {A) has

a motion of translation only, and (2) when it has a motion of

rotation only. The case in which the body {A) has a motion both
of translation and rotation may be regarded as a combination of

these two cases. Let us consider them in order.
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204. The Fundamental Theorem. Let it be required to

find the motion of any dynamical system relative to some moving
point C. We may clearly reduce G to rest by applying to every

element of the system an acceleration equal and opposite to that

of G. It is also necessary to suppose that an initial velocity equal

and opposite to that of G has been applied to each element.

Let f be the acceleration of G at any time t. If every particle

711 of a body be acted on by the same accelerating force / parallel

to any given direction, it is clear that these are together equi-

valent to a force /Sm acting at the centre of gravity. Hence to

reduce any point C of a system to rest, it will be sufficient to

apply to the centre of gravity of each body in a direction opposite

to that of the acceleration of G a force measured by Mf^ where
M is the mass of the body and / the acceleration of G.

The point G may now be taken as the origin of coordinates.

We may also take moments about it as if it were a point fixed

in space.

Let us consider the equation of moments a little more minutely.

Let (r, 6) be the polar coordinates of any element of a body
whose mass is m referred to G as origin. The accelerations of the

particle are ~j^ -~ '^ \'Ji] ^^^ ~ ~Jtv^i' ^^^"^ ^^^ perpendicular

to the radius vector r. Taking moments about G we get

(
moment round G of the impressed forces

y ^ f ,^dd\ _ ]
plus the moment round G of the reversed

dt\ dtJ
]
effective forces of C supposed to act at the

I centre of gravity.

If the point G be fixed in the body and move with it, ddjdt
will be the same for every element of the body, and, as in Art. 88,

wehaveSm^^^r^^j=m^^.

205. From the general equation of moments about a moving
point G we learn that we may use the equation

day _ moment of forces about G
dt moment of inertia about G

in the following cases.

Firstly. If the point G be fixed both in the body and in space
;

or if the point G, being fixed in the body, move in space with
uniform velocity ; for the acceleration of G is zero.

Secondly. If the point G be the centre of gravity ; for in that

case, though the acceleration of G is not zero, yet the moment
vanishes.
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Thirdly. If the point G be the instantaneous centre of rota-

tion, and the motion be a small oscillation or an initial motion
which starts from rest. At the time t the body is turning about 0,

and the velocity of G- is therefore zero. At the time t + dt, the

body is turning about some point C" very near to G. Let GG' = da,

then the velocity of G is wda. Hence in the time dt the velocity

of G has increased from zero to coda, therefore its acceleration is

(oda/dt. To obtain the accurate equation of moments about G we
must apply the effective force Sm. coda/dt in the reversed direction

at the centre of gravity. But in small oscillations co and da/dt

are both small quantities whose squares and products are to be

neglected, and in an initial motion w is zero. Hence the moment
of this force must be neglected, and the equation of motion will

be the same as if G had been a fixed point.

It is to be observed that we may take moments about any
point very near to the instantaneous centre of rotation, but it will

usually be more convenient to take moments about the centre in

its disturbed position. If there be any unknown reactions at the

centre of rotation, their moments will then be zero.

206. If the accurate equation of njoments about the instan-

taneous centre be required, we may proceed thus. Let L be the

moment of the impressed forces about the instantaneous centre,

G the centre of gravity, r the distance between the centre of

gravity and the instantaneous centre G, M the mass of the body

;

then the moment of the impressed forces and the reversed

effective forces about (7 is L — Mw -tt . r cos GG'G.
dt

If k be the radius of gyration about the centre of gravity, the

d(o T ,. dr

writing for cos GG'G its value drjda.

207. Impulsive forces. The argument of Art. 204 may
evidently be also applied to impulsive forces. We may thus obtain

very simply a solution of the problem considered in Art. 171.

A body is moving in any manner when suddenly a point O in the body is con-

strained to move in some given manner, it is required to find the motion relative to 0.

To reduce to rest, we must apply at the centre of gravity G a momentum
equal to Mf, where / is the resultant of the reversed velocity of O after the change

and the velocity of before the change. If w, w' be the angular velocities of the

body before and after the change, and r = OG, we have by taking moments about 0,

(r2 + A;2) [u)' -u}) = moment of / about 0.

Now the moment about of a velocity at G is equal and opposite to the moment

about G of the same velocity applied at 0. Hence if L, L' be the moments about

equation of motion becomes M (k^ + r^) j, =L — Meoi
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G of the velocity of just before and just after the change, and k be the radius

L' - L
I
of gyration about the centre of gravity, we have w' - w =

^^
.

tC -\-T

208. Ex. Two heavy particles xohose masses are m and m' are connected by an

I
inextensible string, ivhich is laid over the vertex of a double inclined plane whose

I mass is M\ and which is capable of moving freely on a smooth horizontal plane.

i Find the force which must act on the loedge that the system may be in a state of

relative equilibrium.

Here it will be convenient to reduce the wedge to rest by applying to every

particle an acceleration/ equal and opposite to that of the wedge. Supposing this

done the whole system is in equilibrium. If F be the required force, we have by

resolving horizontally {M+ m-\-m')f—F.

Let a, a' be the inclinations of the sides of the wedge to the horizontal. The
particle m is acted on by mg vertically and mf horizontally. Hence the tension

of the string is m (^ sin a+/cosa). By considering the particle m', we find the

tension to be also m' [g sin a' -/cos a'). Equating these two we have

^ m' sin a' -m sin a
f = -l ; q.m cos a + m cos a

Hence F is found. Since /, and therefore also the horizontal and vertical

accelerations of either particle, are constants, it follows that the path of either

particle in space is a parabola, whose axis is parallel to the direction of the resultant

acceleration of that particle.

209. A cylindrical cavity whose section is any oval curve and whose generating

lines are horizontal is made in a cubical mass which can slide freely on a smooth

horizontal plane. The surface of the cavity is perfectly rough and a sphere is placed

in. it at rest so that the vertical plane through the centres of gravity of the mass and
the sphere is perpendicular to the generating lines of the cylinder. A momentum B
/.s communicated to the cube by a bloiv in this vertical plane. Find the motion of the

sphere relatively to the cube and the least value of the blow that the sphere may not

leave the surface of the cavity.

Simultaneously with the blow B there will be an impulsive friction between the

cube and the sphere. Let M, m be the masses of the cube and sphere, a the radius

of the sphere, k its radius of gyration about a diameter. Let Vq be the initial

velocity of the cube, v^ that of the centre of the sphere relatively to the cube, w^ the

initial angular velocity. Then by resolving horizontally for the whole system, and
taking moments for the sphere alone about the point of contact, we have

m{v,+ V,)+MV,= B, aK+Fo)+Fa;o= (1),

and since there is no sliding i?o-aa)o= (2).

To find the subsequent motion, let [x, y) be the coordinates of the centre of the

sphere referred to rectangular axes attached to the cubical mass, x being horizontal

and y vertical, then, the equation to the cylindrical cavity being given, ?/ is a known
function olx. Let \}/ be the angle which the tangent to the cavity at the point of con-

tact of the sphere makes with the horizon, then tan \p= dyjdx. Let V be the velocity

of the cubical mass, then, by Art. 132, m {-^+v\ + MV=B (3).

If Tq be the initial vis viva and y^ the initial value of y, we have by the

equation of vis viva

%+A\{^\'+ k^A^MV^=T,-2mg(y-y,) ...(4),
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where w is the angular velocity of the sphere at the time t. If v be the velocity of

the centre of the sphere relatively to the cube, we have since there is no sliding

v = au. Eliminating F and w from these equations, we have

(^^;y.|,l.ta„^,)(l.^)-^-^( = 0.-2.. .(5),

where Cg = pr + ^^o (6).

{M + m) \M+{M + m)-4
a

This equation gives the motion of the sphere relatively to the cube.

210. Ex. 1. A spherical hollow of radius a is made in a cube of glass of

mass M, and a particle of mass m is placed within. The cube is then set in motion

on a smooth horizontal plane so that the particle just gets round the sphere,

remaining in contact with it. If the velocity of projection is V, prove that

V^= 5ag + 4agm.lM. [Coll. Exam.

Let us reduce the cube to rest. Let R be the normal pressure on the cube, 6 the

angle the radius of the particle makes with the downward vertical. The whole

horizontal effective force on the cube is Rsind. By Art. 204 we apply to every

particle an acceleration R sin dIM and an initial velocity equal and opposite to V.

The particle m is then acted on by a force mR sin dfM in a horizontal direction in

addition to the reaction R and the weight mg. The equations of motion of the

particle are

mad= - ^Rsin 6 cos 6 -mg sin 6 (1),

viad^=R +~Rsm^d-mgcosd (2).

Put ^= w and d = o}d(aldd and eliminate R, we find

du

'dd
2au -^{M +m sin^ 6) + lau^m sin ^ cos ^= - 2Mg sin d [M+m),

.: a<a^ {M+m sin^ d) = C + 2g [31+ m) cos 6.

To find C we notice that w=Vla when ^= 0.

.-. a^u^{M+msm^d)=MV2-2ga{M+m){l-cosd) (3).

This equation follows also from the principle of vis viva, as in Art. 209.

From (2) we obtain

R {M + m sin^ e) =Mm {aoi^ + g cos d) (4).

In order that the particle may not leave the surface of the hollow and fall inside, it

is necessary that R should not be negative. Hence, when the particle just goes

round R must vanish at the point P where R is a minimum. It follows that both

R and dRjdd must vanish at P. Differentiating (4) as it stands, we have

adu)^Id6= g sin 6. au}^=-gcosd .'. (5).

Differentiate (3) as it stands and substitute these values of ur and dui-jdd. After

a slight reduction, we find

(i¥+ msin2^)sin^ = (6).

This equation gives d= ir, showing that the point P is at the highest point of the

hollow. It follows from (3) that the particle will just not leave the cube if F^ has

the value given in the enunciation.
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In order that the particle may go all round and not oscillate it is also necessary

that the value of w^ given by (3) should not vanish. This clearly cannot happen

when V^ has the given value.

Ex. 2. A perfectly rough ball is placed within a hollow cylindrical garden-roller

at its lowest point, and the roller is then drawn along a level walk with a uniform

velocity V. Show that the ball will roll quite round the interior of the roller, if

F2 be > -Vf/ {b-a), a being the radius of the ball, and b that of the roller.

211. Moving Axes. Next, let us consider the case in which

we wish to refer the motion to two straight lines Of, Or} at right

angles, turning round a fixed origin with angular velocity o).

Let Ooo, Oy be any fixed axes at right angles and let the

angle xO^ = 6. Let f = OM, rj =PM be the coordinates of any
point P. Let u, v be the resolved velocities and X, Y the resolved

accelerations of the point P in the directions Of, Or}.

It is evident that the motion of P is made up of the motions

of the two points M, iV

by simple addition. The
resolved parts of the

velocity of M are d^/dt

and fft) along and per-

pendicular to OM. The
resolved parts of the ve-

locity of N are in the

same way dy/dt and rjco

along and perpendicular

to ON. By adding these with their proper signs we have

cZf dr}
^ f.

Since acceleration is the rate of increase of velocity just as

velocity is the rate of increase of space, we obtain the correspond-

ing formulae for X, Y by writing u, v for x, y. We thus have

Z = du
vco,

dv
-\-U(0.

dt
'

dt

In the same way by adding the accelerations of M and X we

have

d^x d^ii
By using these formulae instead of -77^ and ^ we may refer

dP

)
the motion to the moving axes Of, Or}.
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212. Ex. 1. Let the axes 0^, Orj be oblique and make an angle a with each

other, prove that, if the velocity in space be represented by two components m, v

parallel to the axes,

w= I - w| cot a — 007) cosec a, r = 17 + ojt; cot a+ u^ cosec a.

In this case PM is parallel to Otj. The velocities of M and N are the same as

before. Their resultant is, by the question, the same as the resultant of u and v.

By resolving in any two directions and equating the components we get two equa-

tions to find u and v. The best directions to resolve along are those perpendicular

to 0| and Orj, for then u is absent from one of the equations and v from the other.

Thus either m or v may be found separately when the other is not wanted.

Ex. 2. If the acceleration be represented by the components X and Y, prove

X=u- (i}U cot a- uv cosec a, Y= t + uv cot a + uu cosec a.

These may be obtained in the same way by resolving velocities and accelerations

perpendicular to 0| and Or).

Ex. 3. If u, V be the velocities of a point P referred to rectangular moving axes

rotating with an angular velocity a>, prove that the radius of curvature of the path

of P in space is given by (m'-* + v^)'/p= uv -vu+ {u^ + v^) w.

By taking fixed axes coincident for a moment with the moving axes the left side

of this equation is seen to be xy-xy. Substituting x= u, y= v, and for x = X,

y = Y their values given above the result follows at once.

The ordinary expression for p in polar coordinates follows from this by writing

u= r, v = rd, (i3 = d. If the independent variable is d we have ^= 1.

Ex. 4, In the case of initial motions which start from rest the formula for p in

the last example becomes nugatory. Show by proceeding as in Art. 200 that p=
unless iiv - ilv + 2 (w^ + 1)^) w= 0, and that in that case

(?t- + b"ylp= ^ (iiv -vu) + {iiii + vv)u)+ {u^ + v

where u, ii &c., v, v &c. represent their initial values, the suffix zero being omitted

for the sake of brevity.

213. Ex. A particle under the action of any forces moves on a smooth curve

which is constrained to turn with angular velocity w about a fixed axis. Find the

motion relative to the curve.

Let us suppose the motion to be in three dimensions. Take the axis of Z as

the fixed axis, and let the axes of ^, rj be fixed relatively to the curve. Let the

mass be the unit of mass. Then the equations of motion are

.(1),

where X, Y, Z are the resolved parts of the impressed accelerating forces in the

directions of the axes, R is the pressure on the curve, and (Z, m, w) the direction-

cosines of the direction of B,. Then since jR acts perpendicular to the curve

,df d-n dz ^l^ +m^ + n —= 0.
ds ds ds
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Suppose the moving curve to be projected orthogonally on the plane of |, 17,

let a be the arc of the projection, and v' = d<Tldt the resolved part of the velocity

parallel to the plane of projection. Then the equations may be written in the form

dh

The two terms 2wv' —- and - 2wu' -p are the resolved parts of a force 2iov' acting

iin a direction whose direction-cosines are l'= ~, m'= -^ , n' = 0.
da da

These satisfy the equation V ~ + m'^ + n' ^^ =0.
ds ds ds

Hence the force is perpendicular to the tangent to the curve, and also perpen-

dicular to the axis of rotation. Let R' be the resultant of the reaction R and of

the force 2a>i;'. Then R' also acts perpendicularly to the tangent, let {I", m", n") be

the direction-cosines of its direction.

The equations of motion therefore become

d'^'q ,^ „ du) . _,, ,,

5r^= ^+'^''- di^+^'" \ (2).

These are the equations of motion of a particle moving on a fixed curve, and
acted on in addition to the impressed forces by two extra forces, viz. (1) a force wV
tending directly from the axis, where r is the distance of the particle from the axis,

and (2) a force rdcvldt perpendicular to the plane containing the particle and the axis,

and tending opposite to the direction of rotation of the curve.

In any particular problem loe may therefore treat the curve as fixed. Thus
suppose the curve to be turning round the axis with uniform angular velocity.

rm 1 • 1 .1 . ,1 dv ^^dx ^^dy „dz „ dr
Then resolving along the tangent we have u-r=Z-^ +Y~ +Z— +u>h— ,

ds ds ds ds ds

where r is the distance of the particle from the axis. Let V be the initial value of

v, r^ that of r. Then v^- V^=2j{Xdx+Ydy + Zdz) +u}^{r^-rQ^).

Let Vq be the velocity the particle would have had under the action of the same

forces if the curve had been fixed. Then V(,2 - F^= 2j {Xdx + Ydy + Zdz)

.

Hence i;2- ^^^^(ra-V).

The pressure on the moving curve is not equal to the pressure on the fixed cwve.

Since V = dr]lda; m'= -d^/da, we see that the force 2(av' acts parallel to the normal

to the projected curve in the direction opposite to that due to the rotation w.

Hence, reversing this force, the pressure R on the moving curve is the resultant of

the pressure R' on the fixed curve and a pressure 2a)i;' acting perpendicularly both

to the curve and to the axis, the last pressure being taken positively in the direction

of motion of the curve.

R. D. 12
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Thus suppose the curve to be plane and revolving uniformly about an axis

perpendicular to its plane, and that there are no impressed forces. We have,

resolving along the normal, - = - w^r sin + R\

where is the angle which r makes with the tangent. If p be the perpendicular

drawn from the axis on the tangent, R= - + (J^p + luiv.

This example might also have been advantageously solved by cylindrical co-

ordinates. The fixed axis might be taken as axis of z and the projection on the

plane of xy referred to polar coordinates. This method of treating the question

is left to the student as an exercise.

do)
Ex. If w be variable, we have R = — + la^p + 2uv + -r,'>Jr^ - p^.

p (it

EXAMPLES*.

1. A circular hoop, whose weight is nw, is free to move on a smooth horizontal

plane. It carries on its circumference a small ring, weight w, the coefficient of

friction between the two being fi. Initially the hoop is at rest and the ring has an

angular velocity w about the centre of the hoop. Show that the ring will be at

rest on the hoop after a time {l + n)lfno.

2. A heavy circular wire has its plane vertical and its lowest point at a height

h above a horizontal plane. A small ring is projected along the wire from its

highest point with an angular velocity w about its centre at the instant that the wire

is let go. Show that, when the wire reaches the horizontal plane, the particle will

just have described n revolutions, where h(>r = 2Tr^n?g.

3. A wire in the form of a circle is capable of turning in a horizontal plane

about a fixed point in its circumference, and carries a bead P which is initially

projected from the opposite end A of the diameter through with a given

velocity V. Supposing the mass of the wire to be double that of the bead, show

that (16a'» + iah^ -r^),j>^= FV^ where r= OP, 0A=2a, <p= l POA . Art. 147.

4. Two equal uniform rods of length 2a, loosely jointed at one extremity, are

placed symmetrically upon a fixed smooth sphere of radius ^ a ^2, and raised into

a horizontal position so that the hinge is in contact with the sphere. If they be

allowed to descend under the action of gravity, show that, when they are first at

rest, they are inclined at an angle cos-^ J to the horizon, that the points of contact

with the sphere are the centres of oscillation of the rods relatively to the hinge,

that the pressure on the sphere at each point of contact equals one-fourth the

weight of either rod, and that there is no strain on the hinge. Art. 143.

5. A heavy uniform circular hoop of radius a and mass 2iram, which is com-

pletely broken at one point, rolls with its plane vertical with uniform angular

velocity w on a horizontal plane. Find the maximum and minimum values of the

bending moment at any point Q of the hoop, and prove that if w be so large that

the bending moment never vanishes, the greatest of these values will be

2ma^Bin'^d {aor^ + g), 2d being the angular distance of Q from the point of fracture.

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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6. Two straight equal and uniform rods are connected at their ends by two
strings of equal length a, so as to form a parallelogram. One rod is supported

at its centre by a fixed axis about which it can turn freely, this axis being perpen-

dicular to the plane of motion which is vertical. Show that the middle point of

the lower rod will oscillate in the same way as a simple pendulum of length a, and
that the angular motion of the rods is independent of this oscillation.

7. A fine string is attached to two points A, B in the same horizontal plane,

and carries a weight W at its middle point. A rod whose length is AB and weight

W, has a ring at either end, through which the string passes, and is let fall from
the position AB. Show that the string must be at least f AB, in order that the

weight may ever reach the rod. Art. 143.

Also if the system be in equilibrium, and the weight be slightly and vertically

displaced, the time of its small oscillations is 27r {ABjSg y/S)K

8. A fine thread is enclosed in a smooth circular tube which rotates freely

about a vertical diameter
;
prove that, in the position of relative equilibrium, the

inclination [d) to the vertical of the diameter through the centre of gravity of the

threivd will be given by the equation acj"^ cos ^ coh 6 = g, where w is the angular

velocity of the tube, a its radius, and 2a/3 the length of the thread. Explain the

case in which the value of ctw^ cos j3 lies between g and - g.

9. A smooth wire without inertia is bent into the form of a helix which is

capable of revolving about a vertical axis coinciding with a generating line of the

cylinder on which it is traced. A small heavy ring slides down the helix', starting

from a point in which this vertical axis meets the helix : prove that the angular

velocity of the helix will be a maximum when it has turned through an angle d

given by the equation cos"'^^ + tan^ a + ^ sin 2^ = 0, a being the inclination of the

helix to the horizon. [Regard the mass of the helix as zero.]

10. A thin circular cylinder of mass M and radius b rests on a perfectly rough

horizontal plane and inside it is placed a perfectly rough sphere of mass m and

radius a. If the system be disturbed in a plane perpendicular to the generators of

the cylinder, find the equations of finite motion and deduce two first integrals

of them, and if the motion be small, prove that the length of the equivalent

pendulum is UM {b - a)/(10i¥+ 7m). [Math. T. 1899.

11. On a plane inclined to the horizon at an angle /3 there moves a smooth

lamina whose centre of mass is G. At a point P of the lamina there is a slit

in which is mounted a small wheel, on a smooth axis fixed to the lamina in the line

PG. This wheel, whose dimensions and inertia are so small that they may be

neglected, can roll but cannot slide on the inclined plane. Show that the angular

velocity n of the lamina is constant and that the velocity of the centre of gravity is

compounded of (1) a uniform horizontal velocity g sin jS/2w, (2) a uniform motion

in a circle of radius g sin /3/4n"'' with angular velocity 2n, (3) a uniform motion in

circle of arbitrary radius with angular velocity n. [Math. T. 1902.

12. AB, BC are two equal uniform rods loosely jointed at B, and moving with

the same velocity in a direction perpendicular to their length ; if the end A be

Suddenly fixed, show that the initial angular velocity of AB is three times that

of BG. Also show that in the subsequent motion of the rods, the greatest angle

between them equals cos-^ f ; and that when they are next in a straight line, the

angular velocity of BC is nine times that of AB. Arts. 147, 169.

13. Three equal heavy uniform beams jointed together are laid in the same

ght line on a smooth table, and a given horizontal impulse is applied at the

daiddle point of the centre beam in a direction perpendicular to its length ; show

12—2



180 MOTION IN TWO DIMENSIONS. [CHAP. IV.

that the instantaneous impulse on each of the other beams is one-sixth of the

given impulse.

14. Three beams of like substance, joined together so as to form one beam,

are laid on a smooth horizontal table. The two extreme beams are equal in length,

and one of them receives a blow at its free extremity in a direction perpendicular

to its length. Determine the length of the middle beam in order that the greatest

possible angular velocity may be given to the other extreme beam.

Result. If m be the mass of either of the outer rods, /3m that of the inner rod,

P the momentum of the blow, w the angular velocity communicated to the third

rod, then inaio (o + o + "f)=^* Hence when w is a maximum j8= ^ V 3.

15. Two rough rods A, 5 are placed parallel to each other and in the same

horizontal plane. Another rough rod C is laid across them at right angles, its

centre of gravity being halfway between them. If C be raised through any angle a

and let fall, determine the conditions that it may oscillate, and show that if its

length be equal to twice the distance between A and B, the angle 6 through which
/1\2»

it will rise in the w*^ oscillation is given by the equation sin ^= ( -
j

.sin a.

16. The corners ^, J5 of a heavy rectangular lamina ABCI) are moveable

on two smooth fixed wires OA, OB, at right angles to each other in a vertical

plane, and equally inclined to the vertical. The lamina being in a position of

equilibrium with AB horizontal, find the velocity of the centre of gravity and

the angular velocity produced by an impulse applied along the lowest edge CB.

Having given that AB= 2a, BC = Aa, prove that AB will just rise to coincidence

with a wire, if the impulse is such as would impart to a mass equal to that of

the lamina the velocity whose square is %ga{2- J'2). Also find the impulsive

stresses at A and B. [Take moments about the instantaneous axis of rotation

for the impulse and then use the principle of vis viva.]

17. A ball spinning about a vertical axis moves on a smooth table and impinges

directly on a perfectly rough vertical cushion; show that the vis viva of the ball

is diminished in the ratio 10 + 14 tan- d : lO/e^+ 49 tan^ 0, where e is the elasticity of

the ball and d the angle of reflexion.

18. A rhombus is formed of four rigid uniform rods, each of length 2a, freely

jointed at their extremities. If the rhombus be laid on a smooth horizontal table

and a blow be applied at right angles to any one of the rods, the rhombus will begin

to move as a rigid body if the blow be applied at a point distant a (1 - cos a) from

an acute angle, where a is the acute angle.

19. A rectangle is formed of four uniform rods of lengths 2a and 2h respectively,

which are connected by hinges at their ends. The rectangle is revolving about its

centre on a smooth horizontal plane with an angular velocity n, when a point

in one of the sides of length 2a suddenly becomes fixed. Show that the angular

velocity of the sides of length 26 immediately becomes ^ jz n. Find also the

change in the angular velocity of the other sides and the impulsive action at the

point which becomes fixed.

20. Three equal uniform inelastic rods loosely jointed together are laid in

a straight line on a smooth horizontal table, and the two outer ones are set in

motion about the ends of the middle one with equal angular velocities (1) in the

same direction, and (2) in opposite directions. Prove that in the first case, when

the outer rods make the greatest angle with the direction of the middle one produced
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on each side, the common angular velocity of the three is fw, and that in the

second case after the impact of the two outer rods the triangle formed by them will

move with uniform velocity faw, 2a being the length of each rod. [In case (1) the

system is moving as a rigid body about the common centre of gravity G ; take

moments about G. In case (2) use Art. 132.]

21. An equilateral triangle formed of three equal heavy uniform rods of length

a hinged at their extremities is held in a vertical plane with one side AB horizontal

and the vertex C downwards. If after falling through any height, the middle

point of the upper rod be suddenly stopped, the impulsive strains on the upper

and lower hinges will be in the ratio of ^13 to 1. If the lower hinge would just

break if the system fell through a height 8a/v'3, prove that if the system fell through

a height 32a/^3 the lower rods would just swing through two right angles. [The

horizontal reaction at C and the reaction at A are in equilibrium with the reversed

effective force at the centre of gravity of A C. This last is vertical, and therefore

the horizontal components of the reactions are equal.]

22. A perfectly rough and rigid hoop rolling down an inclined plane comes in

contact with an obstacle in the shape of a spike. Show that if the radius of the

hoop=rr, height of spike above theplane= |?-and velocity just before impact = F, then

the condition that the hoop will surmount the spike is V^>^^-gr {1 - sin (a + ^ tt)},

a being the inclination of the plane to the horizon. Show that the hoop will not

remain in contact with the spike unless F2<Jg6.^r . sin (a +^7r), and if it does, the

hoop will leave the spike when the diameter through the point of contact makes

an angle with the horizon = sin~-^ <~^— + ^ sin ( a + 77 )[ • Art. 174, Ex. 1.

23. A flat circular disc of radius a is projected on a rough horizontal table,

which is such that the friction upon an element a is cV^nia, where V is the velocity

of the element, m, the mass of a unit of area : find the path of the centre of the disc.

If the initial velocity of the centre of gravity and the angular velocity of the

disc be «(,, Wo, prove that the velocity u and angular velocity w at any subsequent

time satisfy the relation „ „— r,- „ ) = —5—

.

24. A heavy circular lamina of radius a and mass M rolls on the inside of a

rough circular arc of twice its radius fixed in a vertical plane. Find the motion.

If the lamina be placed at rest in contact with the lowest point, the impulse which

must be applied horizontally that it may rise as high as possible (not going all

round), without falling off, is M J'6ag.

25. A string without weight is coiled round a rough horizontal cylinder, of

which the mass is M and the radius a, and which is capable of turning round its

axis. To the free extremity of the string is attached a chain of which the mass is

m and the length I ; if the chain be gathered close up and then let go, prove that

the angle d through which the cylinder has turned after a time t before the chain is

fully stretched is given by MaW =m {^t^ - adf.

26. Two equal rods AC, BC are freely connected at C, and hooked to A and B,

two points in the same horizontal line, each rod being inclined at an angle a to

the horizon. The hook B suddenly giving way, prove that the direction of the strain

^. . ,,..,, , ,
,/l + 6sin2a 2-3co82a\

at C IS instantaneously shifted through an angle tan-^ ( :;

—

j, „ . ^r—. |

.

"^ b 6 \l + 6cos2a Ssinacosay

27. Two particles A, B are connected by a fine string; A rests on a rough

horizontal table and B hangs vertically at a distance I below the edge of the table.
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If A be on the point of motion and B be projected horizontally with a velocity u,

show that A will begin to move with acceleration —— — ? and that the initial radius
/A + l I

of curvature of B's path will be {fi + l)l, where /j, is the coefficient of friction.

28. Two particles (m, m') are connected by a string passing through a small

fixed ring and are held so that the string is horizontal; their distances from the

ring being a and a'. If p, p be the initial radii of curvature of their paths when

,, ,
m m' , 1 1 1 1

they are let go, prove that — = —r > and - + — = - + —.
p p p p a a

29. A sphere whose centre of gravity is not in its centre is placed on a rough

table ; the coefficient of friction being fi, determine whether it will begin to slide

or to roll.

30. A circular ring is fixed in a vertical position upon a smooth horizontal

plane, and a small ring is placed on the circle, and attached to the highest point

by a string, which subtends an angle a at the centre
;
prove that if the string be

cut and the circle left free, the pressures on the ring before and after the string

is cut are in the ratio M+m sin" a iMcosa, m and M being the masses of the

ring and circle. [Reduce the ring to rest. Arts. 204, 210.]

31. One extremity C of a rod is made to revolve with uniform angular velocity

n in the circumference of a circle of radius a, while the rod itself is made to revolve

in the opposite direction with the same angular velocity about that extremity. The

rod initially coincides with a diameter, and a smooth ring capable of sliding freely

along the rod is placed at the centre of the circle. If r be the distance of the ring

from C at the time t, prove r= -^ (e"' + e~*^^) + - cos 2nt. [Reduce C to rest, Art. 204.]
5 5

32. Two equal uniform rods of length 2a are joined together by a hinge at one

extremity, their other extremities being connected by an inextensible string of

length 21. The system rests upon two smooth pegs in the same horizontal line,

distant 2c from each other. If the string be cut prove that the initial angular

Sa'^c - l^

acceleration of either rod will be g —
^ ^

.

[Take moments, for either rod alone, about the intersection of a horizontal line

drawn through the hinge with a perpendicular to the rod drawn at the peg. Art. 205.]

33. A smooth horizontal disc revolves with angular velocity sJ/ul about a

vertical axis, at the point of intersection of which is placed a material particle

attracted to a certain point of the disc by a force whose acceleration is /x. x distance

;

prove that the path on the disc is a cycloid. Art. 211.

34. A hollow cylinder of radius a rests on a rough table, and contains an insect

resting within it on the lowest generator ; if the insect start off and continue to

walk at a uniform velocity V relative to the cylinder in a vertical plane cutting the

axis of the cylinder at right angles, then the angle 6 the axial plane containing the

insect makes with the vertical is given hy a^d'^{M+ 2m sin^ ^6) = MV'^-27nagsin'^^ 6,

it being understood that the cylinder is very thin.

If the internal radius be b, prove

^2 [31 (A;2 + a^) + m {a^ - 2ah co&d + h^)] = G- 2mgh (1 - cos 6),

where Gh"^ \M {k^+ a^) + m{a- 6)2]=V^[M {k'' + a^) + ma {a - b)f,

and M, m are the masses of the cylinder and insect respectively.
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35. A circular hoop of radius b, without mass, has a heavy particle rigidly

attached to it at a point distant c from the centre, and its inner surface is con-

strained to roll on the outer surface of a fixed circle of radius a {b being greater

than a), under the action of a repelling force from the centre of the fixed circle equal

to fji times the distance. Show that the period of small oscillations of the hoop will

be 27r ( ) . Show that when c = b, all oscillations, large or small, have
a \ Cfi J

the same period ; and show further that in the general case the hoop may be

started so that it will continue to roll with uniform angular velocity equal to

/ b-a\i



CHAPTEE V.

MOTION OF A EIGID BODY IN THREE DIMENSIONS.

Translation and Rotation.

214. If the particles of a body be rigidly connected, then,

whatever be the nature of the motion generated by the forces,

there must be some general relations between the motions of the

particles of the body. These must be such that if the motion of

three points not in the same straight line be known, that of every

other point may be deduced. It will then in the first place be

our object to consider the general character of the motion of a

rigid body apart from the forces that produce it, and to reduce

the determination of the motion of every particle to as few in-

dependent quantities as possible : and in the second place we
shall consider how when the forces are given these independent

quantities may be found.

215. One point of a moving rigid body being fixed, it is re-

quired to deduce the general relations between the motions of the

other points of the body.

Let be the fixed point and let it be taken as the centre

of a moveable sphere which we shall suppose fixed in the body.

Let the radius vector to any point Q of the body cut the sphere

in P, then the motion of every point Q of the body will be re-

presented by that of P.

If the displacements of two points A, B, on the sphere in

any time be given as AA', BB', the displacement of any other

point P on the sphere may clearly be found by constructing on
A'B' as base a triangle A'P'B' similar and equal to APB. Then
PP' will represent the displacement of P. It may be assumed as

evident, or it may be proved as in Euclid, that on the same base

and on the same side of it there cannot be two triangles on the

same sphere, which have their sides terminated in one extremity
of the base equal to one another, and likewise those terminated in

the other extremity.
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Let D and E be the middle points of the arcs AA', BB', and

let DC, EG be arcs of great circles drawn perpendicular to AA\
BB' respectively. Then clearly CA = GA' and CB=CB\ and

therefore since the bases AB,
A'B' are equal, the two tri-

angles AGB, A'GB' are equal

and similar. Hence the dis-

placement of G is zero. Also

it is evident, since the dis-

placements of and G are

zero, that the displacement

of every point in the straight

line OC is also zero.

Hence a body may he

brought from any position,

which we may call AB, into

another A'B' by a rotation

about OG as an axis through

an angle PGP' such that any one point P is brought into coincidence

with its new position P'. Then every point of the body will be

brought from its first to its final position.

This theorem is due to Euler. Memoires de VAcademie de Berlin 1750, and the

Commentaires de Saint-Petersbourg 1775.

216. If we make the radius of the sphere infinitely great, the

various circles in the figure will become straight lines. We may
therefore infer that if a body be moving in one plane it may be

brought from any position which we may call AB into any other

A'B' by a rotation about some point G.

217. Ex. 1. A body is referred to rectangular axes x, y, z,

and, the origin remaining the same, the axes are changed to

x', y', z' , according to the scheme in the margin. Show that this

is equivalent to turning the body round an axis whose equations

are any two of the following three

:

(ai-l)x- -fag?/ + 032 = 0, &ia; + (62-l)2/ + &3« = 0. c^x^c^y^{c^-\)z = Q,

through an angle d, where 3-4 sin^ \d — a^->r\-\-c.^.

The positive directions of x'
,
y' being arbitrary, show that the condition that these

three equations are consistent is satisfied, provided the positive direction of the

axis of z' is properly chosen. See also a question in the Smith's Prize Examination
for 1868.

Take two points one on each of the axes of z and 2' at a distance h from the

origin. Their coordinates are (0, 0, h) {a.^h, b^h, c^h), therefore their distance is

h J 2 (1 - Cg). But it is also 2h sin 7 sin ^ ^ ;
.'. 2 sin^ ^d sin^ 7= 1 - Cg , where 7 is

the angle zOz'. Similarly 2 sin^ ^ sin^ a= 1 - a^ and 2 sin'-^ ^ d sin^ ^= 1

the equation to find 6 follows at once.

Ex. 2. Show that the equations of the axis may also be written in the form

•^ _ y _ z

Ci + «3 c.^ + bs~ c^-a^-b^ + l'

X'. y'. z'

X «1, «2> «3

y 6i, 62, 63

z Cl, ^2, C3
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218. When a body is in motion we have to consider not

merely its first and last positions, but also the intermediate posi-

tions. Let us then suppose AB, A'B' to be two positions at any
indefinitely small interval of time dt. We see that when a body
moves about a fixed point 0, there is, at every instant of the

motion, a straight line OC, such that the displacement of every

point in it during an indefinitely short time dt is zero. This

straight line is called the instantaneous axis.

Let dO be the angle through which the body must be turned

round the instantaneous axis to bring any point P from its

position at the time t to its position at the time t + dt, then the

ultimate ratio of dO to dt is called the angtdar velocity of the

body about the instantaneous axis. The angular velocity may
also be defined as the angle through which the body would turn

in a unit of time if it continued to turn uniformly about the same
axis throughout that unit with the angular velocity it had at the

proposed instant.

219. Let us now remove the restriction that the body is

moving with some one point fixed. We may establish the follow-

ing proposition.

Every displacement of a rigid body may be represented by a
combination of the two following motions, (1) a motion of trans-

lation, whereby every particle is moved parallel to the direction of
motion of any assumed point P rigidly connected tvith the body

and through the same space; (2) a motion of rotation of the whole

body about some axis through this assumed point P.

This theorem and that of the central axis are given by Chasles. Bulletin des

Sciences Mathematiques par Ferussac, Vol. xiv. 1830. See also Poinsot, Theorie

Nouvelle de la Rotation des Corps 1834.

It is evident that the change of position may be effected by
moving P from its old to its new position P' by a motion of trans-

lation, and then retaining P' as a fixed point by moving any two
points of the body not in one straight line with P into their

final positions. This last motion has been proved to be equivalent

to a rotation about some axis through P'

.

Since these motions are quite ijiiigpendent^ it is evident that

their order may be reversed, i.e. we may first rotate the body
and then translate it. We may also suppose them to take place

simultaneously.

It is clear that any point P of the body may be chosen as

the base point of the double operation. Hence the given dis-

placement may be constructed in an infinite variety of ways.

220. Change of Base. To find the relations between the

axes and angles of rotation when different points P, Q are chosen

as bases.
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Let the displacement of the body be represented by a rota-

tion 6 about an axis PR and a translation PP'. Let the same
displacement be also represented by a rotation 6' about an axis

Q8 and a translation QQ'. It is clear that any point has two
displacements, (1) a translation equal and parallel to PP', and
(2) a rotation through an arc in a plane perpendicular to the axis of

rotation PR. This second displacement is zero only when the point

is on the axis PR. Hence the only pomts whose displacements

are the same as that of the base point lie on the axis of rotation

corresponding to that base point. Through the second base point

Q draw a parallel to PR. Then for all points in this parallel, the

displacements due to the translation PP', and the rotation 6
round PR, are the same as the corresponding displacements for

the point Q. Hence this parallel must be the axis of rotation

corresponding to the base point Q. We infer that the awes of
rotation corresponding to all base points are parallel.

221. ; The axes of rotation at P and Q having been proved

parallel, let a be the distance

between them. Let the plane q /q,

of the paper intersect these .--"'"^

axes at right angles in P and PJ,
„--""

Q, then Pq = a. Let PP', QQ' ^-
represent the linear displace-

!\
.,.

--

ments of P and Q ^^spectively, ^\ ,..-"'

though these need not neces- L--""
sarily be in the plane of the f
paper.

The rotation Q about PR will cause Q to describe an arc of

a circle of radius a and angle Q, the chord Qq of this arc is

2a sin \d and is the displacement due to rotation. The whole dis-

placement QQ^ of Q is the resultant of Qq and the displacement
PP' of P. In the same way the rotation Q' about QB will cause

P to describe an arc, whose chord Pp is equal to 2a sin \0'.

The whole displacement PP' of P is the resultant of Pp and the

displacement QQ' of Q. But if the displacement of Q is equal

to that of P together with Qq, and the displacement of P is

equal to that of Q together with Pp, we must have Pp and Qq
equal and opposite. This requires that the two rotations Q,

6'

about PR and QS should be equal and in the same direction.

We infer that the angles of rotation corresponding to all base points

are equal.

222. Since the translation QQ' is the resultant of PP' and

Qq, we may by this theorem find both the translation and rotation

corresponding to any proposed base point Q when those for P are

given.

Since Qq, the displacement due to rotation round PR, is
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perpendicular to PR, the projection of QQ' on the axis of rotation

is the same as that of PP'. Hence the projections on the axis of
rotation of the displacements of all points of the body are equal.

223. An important case is that in which the displacement is

a simple rotation 6 about an axis PR, without any translation. If

any point Q distant a from PR be chosen as the base, the same
displacement is represented by a translation of Q along a chord

Qq — 2a sin ^6 in a direction making an angle Utt — 6) with the

plane QPR, and a rotation which must be equal to about an
axis which must be parallel to PR. Hence a rotation about any
axis may be replaced by an equal rotation about any parallel axis

together with a motion of translation.

224. When the rotation is indefinitely small, the proposition

can be enunciated thus :—a motion of rotation codt about an axis

PR is equivalent to an equal motion of rotation about any parallel

axis QS, distant a from PR, together with a motion of translation

acodt perpendicular to the plane containing the axes and in the

direction in which QS moves.

225. Central axis. It is often important to choose the base

point so that the direction of translation may coincide with the

axis of rotation. Let us consider how this may be done.

Let the given displacement of the body be represented by a

rotation about PR, and a

translation PP'. Draw P'N
perpendicular to PR. Jf,
possible let this same dis-

placement be represented by
a rotation about an axis QS,
and a translation QQ' along

QS. By Arts. 220 and 221

QS must be parallel to PR
and the rotation about it

must be 6. This translation

will move P a length equal

to QQ' along PR, and the

rotation about QS will move
P along an arc perpendicular

to PR. Hence QQ' must
equal PN and NP' must be

the chord of the arc^ It

follows that QS must lie on

a plane bisecting NP at

right angles and at a distance a from PR where NP=2asm^0,
or, which is more convenient, at a distance y from the plane NPP'
where NP' = 2y ia.ii ^6 . The rotation d round QS is to bring

N to P' and is in the same direction as the rotation 6 round PR.
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Hence the distance y must be measured from the middle point of

NP' in the direction in which that middle point is moved by its

rotation round PR.
Having found the only possible position of QS, it remains to

show that the displacement of Q is really along QS. The rotation

6 round PR will cause Q to describe an arc whose chord Qq is

parallel to P'N and equal to 2a^m.\d. The chord Qq is therefore

equal to NP\ and the translation NP' brings q back to its position

at Q. Hence Q is moved only by the translation PN, i.e. Q is

moved along QS.

226. It follows from this reasoning that any displacement of
a body can be represented by a rotation about some straight line

and a translation parallel to that straight line. This mode of

constructing the displacement is called a screw. The straight line

is sometimes called the central axis and sometimes the axis of
the screw. The ratio of the translation to the angle of rotation

is called the pitch of the screw. A rule to determine the signs

is given in Art. 243.

227. The same displacement of a body cannot be constructed

by two different screws. For if possible let there be two central

axes AB, CD. Then AB and CD by Art. 220 are parallel. The
displacement of any point Q on CD is found by turning the body
round AB and moving it parallel to AB, hence Q has a displace-

ment perpendicular to the plane ABQ and therefore can move
only along CD.

228. When the rotations are indefinitely small, the construc-

tion to find the central axis may be simply stated thus. Let the

displacement be represented by a rotation wdt about an axis PR
and a translation Vdt in the direction PP'. Measure a distance

V sin P'PR
y = ' from P perpendicular to the plane P'PR on that

side of the plane towards which P' is moving. A parallel to PR
through the extremity of y is the central axis.

Ex. 1. Given the displacements AA', BB', CC of three points of a body in

direction and magnitude, but not necessarily in position, find the direction of the

axis of rotation corresponding to any base point P.

Through any assumed point O draw Oa, O^, Oy parallel and equal to AA', BB\
CC. If Op be the direction of the axis of rotation, the projections of Oa, 0^, Oy
on Op are all equal, each being the same as the displacement of the base point

(Art. 222). Hence Op is the perpendicular drawn from O on the plane a/37. This

also shows that the direction of the axis of rotation is the same for all base points.

Ex. 2. If in the last example the motion be referred to the central axis, show

that the translation along it is equal to Op.

Ex. 3. Given the displacements AA', BB' of two points A, B oi the body and

the direction of the central axis, find the position of the central axis. Draw
planes through AA', BB' parallel to the central axis. Bisect AA', BB' by planes



190 MOTION OF A RIGID BODY IN THREE DIMENSIONS. [CHAP. V.

perpendicular to these planes respectively and parallel to the direction of the

central axis. These two last planes intersect in the central axis.

Composition of Rotations and Screws.

229. It is often necessary to compound rotations about axes
OA, OB which meet at a point 0. But, as the only case which
occurs in rigid dynamics is that in which these rotations are

indefinitely small, we shall first consider this case with some par-

ticularity, and then indicate generally at the end of the chapter
the mode of proceeding when the rotations are of finite magnitude.

230. To explain what is meant by a body having angular
velocities about more than one aoois at the same time.

A body in motion is said to have an angular velocity o) about
a straight line, when, the body being turned round this straight

line through an angle codt, every point of the body is brought from
its position at the time t to its position at the time t + dt.

Suppose that during three successive intervals each of time dt,

the body is turned successively round three different straight lines

OA, OB, 00 meeting at a point through angles coidt, coodt,

w^dt. We shall first prove that the final position is the same
in whatever order these rotations are effected. Let P be any
point in the body, and let its distances from OA, OB, 00, respec-

tively be ri, r-g, r^. First let the body be turned round OA,
then P receives a displacement w^r^dt. By this motion let r^ be
increased to r^ + dr^, then the displacement caused by the rotation

about OB will be in magnitude Wa {'i\ + dr^ dt. But according to

the principles of the differential calculus we may in the limit

neglect the quantities of the second order, and the displacement
becomes w^r^^dt. So also the displacement due to the remaining
rotation will be co-^r^dt. And these three results will be the same
in whatever order the rotations take place. In a similar manner
we can prove that the directions of these displacements will be
independent of the order. The final displacement is the diagonal

of the parallelopiped described on these three lines as sides, and
is therefore independent of the order of the rotations. Since then
the three rotations are quite independent, they may be said to

take place simultaneously.

When a body is said to have angular velocities about three

different axes it is only meant that the motion may be determined
as follows. Divide the whole time into a number of small in-

tervals each equal to dt. During each of these, turn the body
round the three axes successivel}^ through angles coidt, (o.jdt, (Osjdt.

Then when dt diminishes without limit the motion during the
whole time will be accurately represented.
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231. It is clear that a rotation about an axis OA may be
represented in magnitude by a length measured along the axis.

This length will also represent its direction if we follow the same
rule as in statics. Let OA be the positive direction of the axis

defined as in Art. 243. The rotation may be called positive or

negative according as it appears to be in some standard direction

or the reverse to a spectator placed with his feet at and back
along OA.

232. Parallelogram of angular velocities. If tivo an-

gular velocities about two axes OA, OB he represented in magnitude
and direction by the two lengths OA, OB ; then the diagonal OG
of the parallelogram constructed on OA, OB as sides will be the

resultant axis of rotation, and its length will represent the magni-
tude of the resultant angular velocity.

Let P be any point in OC, and let PM, PN be drawn
perpendicular to OA, OB. Since OA represents the angular
velocity about OA and PM is the perpendicular distance of P
from OA, the product OA . PM will represent the velocity of P
due to the angular velocity about OA. Similarly OB.PN will

represent the velocity of P due to the angular velocity about OB.
Since P is on the left-hand side of OA and on the right-hand

side of OB, as we respectively look along these directions, it is

evident that these velocities are in opposite directions.

Hence the velocity of any point P is represented by

OA.PM-OB. PiV=OP[OA. sin COA - OB . sin COB] = 0.

Therefore the point P
is at rest and OG is the

resultant axis of rotation. / z:^^

Let ft) be the angular
velocity about OG, then the

velocity of any point A in

OA is perpendicular to the
plane AOB and is repre-

sented by the product of co

into the perpendicular distance of A from OG = q) . OA sin GOA.
But since the motion is also determined by the two given angular
velocities about OA, OB, the motion of the point A is also repre-
sented by the product of OB into the perpendicular distance of
A from OB=OB. OA sin BOA

;

,.p sinBOA ^^
. . (O = 0B. -^—7^7^-7 = OG.

sm GOA
Hence the angular velo.city about OG is represented in magni-

tude by OG.

From this proposition we may deduce as a corollary "the
parallelogram of angular accelerations." For if OA, OB represent
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the additional angular velocities impressed on a body at any
instant, it follows that the diagonal 00 will represent the resultant

additional angular velocity in direction and magnitude.

233. This proposition shows that angular velocities and angular

accelerations may be compounded and resolved by the same rules

and in the same way as if they were forces. Thus an angular
velocity w about any given axis may be resolved into two, w cos a
and o) sin a, about axes at right angles to each other and making
angles a and ^tt — a with the given axis.

If a body have angular velocities a)i, 0)3, 0)3 about three axes

Ox, Oy, Oz at right angles, they are together equivalent to a single

angular velocity o), where &> = s/ay^ + (o^ + w.^, about an axis

making angles with the given axes whose cosines are respectively

— , — , — . This may be proved, as in the corresponding

proposition in statics, by compounding the three angular velocities,

taking them two at a time.

It will however be needless to recapitulate the several pro-

positions proved for forces in statics with special reference to

angular velocities. We may use " the triangle of angular velocities'*

or the other rules for compounding several angular velocities

together, without any further demonstration.

234. The Angular Velocity couple. A body has angular
velocities co, w about two parallel axes OA , O'B distant a from each

other, to find the residting motion.

Since parallel straight lines may be regarded as the limit of

two straight lines which intersect at a very great distance, it

follows from the parallelogram of angular velocities that the two
given angular velocities are equivalent to an angular velocity

about some parallel axis 0"G lying in the plane containing OA,
O'B.

Let X be the distance of this axis from OA, and suppose it

0'^
,

[^ B
0" r-i c

^

x\ • a y

to be on the same side of OA as O'B. Let H be the angular]

velocity about it.

Consider any point P, distant y from OA and lying in the

plane of the three axes. The velocity of P due to the rotation

about OA is (oy, the velocity due to the rotation about O'B is

Q)' {y — a). But these two together must be equivalent to the

!

velocity due to the resultant angular velocity 12 about 0"C, and.
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this is n (2/
— x),

.'. (oy + (o'(y-a) = n(y-a;).

This equation is true for all values of y, .*. n= (o-\-co', x=a(o'/Cl.

This is the same result we should have obtained if we had

been seeking the resultant of two forces o), ay' acting along OA,
O'B.

If co = ~co\ the resultant angular velocity vanishes, but x is in-

finite. The velocity of any point P is in this case (oy-\- (o'(y—a)=a(o,

which is independent of the position of P.

The result is that two angular velocities, each equal to co but

tending to turn the body in opposite directions about two parallel

axes at a distance a from each other, are equivalent to a linear

velocity represented by ao). This corresponds to the proposition

in statics that " a couple " is properly measured by its moment.

We may deduce as a corollary, that a motion of rotation ay

about an axis OA is equivalent to an equal motion of rotation about

a parallel axis O'B plus a motion of translation aw perpendicular

to the plane containing OA, O'B, and in the direction in which O'B
moves. See also Art. 223.

235. The analogy to Statics. To explain a certain analogy

which exists between statics and dynamics.

All propositions in statics relating to the composition and
resolution of forces and couples are founded on these theorems

:

1. The parallelogram of forces and the parallelogram of

couples.

2. A force F is equivalent to any equal and parallel force

together with a couple Fp, where p is the distance between the

forces.

Corresponding to these we have in dynamics the following

theorems on the instantaneous motion of a rigid body

:

1. The parallelogram of angular velocities and the parallelo-

gram of linear velocities.

2. An angular velocity w is equivalent to an equal angular

velocity about a parallel axis together with a linear velocity equal

to cop, where p is the distance between the parallel axes.

It follows that every proposition in statics relating to forces

has a corresponding proposition in dynamics relating to the

motion of a rigid body, and these two may be proved in the

same way.

To complete the analogy it may be stated (i) that an angular

velocity like a force in statics requires, for its complete determina-

tion, five constants, and (ii) that a velocity like a couple in statics

requires but three. Four constants are required to determine the

line of action . of the force or of the axis of rotation, and one to

R. D. 13
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determine the magnitude of either. There will also be a conven-
tion in either case to determine the positive direction of the line.

Two constants and a convention are required to determine the
positive direction of the axis of the couple or of the velocity and
one the magnitude of either. The discovery of this analogy is due
to Poinsot.

236. IiJ order to show the great utility of this analogy and
how easily we may transform any known theorem in statics into

the corresponding one in dynamics, v/e shall place in close juxta-
position the more common theorems which are in continual use
both in statics and dynamics.

It is proved in statics that any given system of forces and
couples can be reduced to three forces X, Y, Z, which act along
any rectangular axes which may be convenient and which meet
at any base point we please, together with three couples which
we may call L, M, N and which act round these axes. A simpler

representation is then found, for it is proved that these forces and
couples can be reduced to a single force which we may call R and
a couple G which acts round the line of action of R. This line

of action of R is called the central axis. There is but one central

axis corresponding to a given system of forces. The term wrench
has been applied to this representation of a given system of forces.

Draw any straight line AB parallel to the central axis at a dis-

tance c from it. Then we may move R from the central axis to

act along AB at A, provided we introduce a new couple whose
moment is Re. Combining this with the couple G, we have for

the new base point A a new couple G' = s/G'^-\- R^c^, the force

being the same as before. The couple G' is a minimum when c= 0,

i.e. when AB coincides with the central axis. By taking moments
round AB we see that the moment of the forces round every

straight line parallel to the central axis is the same and equal to

the minimum couple.

The same train of reasoning by which these results were ob-

tained will lead to the following propositions. The instantaneous

motion may be reduced to a linear velocity of any base point we
please and an angular velocity round some axis through the

base. These are then reduced to an angular velocity which we
may call O about an axis called the central axis, and a linear

velocity along that axis which we may call V. The term screw

has been applied to this representation of the motion. Draw any
straight line AB parallel to the central axis. Then we may move
n from the central axis to act round AB, provided that we intro-

duce a new linear velocity represented by He. Combining this with

the velocity V we have for the new base A (which is any point

on AB) a new linear velocity V = ^/V^-\-c^fl^, the angular velocity

being the same as before. The linear velocity V is a minimum

I
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when c = 0, i.e. when AB coincides with the central axis. We see
that the linear velocity of any point A resolved in the direction

AB, i.e. parallel to the central axis, is always the same and equal
to the minimum velocity of translation.

It will be seen that most of these results have already been
obtained in Arts. 219 to 228 for finite rotations.

237. Another useful representation depends on the following
proposition. Any system of forces can be replaced by some force

F which acts along a straight line which we may choose at

pleasure, and some other force F' which acts along some other
line and does not in general cut the first force. These are called

conjugate forces. The shortest distance between these is proved
in statics to intersect the central axis at right angles. The
directions and magnitudes of the forces F, F' are such that B,

would be their resultant if they were moved parallel to them-
selves, so as to intersect the central axis. Also it is known that,

if 6 be the angle between the directions of the forces F, F' and
a the shortest distance between them, FF'a sin 6 = GR. If the
arbitrary line of action of F is such that the moment of the forces

about it is zero, both F and F' act along that line in opposite
directions and the magnitude of each is infinite.

By help of the analogy we may obtain the corresponding
propositions in the motion of a body. Any motion may be repre-

sented by two angular velocities, one co about an axis which we
may choose at pleasure and another o)' about some axis which
does not in general cut the first axis. These are called conjugate
axes. The shortest distance between these intersects the central
axis at right angles. These angular velocities are such that 12

w^ould be their resultant if their axes were placed parallel to

their actual positions, so as to intersect the central axis. If 6 be
the angle between the axes of oj, w and a be the shortest distance

between these axes, then ww'a sin S — VCi. If the arbitrary axis of
ft) is such that the velocity of every point of the axis resolved along
the axis is zero (Art. 137), the angular velocities o), oy' have a
common axis, opposite signs and the magnitude of each is infinite.

238. The velocity of any Point. The motion of a body
during the time dt may be represented, as explained in Art. 219,
by a velocity of translation of a base point 0, and an angular
velocity about some axis through 0. Let us choose any three
rectangular axes Ox, Oy, Oz which may suit the particular pur-
pose we have in view. These axes meet in and move with 0,
keeping their directions fixed in space. Let u, v, w be the resolved

parts along these axes of the linear velocity of 0, and (d^, (Oy, coz,

the resolved parts of the angular velocity. These angular velo-

cities are supposed positive when they tend the same way round
the axes that positive couples tend in statics. Thus the positive

13—2
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directions of cox^ (Oy, coz, are respectively from y to 2, from 2 to cc

and from x to y.

The whole motion during the time dt of the body is known
when these six quantities u, v, w, w^, (Oy, coz are given. These six

quantities may he called the components of the motion. We now
propose to find the motion of any point P whose coordinates

are x, y, z.

Let us find the velocity of P parallel to the axis of z. Let PN
be the ordinate of z and let

PM be drawn perpendicular

to Ox. The velocity ofP due
to the rotation round Ox is

clearly co^PM. Resolving
this along NP we get

(o^PM sin NPM = co^y.

Similarly that due to the

rotation about Oy is — WyX
and that due to the rotation

about O2 is zero. Adding the

linear velocity z^ ofthe origin,

we see that the whole velo-

city of P parallel to Oz is

W' = W-\- (O^y — OOyX.

Similarly the velocities parallel to the other axes are

U =U + COyZ

V =^V + COzX

(Ozy,

co^z.

. 239. It is sometimes necessary to change our representation

of a given motion from one base point to another. These formulae

will enable us to do so. Thus suppose we wish our new base

point to be at a point 0', the axes at 0' being parallel to those

at 0. Let (^, rj, f) be the coordinates of 0' and let u\ v\ w'

,

wj, coy, ft)/ be the linear and angular components of motion for the

base 0'. We have now two representations of the same motion,

both these must give the same result for the linear velocities of

any point P. Hence

u + OyZ - wzy = u' + wy (z -^)- coz {y - v\
V + CO2X — COxZ = V' + COz (^ — ?) — (j^x (^ — 0>

w + co^y- coyx = w'-\- coJiy - v) - «/(« - IX
must be true for all values of x, y, z.

These equations give coj = (Oa COz =(^z so that what-

ever base is chosen the angular velocity is always the same ii

direction and magnitude. See Art. 221. We also see that u', v\

are given by formulae analogous to those in Art. 238, as inde(

might have been expected.
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The reader should compare these with the corresponding for-

mulae in statics. If all the forces of any system be equivalent

to three forces X, F, Z acting at a base point along three rect-

angular axes together with three couples round those axes, then
we know that the corresponding forces and couples for any other

base point ^, t], f are

Y' = Y, M' =M+Z^-X^,
Z' = Z, N' =N+X'n-Yl

240. To find the equivalent Screw. The motion being

given by the linear velocities (u, v, w) of some base 0, and the

angular velocities, {w^, coy, coz), find the central axis, the linear

velocity along it and the angular velocity round it, i.e. find the

equivalent screw.

Let P be any point on the central axis, then if P were chosen
as base, the components of the angular velocity would be the

same as at the base 0. If then Q be the resultant of the anovular

velocities cox, coy, coz (Art. 233) we see that

(1) The direction-cosines of the central axis are

(Ox n ^V ^zcosa = ^, cos^ = J, cos7 = ^.

(2) The angular velocity about the central axis is fl.

(3) The velocity of every point resolved in a direction parallel

to the central axis is the same and equal to that along the central

axis. See Art. 222 or Art. 236. If then V be the linear velocity

along the central axis we have

V== u cos a + v cos /S -\-w cos 7;

.'. Vfl = U(Ox + vcoy-{-W(Oz.

(4) Let (x, y, z) be the coordinates of P, i.e. of any point

on the central axis. Then the linear velocity of P is along the

axis of rotation. Hence

U -\- (OyZ — (Ozy _ '^ + <Wz^ — (^X^ _W + (Oxy — WyX

(Ox 0)y (Oz

These are therefore the equations to the central axis.

If we multiply the numerator and denominator of each of

these fractions by (Ox, coy, (Oz respectively and add them together,

^, ^ r n .- • U(Ox + V(Oy + W(Oz V
we see that each traction is = ~ ~ = 7c-

.

(Ox + &)y + Wz i^

This ratio is called the pitch of the screw.

241. The Invariant. It follows from the third result just

proved that whatever base be chosen and whatever be the direction

of the axes, the quantity /= ucox + V(Oy + W(Oz is invariable and eqiial
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to Vfl. This quantity may therefore be called the invariant of the

components. The resultant angular velocity H is also invariable

and may be called the invariant of the rotation.

If the motion be such that the first of these invariants is

zero, it follows that either F= 0, or O = 0. This therefore is the

condition that the motion is equivalent to either a simple translation

or a simple rotation. If we wish the motion to be equivalent to

a simple rotation, we must also have (Ox, (Oy, coz not all zero.

The corresponding invariant in statics is LX-\-MY-\-NZ=GR.
When this vanishes, the forces are equivalent to either a single

resultant or a single couple.

Ex. 1. Find the invariants I and O of (1) two angular velocities w, w'; (2) two
linear velocities v, v'\ (3) an angular velocity w and a linear velocity v. The

results are (1) I^wwVsin^; (2) 1=0; (3) J=a;ycos^,

fi-=:a)2+w'2 + 2ww'cos^ Q = fi = w

where 6 is the angle between the axes of the constituents and r the shortest

distance. [To prove these, we choose some convenient axes and express the values

of the six components u, v, lo, w^, Uy, w^, for the origin as base by Arts. 238, 239.

The value of I then follows from the definition. We here take r for the axis of x
and the axis of w for that of z. The result (2) is obvious, if we compound the

velocities.]

Ex. 2. The invariant I of any number of angular velocities, w^, a>2, &c. and
any linear velocities v^ , v^ , &c. is the sum of the separate invariants of the con-

stituents taken two and two, or written in an algebraic form

1= 2wy cos
<f> + 2wcoV sin 6,

where is the angle between the direction of any linear velocity v and the axis of

any angular velocity w, while d is the angle between the axes of any two angular

velocities w, w' and r the shortest distance.

Taking any rectangular axes each of the six components of these motions is a
linear function of Wj , w^ , &c. ; v^ , v.^ , &c. The invariant I is therefore a quadratic

function of the form

7= ^iiWj^ + 4J2W1W2 + &c. + -BjjWjVi + B^^ui-^Vo + &c. + C^^v{^ + C-^^ViV,^ + &c.

,

where the coefficients are independent of the magnitudes of w^, Wg, &c., y^, v^, &g.

Putting all the constituents equal to zero except each in turn we see that A-^-^= 0,

&c. = 0; Cii= 0, &c. = 0. Then putting all the constituents equal to zero except

two in turn and comparing the results with those given in Ex. 1, we see that the

other coefficients have the values given above.

Ex. 3. The invariant I of two screws (w, v), (w', v') is

1= 03V + wV + {wv' + (j}'v) cos d + ww'r sin d.

To prove this we add together the six invariants of the four constituents w, w',

V, v' taken two and two together.

242. When the motion is equivalent to a simple rotation, it

may be required to find the axis of rotation. But this is obviously
only the central axis under another name, and has been found
above.
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243. A screw motion may thus he given in two ways. We
may have given the six components of motion, which we have
called {u, v, tu, Wx, (Oy, w^, which also depend on the point chosen

as base. Or it may be given by the equations to the central axis,

the velocity V along it, and the angular velocity O round it.

In this last case a convention is necessary to prevent confusion

as to the directions implied by the velocities V and fl. One
direction of the axis is called the positive direction, and the

opposite the negative direction. Then V is taken positive when
it implies a velocity in the positive direction. So also fl is positive

when the rotation appears to be in some standard direction, say

clockwise, when viewed by a person placed with his back along

the axis, so that the positive direction is from his feet to his head.

This of course is only the ordinary definition of a positive couple

as given in statics. See Art. 231.

The method of determining the positive direction of the axis

is easy to understand, though it takes long to explain. Describe

a sphere of unit radius with its centre at the origin, and let

the positive directions of the axes cut this sphere in x, y, z. Let
a parallel to the central axis drawn through the origin cut the

sphere in L and L'. Let the direction-cosines of the axis be

given say, I, m, n. Then {I, m, n) are the cosines of certain arcs

drawn on the sphere which begin at xyz, and terminate say at L,

while (— I, — m, —n) are the cosines of supplementary arcs which
begin at the same points xyz, and terminate at L'. Then OL is

the positive direction of the axis and OL' the negative direction.

With this understanding the angle between two axes is the

angle between their positive directions and is determined without

ambiguity of sign when the actual direction-cosines of the axes

are given.

244. The position of the central axis being given, together with

the linear velocity along it and the angular velocity round it, it

is required to find the components of the motion when the origin is

taken as the base.

This is of course the converse proposition to that just discussed.

Let the equation to the central axis be —r^^ = -—- = ,
*

I m n
where {Imn) are the actual direction-cosines of the axis. Let Fbe
the linear and H the angular velocity.

If {fgh) were taken as the base, the components of the linear

velocities would hQlV,mV,n V, and the components of the angular

velocities would be /H, mil, nfl. Hence by Art. 238, writing — /,

— g, — h for X, y, z, the components of the motion when the origin

is the base point are

u= lV — n{mh — ng), (Ox = lO.,

V = mV— O (nf — Ih), coy = mfl,

w — nV — VL{lg —mf), Wz^nQ..
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245. Composition and Resolution of Screws. Given two

screw motions to compound them into a single screw and conversely

given any screw motion to resolve it into two screws.

Two screws being given, let us choose some convenient base

and axes. By Art. 244 we may find the six components of motion
of each screw for this base. Adding these two and two, we have
the six components of the resultant screw. Then by Art. 240 the

central axis together with the linear and angular velocities of the

screw may be found.

Conversely, we may resolve any given screw motion into two
screws in an infinite number of ways. Since a screw motion is

represented by six components at any base we have in the two
screws twelve quantities at our disposal. Six of these are required

to make the two screws equivalent to the given screw. We may
therefore in general satisfy six other conditions at pleasure.

Thus we may choose the axis of one screw to be any given
straight line we please with any linear velocity along it and any
angular velocity round it. The other screw may then be found
by reversing this assumed screw and joining it thus changed to

the given motion. The screw equivalent to this compound motion
is the second screw, and it may be found in the manner just

explained.

Or again, we may represent the motion by two screws whose
pitches are both chosen to be zero, the axis of one being arbitrary.

These are the conjugate axes spoken of in Art. 237.

245 a. The following viethod of compounding two screws is very convenient when
the shortest distance between the axes is knoivn in position and magnitude.

Let (w, v), (w', v'} represent the angular and linear velocities of the two given

screws, (fi, V) those of the resultant screw. Then, by equating the invariants,

^V=uv + o}'v'+ [icv' + (a'v) cos 6 + u(a'r Bin 6,

Q^=u}'^ + w'- + 2ww' cos d,

where 6 is the inclination of the axes and r the shortest distance.

We shall next show that the axis of the resultant screw intersects at right angles

the shortest distance AA' betioeen the axes

of the given screws. Since the central

axis is parallel to the resultant of w, w'

transferred to any base, that axis must be

perpendicular to AA'. Also since AA'

X intersects at right angles the axes of both

I

V "y
'^ *^6 given screws, the velocity of every

point of AA' resolved along itself is zero.

Hence, since AA' is perpendicular to the central axis of the resultant screw,

it must also intersect that axis.

Lastly we shall show that the distance ^ of the central axis of the two screws

from the middle point G of the shortest distance is given by

n-^= ^r (w2 - w'2) + (wu' _ u'v) sin d,
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iclicre ^ is measured positively towards lo. Let Ct] be a perpendicular to the plane

3oiitaining A A' and the required central axis Oz. Equating the resolved part along

Ct] of the velocity of C due to the two screws to that due to the resultant

screw we have —Q^= v sin y — v' sin y' — ^rw cos y + ^roj' cos y',

where y, y' are the angles the axes AF, A'F' of the given screws make with the

central axis Oz. By resolution we have

fi sin 7 = w' sin Q, fi cos 7 = w + w' cos Q,

fi sin7'= w sin ^, f2 cos7' = w' + w cos ^.

The result follows by substituting for 7, 7'.

246. Examples. Ex. 1. The locus of points in a body moving about a fixed

point which at any instant have the same resultant velocity is a circular cylinder.

Ex. 2. If radii vectores be drawn from a fixed point O to represent in direction

and magnitude the velocities of all points of a rigid body in motion, prove that the

extremities of these radii vectores at any one instant lie in a plane. [Coll. Exam.

This plane is evidently perpendicular to the central axis, and its distance from

measures the velocity along the axis. Art. 228, Ex. 1.

Ex. 3. The locus of the tangents to the trajectories of different points^of the

same straight line in the instantaneous motion of a body is a hyperbolic paraboloid.

Let AB be the given straight line, CT> its conjugate. The points on AB are

turning round CD, and therefore all the tangents pass through two straight lines,

viz. AB and its consecutive position A'B' , and are also parallel to a plane which is

perpendicular to CD.

Ex. 4. Let the restraints on a body be such that it admits of two motions

A and B, each of which may be represented by a screw motion, and let w, m! be the

pitches of these screws. Then the body must admit of a screw motion compounded

of any indefinitely small rotations ladt, ddt about the axes of these screws accom-

panied of course by the translations mojdt, m'co'dt. Prove that (1) the locus of the

axes of all these screws is the surface z {x"^ + y^) = 2axy. (2) If the body be screwed

along any generator of this surface the pitch is c + a cos 2d, where c is a constant

which is the same for all generators and 6 is the angle the generator makes with the

axis of X. (3) The size and position of the surface being chosen so that the two

given screws A and B lie on the surface with their appropriate pitch, show that only

one surface can be drawn to contain two given screws. (4) If any three screws of

the surface be taken and a body be displaced by being screwed along each of these

through a small angle proportional to the sine of the angle between the other two,

the body after the last displacement will occupy the same position that it did

before the first.

This surface has been called the cylindroid by Sir E. Ball, to whom these four

theorems are due. See his Theory of Screws.

Ex. 5. An instantaneous motion is given by the linear velocities {u, v, w)

along, and the angular velocities (w^, w^, wj round the coordinate axes. It is

required to represent this by two conjugate angular velocities, one being about the

arbitrary straight line —p- = -—- = .

If Q be the angular velocity about the given axis, then

tfW™ + V()},j + ICU},—^
-r = lu + mv + nio
it

where {I, m, n) are the actual direction-cosines.

I, m,
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The equations to the conjugate axis are

y,

I, m, n

= lu + mv + nw, X, y, : (/- x)u+{g-y)v + {h- z) w.

f, 9, h
I

The first of these equations may be obtained as indicated in Art. 245. Reverse

Q and join it to the given motion, then the invariant of this compound motion

vanishes. If the angular velocity fl be thus supposed known, the conjugate axis

is the central axis of the compound motion and may be found as in Art. 245. But

if the conjugate axis be required independently of S2, we may use the second and

third equations.

The second equation follows from the fact that the direction of motion of any

point on the conjugate is perpendicular to the given axis.

The third follows from the fact that the direction of motion is also perpendicular

to the straight line joining the point to (/, g, h).

These general equations will be simplified if the circumstances of any problem

permit the coordinate axes to be so chosen that some of the constants may be zero.

Thus, if the central axis of the instantaneous motion is taken as the axis of z and

the shortest distance between that axis and the given straight line as the axis of a;,

we have u = 0, v = 0, w^j^O, Wy= 0; ^7 = 0, h=0, and Z= 0. The equations then

, wu}. ^ mo zw
become -—^=ivn+fu,m, x= , y=--—.

Referring to the figure of Art. 245a, / is the shortest distance OA between the

given axis AF and the central axis OZ, and 7i= cos y, m = sin y where 7 is the angle

AF makes with OZ.

There is an apparent exception to these results when the given motion and the

given axis are such that U, as found from the first equation, is infinite. This is a

limiting case rather than an exception. It is easy to see that both the second and

third equations are, in this case, satisfied by substituting x=f+lt, y= g + vitf

z = h + nt; i.e. the conjugate axis coincides with the given axis. If fi' be the angular

velocity about the conjugate axis, and S2' are together equivalent to the resultant

angular velocity of the given motion ; it follows that Q' is also infinite. In this

limiting case, therefore, the motion is represented by two infinite opposite angular

velocities about two coincident lines.

Another limiting case is when the given axis is parallel to the central axis

of the given motion and the invariant of the motion is not zero. In this case

I, m, 11 are proportional to w^., Wj,, w^, and the second equation represents a plane

at infinity. The conjugate axis is therefore at infinity and the angular velocity

about it is zero.

There is a third limiting case when the invariant of the given motion is zero.

If the given motion is a simple rotation about some axis, say Oz, and the given

axis is not parallel to Oz and does not intersect it, fi = and the conjugate axis

coincides with Oz. If the given axis is parallel to Oz or intersects it, 12 may have

any value and the conjugate axis is the resultant axis of the given rotation and the

reversed 12.

If the given motion is a simple translation parallel to some axis Oz and the

given axis is not perpendicular to Oz, 12 = and the conjugate is at infinity. If the

given axis is perpendicular to Oz, 12 may have any value, and the conjugate axis is

found as before ; see Art. 234.
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In discussing these limiting cases analytically, it will be convenient to choose

the simplified form of axes described above.

Ex. 6. If one conjugate of an instantaneous motion is at right angles to the

central axis the other meets it, and conversely. If one conjugate is parallel to the

central axis the other is at an infinite distance, and conversely. The invariant is

supposed to be finite,

Ex. 7. A body is moved from any position in space to any other, and every

point of the body in the first position is joined to the same point in the second

position. If all the straight lines thus found be taken which pass through a given

point, they will form a cone of the second order. Also if the middle points of all

these lines be taken, they will together form a body capable of an infinitesimal

motion, each point of it along the line on which the same is situated. Cayley's

Report to the British Assoc, 1862.

247. Characteristic and focus. If tbe instantaneous motion of a body be

represented by two conjugate rotations about two axes at right angles, a plane can

be drawn through either axis perpendicular to the other. The axis in the plane

has been called the characteristic of that plane, and the axis perpendicular to the

plane is said to cut the plane in its focus. These names were given by M. Chasles

in the Comptes Rendus for 1843. Some of the following examples were also given

by him, though without demonstrations.

Ex. 1. Show that every plane has a characteristic and a focus.

Let the central axis cut the plane in 0. Resolve the linear and angular velocities

in two directions Ox, Oz, the first in the plane and the second perpendicular to it.

The translations along Ox, Oz may be removed if we move the axes of rotation

Ox, Oz parallel to themselves, by Art. 234. Thus the motion is represented by

a rotation about an axis in the plane and a rotation about an axis perpendicular

to it. It also follows that the characteristic of a plane is parallel to the projection

of the central axis.

Ex. 2. If a plane be fixed in the body and move with the body, it intersects

its consecutive position in its characteristic. The velocity of any point P in the

plane when resolved perpendicular to the plane is proportional to its distance from

the characteristic, and when resolved in the plane is proportional to its distance

from the focus and is perpendicular to that distance.

Ex. 3. If two conjugate axes cut a plane in F and G, then FG passes through

the focus. If two conjugate axes be projected on a plane, they meet in the

characteristic of that plane.

Ex. 4. If two axes CM, ON meet in a point C, their conjugates lie in a plane

whose focus is C and intersect in the focus of the plane CMN.
This follows from the fact that if a straight line cut an axis the direction of

motion of every point on it is perpendicular to the straight line only when it also

cuts the conjugate.

Ex. 5. Any two axes being given and their conjugates, the four straight lines

lie on the same hyperboloid.

Ex. 6. If the instantaneous motion of a body be given by the linear and
angular velocities {u, v, lo), (w^, w^, wg), prove that the characteristic of the plane

Ax + By + Cz +D =
is its intersection with A {u + ca.^^z - w^y) + B {v + u^x - u-^z) + C {w + w-^y - w^) = 0,

and its focus may be found from ? ^ = ^~ ^ = ^ ^
.

A B G
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For the characteristic is the locus of the points whose directions of motion are

perpendicular to the normal to the plane, and the focus is the point whose direction

of motion is perpendicular to the plane.

When the central axis of the instantaneous motion is the axis of z, the

coordinates of the focus are x=pBIC, y- -pAjC, z= -DjG and the characteristic

lies on the iplaine- Ay + Bx+Cp = 0, where p is the pitch tvjb}.^ of the instantaneous

motion.

Ex. 7. The locus of the characteristics of planes which pass through a given

straight line is a hyperboloid of one sheet ; the shortest distance between the given

straight line and the central axis being the direction of one principal diameter,

and the other two being the internal and external bisectors of the angle between

the given straight line and the central axis. Prove also that the locus of the foci

of the planes is the conjugate of the given straight line.

Ex. 8. Let any surface A be fixed in a body and move with it, the normal
planes to the trajectories of all its points envelope a second surface B. Prove that

if the surface B be fixed in the body and move with it, the normal planes to the

trajectories of its points will envelope the surface A : so that the surfaces A and B
have conjugate properties, each surface being the locus of the foci of the tangent

planes to the other. Prove that if one surface is a quadric the other is also a

quadric.

Moving Axes and Eulers Equations.

248. It has been shown in Art. 230 that when a body is

moving about a fixed point the displacement in the time dt may
be constructed by turning the body round three straight lines OA,
OB, 00 through certain angles coidt, co^dt, w-^fiLt In the same way
we may construct the displacement during the next interval* dt by
rotating the body round three other straight lines OA', OB', 00'
through certain other angles coi'dt, w^dt, co^dt. If these two
systems of axes are infinitely close and the motion of the body is

continuous, the angular velocities «/, &c., will differ from Wi, &c.,

by infinitely small quantities. The axes of reference are then
called moving axes. It should be noticed that co^dt measures the

angle of rotation round Oz, not relatively to the moving plane
which contains OA and OC, but with reference to some plane fixed

in space passing through the instantaneous position of 00.

249. Let Ox, Oy, Oz be the rectangular axes fixed in space

and let Wa,, coy, Wz be the components of the angular velocity of a
body at the time t. Let OA, OB, 00 be three rectangular axes

moving about the fixed point and let q)i, co^, (0.3 be the com-
ponent angular velocities of the same body at the same time.

If these two systems of axes coincide in position at the time t,

(^i = (*^x> 0)2 = (Oy, 0)3 = 0)2, but at the time t-\-dt the two systems
will have separated and we can no longer assert that 0)3 + day^ and
(Oz + d(Oz are necessarily equal.

We shall now show that if the moving axes are fixed in the body,

then d(03 = d(0z as far as the first order of small quantities. Le

I
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OR, OR be the resultant axes of rotation of the body at the times

t and t + dt, i.e. let a rotation D.dt about OR bring the body into

the position in which 00 coincides with Oz at the time t ; and
let a further rotation Vl'dt about OR' bring the body into some
adjacent position at the time t-^dt while in the same interval dt,

00 moves into the position OC. Then according to the definition

of a differential coefficient

d(o^ ,. . n' cos R'C'-n cos RG
-di =

^^"^'
dt

'

dcoz T . , n' cos R'z — O cos Rz
rf^ =

i""^*
dt

•

The angles RC and Rz are equal by hypothesis. Since 00 is

fixed in the body, it makes a constant angle with OR' as the body
turns round OR', the angles R'G' and Rz are therefore equal.

Hence these differential coefficients are also equal.

250. The preceding proposition is a particular case of a

fundamental theorem in the theory of moving axes. This general-

ized theorem applies not merely to angidar velocities hut to any
vector or directed quantity which obeys the parallelogram-law.

By Art. 215 the moving system of axes is turning round some
instantaneous axis with an angular velocity which we may call 6.

Let ^1, ^2> ^3 be the components of 6

about the axes OA, OB, 00. Then in ^,

the figure 6^ represents the rate at y^\ --^^

which any point in the circular arc BC / \ ^V
is moving along that arc, ^2 is the rate / | \
at which any point of GA is moving

f^\ [
\

along GA and so on. / y'O "---AA

Let F„ F„ V, and F,, V^,Y, be il^^ ^
^^

the components of any vector with re-
2^^--^^

gard to the moving axes OA, OB, 00,
and the fixed axes Ox, Oy, Oz respectively. Let a, ^, 7 be the

direction angles of Oz referred to OA, OB, 00 \ then

Vz = Fi cos a + F2 cos /3 4- F3 cos 7,

.•. Vz= Fi cos a + F2 cos /3 + Fg C0S7 — Fisinaa— FasiuyS/S — F3sin77.

Let the axis Oz coincide with 00 at the time t, then a = Jtt,

13 = ^TT, 7 = 0. Hence

Vz=V,-V,d-V,$.
Now a is the angular rate at which the axis OA is separating

from a fixed line Oz momentarily coincident with OG, hence d = O^.

Similarly /3z= — 0^. Writing the theorem at full length we have
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Similarly
dV,
dt

dV,

dt
-FA + VA,

dVy_

dt

dV,

dt
-VA + VA-

Let the vector V be the resultant angular velocity H of a body

about an instantaneous axis (Art. 233) then Fj = a)i, ^2 = 0).,,

Vs = 0)3 while Vx = cox, Vy^coy, Vz= (o^. We have therefore

dwz dcos ^ ,
n— = ^-^A + <oA.

If the moving axes are fixed in the body they have the same
instantaneous axis as the body and 6 = 0.) hence also 6^ = 0)1,

60 = (Oo. It follows at once that —^^ = -T^•
^ " dt dt

251. As another example let x, y, z be the coordinates of some
point G (say the centre of gravity of a moving body) referred to

the moving axes OA, OB, 00. Let a, v, w be the components of

the velocity of G parallel to the same axes and X, F, Z the com-

ponents of the accelerations. Then since both the resultant

velocity and the resultant acceleration are vectors or directed

quantities

u = -£-y^z-^^02, z =
J-^^3+^^^.,

v=-£-ze,+xe„ Y=^^-we, + u6,,

w = -^^-x6^ + ye„ Z=^rr-u6^^v6x.
dt

These results will be useful afterwards.

The demonstration here given of the fundamental theorem on moving axes is

founded on the method used by Prof. Slesser in the Quarterly Journal, 1858, to

prove d>3 = Wg. Another very simple proof is given in the chapter on moving axes

at the beginning of Vol. 11. of this treatise.

252. Euler's dynamical equations. To determine the

general equations of motion of a body moving about a fixed point 0.

Let X, y, z be the coordinates of any particle m referred to

axes Ox, Oy, Oz fixed in space.

Taking moments about the axis of z we have by D'Alembert's

principle 2m {xy — yx) = iV".

Let (Oxy o)y, (Oz be the angular velocities of the body about the

axes, then x = (OyZ — cozy, y = (OzX — Q)xZ, z = cDxy — coyX
',

.'. X = ZWy — yWz + COy {Wxy ~ (^yX) — COz {cOzX — 0)xZ),

y = XCOz — ZiOx + (£>z (0)yZ — Wzy) — COx (cOxy — COyX).

These we shall presently substitute in the equation of moments.
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Let ft)i, W2, 0)3 be the angular velocities of the body about three

(Ctangular axes OA, OB, 00 fixed in the body. Let these

3oincide with the axes fixed in space at the time t; then q)i = o)x,

u, = Q)y, cos = (Oz; 6)1 = a)x, 0)2 = coy, 6)3 = coz, by Art. 249.

The advantage of using axes fixed in the body is that the

noments and products of inertia are then constants. If we choose

xs these axes of coordinates the principal axes at the fixed point,

^vc have the additional simplification that all the products of

inertia are zero. In substituting for x, y in the equation of

moments we may therefore omit all the terms of x which do not

contain y and all the terms of y which do not contain x. We
tilus have ^m {x^ + y"^) 0)3 + 2m {x"^ — y^) cDitOg = N.

If A, B, G he the principal moments of inertia at the fixed

point 0, this becomes

C^-(A-B)co,co, =K
ctt

limilarly A^ - (B - 0) co,co, = L, B ^^ -{C-A) co.co, = M.

'hese are called Euler's dynamical equations.

253. We know by D'Alembert's principle that the moment
of the effective forces about any straight line is equal to that of

the impressed forces. The equations of Euler therefore indicate

i

that the moments of the effective forces about the principal axes

:
at the fixed point are expressed by the left-hand sides of the above

equations. If there is no point of the body which is fixed in

space, the motion of the body about its centre of gravity is the
same as if that point were fixed. In this case, if A, B, be the
principal moments at the centre of gravity, the left-hand sides of

Euler's equations give the moments of the effective forces about
the principal axes at the centre of gravity. If we want the
moment about any other straight line passing through the fixed

point, we may find it by simply resolving these moments by the

rules of statics.

Ex. 1. If 2T= Aioi' + Bu2^ + Cu}^^ and G be the moment of the impressed forces

dT
about the instantaneous axis, Q the resultant angular velocity, then -r-=GQ,

Ex. 2. A body (say the earth) turning about a fixed point is acted on by forces

(such as the attractions of the sun or moon) which tend to produce rotation about

an axis at right angles to the instantaneous axis, show that the angular velocity

cannot be uniform unless either two of the principal moments of inertia at the fixed

point are equal or the instantaneous axis always lies in a principal plane. The axis

about which the forces tend to produce rotation is that axis about which it would

begin to turn if the body were placed at rest.

254. To determine the pressure on the fixed point

Let X, y, z be the coordinates of the centre of gravity referred
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to rectangular axes fixed in space meeting at the fixed point, and
let P, Q, R be the resolved parts of the pressures on the body in

these directions. Let /t be the mass of the body. Then we have

/jLX = P + SmX
and two similar equations. Substituting for x its value in terms
of (Ox, (Oy, (Oz we have

fjL {zWy — ydiz + (Dy {(Dxy — COyX) — (Oz {(OzX — (O^z)] = P + IlllX

and two similar equations.

If we now take the axes fixed in space to coincide with the

principal axes at the fixed point at the moment under considera-

tion we may substitute for (6y and (Oz from Euler's equations. Hence

with similar expressions for Q and R.

255. Ex. If G be the centre of gravity of the body, show that the terms on

the left-hand sides of the equations which give the pressures on the fixed point are

the components of two forces, one fi^ . (jn parallel to GH which is a perpendicular

on the instantaneous axis 01, ft being the resultant angular velocit}^ and the other

ft'2 . GK perpendicular to the plane OGK, where GK is a perpendicular on a line OJ

;,-.' .• 1 . -6-C C-A A-B
whose direction-cosines are proportional to —v— WoWo, —^— WoWi, —pp-WjOJo,

A a Li

and Q'-^ is the sum of the squares of these quantities.

256. Euler^s geometrical equations. To determine the

geometrical equations connecting the motion of the body in space

with the angidar velocities of the body about tJie three moving axes,

OA, OB, 00.
Let the fixed point be taken as the centre of a sphere of

radius unity ; let X, Y, Z
and ^, P, be the points

in which the sphere is

cut by the fixed and
moving axes respec-

tively. Let ZC, BA pro-

duced if necessary, meet
in E. Let the angle

Z^C^^/r, ZC=d, EGA
= (^. It is required to

determine the geometri-

cal relations between 6^

(p, '\jr, and (Oi, &)2, ft)3-

Draw ON perpendi-

cular to OZ. Then since

yjr is the angle the plane

COZ makes with a plane

XOZ fixed in space the.

1

I
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velocity of G perpendicular to the plane ZOC is CN -^ , which

is the same as sin^-^, the radius 00 of the sphere being unity.

JAlso the velocity of along ZG is --,-. Thus the motion of is

[represented by -77 and sin^-^ respectively along and perpendi-

jcular to ZG. But the motion of is also expressed by the angular

'velocities (o^ and w^ respectively along BG and GA. These two

representations of the same motion must therefore be equivalent.

Hence resolving along and perpendicular to ZG we have

— = ftjj sm <p + &)2 cos 9

sin ^ -^ = — 0)1 cos <^ + 0)2 sin <^

Similarly by resolving along GB and GA we have

a„ = ^sm<#,-^sm^cos<^

Wo = -T- COS + -T- sm ^ sin 6
dt dt

These two sets of equations are equivalent to each other and

one may be deduced from the other by an algebraic transformation.

In the same way by drawing a perpendicular from E on OZ we

may show that the velocity of E perpendicular to ZE is -7- sin ZE,

and this is* the same as -~ cos 6. Also the velocity of A relative
dt ^

.

^

to E along EA is in the same way -^ sin GA, and this is the

d<b
,

same as -—
. Hence the whole velocity of A in space along AB

\ is represented by -^ cos 6 + —^
. But this motion is also ex-

pressed by &J3. As before these two representations of the same
motion must be equivalent. Hence we have

If in a similar manner we had expressed the motion of any
other point of the body as B, both in terms of Wi, co^, w^ and
\d, (j), yjr, we should have obtained other equations. But as we
cannot have more than three independent relations, we should

ionly arrive at equations which are algebraic transformations of

those already obtained.

257. It is sometimes necessary to express the angular velocities of the body-

about the Jkfced axes OX, OY, OZ in terms of 6, (p, xp. This may be effected in the

R. D. 14
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following manner. Let w^., w^, Wg be the angular velocities about the fixed axes,

fi the resultant angular velocity. If we impress on space and also on the body in

addition to its existing motion, an angular velocity equal to - fi about the resultant

axis of rotation, the axes OA, OB, OC will become fixed, and the axes OX, OY, OZ
will move with angular velocities - w^ , - Wy , - w^ . Hence, in the formulae of the

text, if we change into - \p, d into - 0, xp into - 0, w^ , u^, W3 will become - cj^

,

-uiy, -o}g, and we have

where the standard figure is that shown in Art. 256.

258. Ex. 1. If p, q, r be the direction-cosines of OZ with regard to the axes

OJ, OB, OC, show that two of Euler's geometrical equations may be put into the

symmetrical form

The last of these may be obtained by differentiating the last of the expressions

}}= - sin 6 cos (p, 5 = sin 6 sin <p, r= cos d, and substituting for ddjdt from Art. 256.

The others may be inferred by the rule of symmetry.

Ex. 2. Prove that the direction-cosines of either set of Euler's axes with regard

to the other are given by the formulae

cos XA = - sin;// sin 4- cos 1// cos cos 1

cosF^= cos 1// sin + sin t^ cos cos I

cos ZA = - sin 6 cos

1
cos XB= - sin ^ cos - cos

\f/
sin cos d^

cos YB= cos xp cos - sin ;// sin cos

cos ZB = sin d sin

cos XC=: sin ^ cos ^"^

cos YC = sin ^ sin ^i- V .

C08 ZG= cos 6 J

To prove the first three, produce XY to cut AB in 31, then the angle XMA = d,

MY=\p, MX=90 + \I/,
MA=90-c(). To deduce the second set from the first, write

4. ^TT for 0. These results are given here for reference as they are useful in the

higher problems of dynamics.

259. Small oscillations. It is clear that instead of referring the motion of

the body to the principal axes at the fixed point, as Euler has done, we may use any

axes fixed in the body. But these are in general so complicated as to be nearly

useless. When, however, a body is making small oscillations about a fixed point,

so that some three rectangular axes fixed in the body never deviate far from three

axes fixed in space, it is often convenient to refer the motion to these even though

they are not principal axes. In this case w^, Wo, Wg are all small quantities, and we

may neglect their products and squares. ' The general equation of Art. 252 reduces in

this case to Cwg - Dcig - -Ewi= iV, whei'e the coefficients have the usual meanings

given to them in Chap. i. We have thus three linear equations which may be

written thus

:

Au}^-F<b2-Eu}3= L, -Fu}^ + B6}2-D<J^=M, -EC}^-Du}^+CC}.^= N.

260. Tlie centrifugal forces. It appears from Euler's Equations that the

Tvhole changes of w^, w^, W3 are not due merely to the direct action of the forces,
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but are in part due to the centrifugal forces of the particles tending to carry them
away from the axis about which they are revolving. For consider the equation

du}., N A-B
_3 _= -^ +

dt G
N

Of the increase du^ in the time dt, the part — dt is due to the direct action of
G

A-B
the forces whose moment is N, and the part Wi^odt is due to the centrifugal

C
forces. This may be proved as follows.

If a body be rotating about an axis 01 loith an angular velocity u, then the

moment of the centrifugal forces of the lohole body about the axis Oz is {A -B) w^Wg-

Let P be the position of any particle m, and let x, y, z be its coordinates. Then
x = OR, y^RQ, z = QP. Let FS be a perpendicular on OL let OS:=n, and PS= r.

Then the centrifugal force of the particle m is oPrm tending from 01.

The force w^rm is evidently equivalent to the four forces ur^xm, u^ym, u^zm, and
- u^um acting at P parallel to x, y, z, and u respectively. The moment of w^xm
round Oz is - w^xym, while that of iJ^ym is the same with an opposite sign. The
moment of ui^zm round Oz is zero. These three therefore produce no effect.

The force - bj^uvi parallel to 01 is

equivalent to the three, - uw^um,
- wcjoUm, - ojoj^um, acting at P parallel

to the axes, and their moment round

Oz is evidently uwn (wj?/ - a;2ic). Now
the direction-cosines of 01 being ajj/o;,

W2/W, Wg/w, we get by projecting the

broken line x, y, z on 01,

Wi Wo Wou= -^ X + — y + — z

;

www
therefore substituting for u, the

moment of centrifugal forces about

Oz is

= (wi2/ - (^2^) Ka; + w.^y + W32) m,

= {o}{'^xy + Wj W2i/^ + Wj oj.^yz — Wj Wga;^ - (jo^^y - oi^^^^^z) m.

Writing S before each term, and supposing the axes of x, y, z to be principal

axes, then the moment of the centrifugal forces about the principal axi« Oz

= Wj W2 Sj/i (7/2 - X^) = Wj Wo {A-B).

Let the moments of the centrifugal forces about the principal axes of the body

be represented by L' , M', N', so that

L' = (B-C) W2W3, i)i''=(C- J) W3W1, N'={A-B) u^ui^,

and let H be their resultant couple. This couple is usually called the centrifugal

couple.

at right angles to the instantaneous axis.

Describe the momental ellipsoid at the fixed point and let the instantaneous

axis cut its surface in I. Let OL be a perpendicular from on the tangent plane

at I. The direction cosines of OL are proportional to ^w^, J5w2, Cwg. Since

Aw-iL' + Bu^M'+Cu}^N' = 0, it follows that the axis of the centrifugal couple is at

right angles to the perpendicular OL. The plane of the centrifugal couple is

therefore the plane lOL,

14—2
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If jxk^ be the moment of inertia of the body about the instantaneous axis of

rotation, we have fxli^= KIOT^ as in Art. 19, and T— fik^w'^ is the Vis Viva. We may
then easily show that the magnitude H of the centrifugal couple is H=Ttan(p,
10 here (p is the angle lOL.

This couple will generate an angular velocity of known magnitude about the

diametral line of its plane. By compounding this with the existing angular

velocity, the change in the position of the instantaneous axis may be found.

Expressions for Angular Mome^itum.

261. We may now investigate convenient formulae for the

angular momentum of a body about any axis. The importance
of these has been already pointed out in Art. 75. In fact, the

general equations of motion of a rigid body as given in Art. 78,

cannot be completely expressed until these formulae have been
found. There are two general methods of proceeding.

First, we may refer the motion to three axes Ox, Oy, Oz fixed

in space. To effect this we must discover some sufficiently simple

expression for the angular momentum about a fixed straight line

in terms of the coordinates of the body (Art. 73). We then use

the general principle proved in Art. 78,

d /Angular momentum about\ /moment of im-\

dt\ a fixed straight line / V pressed forces /
'

Secondly, we may refer the motion to some convenient system

of rectangular moving axes. Let Aj, h^, h^ be the angular momenta
about three rectangular axes OA, OB, OC. Let L, M, N be the

moments of the impressed forces about these axes. Since momenta
can be compounded and resolved by the parallelogram-law we have

by Art. 250
dhj/dt — /«2^3 + KO2 = L,

dh^jdt - hd^ + h^e^ = M,

dhs/dt - Ai^2 + KOi = A^.

262. Angular Momentum about the axis of z. The
instantaneous motion of a body about a fixed point is given by the

angular velocities cox, coy, coz about three axes which meet at the

poiyit, find the angular momentum about the axis of z.

Let X, y, z be the coordinates of any particle m of the body,

and u' , v, w the resolved velocities of that particle parallel to the

axes. Then by Art. 77 the moment of the momentum about the

axis of z is h^ = Sm {xv — yu).

Substituting u'=(OyZ—(Ozy, v'=^ii}zX—WxZ from Art. 238, we have

/^. = Si7i {x^ + y^) coz — (Xmxz) Wx — (2myz) coy.
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Similarly the angular momenta about the axes of oo and y are

/ii = Xm (y^ + z^) (Ox — {%mxy) Wy — (^mxz) coz,

h^ = Sm {z^ + x^) coy — (Emyz) co^ — (Emyx) cox.

Here the coefficients of eox, coy, coz are the moments and products

of inertia about the axes which meet at the fixed point.

263. If there be no fixed point in the body we must use all

the six components of motion. The form of the result depends
on the point which is chosen as the base. The form is much
simplified by choosing the centre of gravity as the base point,

and for the reasons given in Arts. 74, 75 this is generally the

most convenient point.

Let Oz be the axis about which the angular momentum is

required, and let Ox, Oy be two other axes, thus forming a set

of rectangular axes. Let x, y, z be the coordinates of the centre

of gravity. Let the instantaneous motion of the body be con-

structed (as in Art. 238) by the linear velocities u, v, w of the

centre of gravity parallel to the axes of reference and the angular

velocities Wx, Wy, coz round three parallel axes meeting at the

centre of gravity.

By Art. 75 the angular momentum about Oz is equal to that

about a parallel axis through the centre of gravity regarded as

a fixed point together with the angular momentum of the whole
mass collected at the centre of gravity. The former of these

has been found in the last Article and the latter is obviously

M (xv — yu). The required angular momentum is therefore

M (xv — yu) + Sm (x^ + y^) (Oz — (Xmxz) Wx — {Xmyz) coy.

Here M is the whole mass of the body, and the coefficients of

cox, (Oy, (Oz are the moments and products of inertia about axes

which meet at the centre of gravity.

264 Moving axes. When the axes of reference are moving
in space, the motion of the body during any time dt is constructed

by using the components of motion as if the axes were fixed

for the moment in space. See Art. 248. In the expressions just

given for the angular momentum the axes, regarded as fixed in

space, may be any whatever. Let them be chosen so that any
set of moving axes coincides with them at the time t. Then these

formulae will express the angular momenta about the moving
axes at that particular moment, whether they continue to occupy
the same positions in space or not. The formulae are therefore

quite general and give the instantaneous angular momenta whether

the axes are fixed or not.

If the axes chosen are fixed in space the coefficients of (o^, ony,

(Oz in the expression for h^ are generally variable and their changes

may be governed by complicated laws. In such a case it is more
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convenient to choose axes fixed in the body, and this is the choice

made by Euler in his equations of motion, Art. 252.

Suppose a body to be moving about a fixed point 0, and
let its instantaneous motion be given by the angular velocities

ft)i, 0)2, 0)3 about axes Oa)\ Oy', Oz' fixed in the body. Then the

angular momentum about the axis of z is

h^ — Gw^ — Ecoi — -Do).2,

where C, E and D are absolute constants, viz.

G = ^m {x'"^ + y'"^), E = ^'\nxz\ D — '^my z'.

If the axes fixed in the body are principal axes, the products

of inertia vanish. The expressions for the moments of the momen-
tum then take the simple form

h-^ = -4 o)i , h^ = B(02 , hs = Gcos

,

where A, B, G are the principal moments of the body at the

origin supposed to be fixed in space.

We may thus obtain a new proof of Eiders equations. Substi-

tuting these values of the angular momenta for Aj, h^, h^, in the

equations of moving axes (Art. 261), the first becomes

I (Aco,) - {Bay,) 6, + (Geo,) 6, = L. '

Since the moving axes are fixed in the body 6.2 = 0)2, 6, — 0)3

(Art. 250) and this equation takes the Eulerian form

Adwjdt — {B - G) 0)20)3 = L.

This proof may appear to be shorter than that given in Art. 252, but the two

proofs are really the same. Both depend on a case of the fundamental theorem

of moving axes (Arts. 249, 250). One proof requires the substitution of x, y, the

other requires the equivalent substitution of u', v' (Art. 262).

265. Working rule to find the angular momenta of a moving
body about a system of axes Ox, Oy, Oz fixed or moveable.

Supposing the body to be turned about a fixed point 0, we
search for a system of axes Ox', Oy', Oz such that we may easily

find the angular momenta about them. These will generally be
some axes fixed in the body, and the angular momenta A/, ho, h^
are then given in the last article.

Let the direction-cosines of either system of axes with regard

to the other be given by the diagram as in Art.

217. Then since momenta follow the parallelo-

gram-law, the angular momentum about the axis

of ^ is

A3 = h-[ao^ 4- h^b, 4- Ag'cg.

The simplicity of this process depends on the

proper choice of the subsidiary system of axes

X y z

x! ttl a. as

y\
b. b. b.

z Ci C.2 Ca
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Ox\ Oy\ Oz' . Generally the most convenient axes are the
principal axes of the body at 0. In this case, we have

We have yet to express co^, CO2, o)^: as, 63, c^; in terms of the

coordinates of the body, Art. 73. If these coordinates are the

Eulerian angles 6, <^, yfr their Eulerian values are given at length

in Arts. 256, 258.

266. When the body is uniaxal, so that two principal moments

of inertia A and B are equal, two simple expressions can be found
for the angular momenta about the axes Ox, Oy, Oz.

First. Let two of the coordinates of the body be the Eulerian

angles 6, -v/r of the axis of symmetry. Referring to the figure of

Art. 256, let the axes Ox, 0/ coincide with OE, OC; then =
and we see by a simple inspection of the figure that oj^ = — -^^ sin 6,

0)2= ^. The angular momenta about Ox, Oy' , Oz being Aw^;A(£)2,

Gcos we have by a simple resolution

hi = A \ — sin yjr -^ — sin. 6 cos cos yjr -,y l + Gcos sin 6 cos yfr,

h2 = A\ cosi/r-^ — sin^cos^sin'^/r-^l + (7ft)3sin^sini/r,

h.i = A sin^0^+ Ccos cos 0.

We might substitute for 0)3 its value given by Euler's third

geometrical equation, but this would introduce d(f>/dt into the

equation, and it will generally be found more convenient to

retain (03.

In this way the angular momenta of a uniaxal body about any
straight lines are expy^essed in terms of the direction-angles of the

axis of the body and the angular velocity about it.

Secondly, instead of the unsymmetrical coordinates 6,
^J/
we may use the direc-

tion-cosines ^, T], ^ of the axis of the body. Following the rule of Art. 76 we shall

replace the body by a system of equimomental particles. Suppose we attach to the

axis OG one or more imaginary particles so that their united moment of inertia

about any axis through perpendicular to OC is equal to A. Let these particles

move about with the axis. The motion of the axis is given by the angular velocities

Wj, 0^2 and therefore the angular momenta of these particles about the axes OA, OB
are clearly Aui, Aco^. These are the same as those of the body. Tlie angular

momentum of the particles about OC is zero. Hence the angular momenta of the

body about OA, OB, OC are the same as those of the particles together with

an angular momentum Cw^ about OC. It follows by the "parallelogram law"

that the same equality holds for all axes.

Hence the angular momentum of a uniaxal body about any axis through is the

same as that of one or more particles arranged along its axis offigure {so that tlj^eir

united moment of inertia about a perpendicular axis through is equal to A)

together with the angular momentum Cwg about the axis of figure.
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Let a single particle be placed on the axis of the body at a distance unity from

the origin. Its mass is therefore represented by ^. Let (^Tjf) be the coordinates

of this particle referred to the axes x, y, z, then {^tj^) are also the direction-cosines

of the axis. The angular momenta about the axes of coordinates are therefore

*>=Hvf-4l)+''-«

"-^(f|-40+^-""

-^(4J-
di

+ Gu,.t.

If we wish to use 6, 0, \p instead of the direction-cosines ^, 77, ^ we write for

^, 17, f their values ^= sin ^ cos 1/', T7=:sin ^sini/', ^=cos^. The substitution in the

last equation is easily effected if we remember the rule in the differential calculus

^dri-7jd^= r'^d\f/. See Art. 77. We then arrive at the same results for the angular

momenta h-y, h^, h^ as before.

If the uniaxal body is making small oscillations and the axis OC is always so

nearly coincident with the axis Oz that we can reject the squares of d, we have

dv ^ u , . d^
f^i=-^-:d+^<^s^^ h=A£ + CiOsV,

These are very simple formulsG for the angular momenta about the fixed axes.

If the body is moving freely in space we use the centre of gravity instead of the

fixed point. In this case it is convenient to attach to the axis tioo equal particles

at equal distances on each side of the centre of gravity, so that the centre of

gravity of the imaginary system is the same as that of the body. The angular

momentum of the free body about any straight line is then the same as that of the

system of particles together with the couple Cw.^ about the axis.

Ex. 1. A body not necessarily uniaxal is turning about a fixed point 0. Three

particles are attached to the principal axes at such distances a, b, c from that

Ma'^= l{B + G-A), Mb'^= ^{C + A-B), Mc^= i {A+B - C).

Prove that the angular momentum of the body about any straight line through is

equal to that of these particles. This follows at once from Art. 76.

Ex. 2. A rod is constrained to remain on the surface of a smooth cone of

revolution having its vertex at the point of suspension of the rod. Show that the

angular motion of the rod round the axis of the cone is the same as that of a

simple pendulum of length fa sin a/sin j3 where a is the length of the rod, a the

semiverticaj angle of the cone and /3 the angle the axis of the cone makes with

the vertical. [St John's Coll.

To find the moments of the effective forces, collect the mass at an equimomental

point. To find the moments of the impressed forces collect the mass at the

centre of gravity. Equating the moments about the axis of the cone the result

follows at once.

Ex, 3. A body is turning about a fixed point and has all its principal

moments of inertia at equal. If 6, 0, i/' be the Eulerian coordinates of the axes

OA, OB, OC, fixed in the body, show that the angular momenta about the axes
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fixed in space are respectively

fdyp d<b\
h^ = A { - sin \pd + sin d cos

\l/4>), K-A (cos i/z^ + sin ^sirn/'^), h^= A [~ +cos^-^j.

267. Ex. 1. The motion of a body is given by the linear velocities {u, v, id) of

the centre of gravity and the angular velocities (w^., Uy, w^), prove that the angular

J* ^ 21 flf Z ?l

momentum about the straight line—r— = = is equal to^
I m n

Ih^ + mh^ + nh^ +M I, m, n

U, V, 10

f, g. h

where M is the mass of the body, h^, h^, h-^ have the values given in Art. 262, and

{I, m, n) are the actual direction-cosines of the given straight line.

This may be done by the use of the principle proved in Art. 75. The angular

momentum about a parallel to the given axis is clearly lh-^^-\-mh^-\-nhy We must

now find the angular momentum of the whole mass collected at the centre of gravity

round the given straight line and add these two results together.

Referring to the figure in Art. 238, let P be the point [fgh). Let us find

the angular momentum about a set of axes parallel to the given coordinate axes

with P for origin. It is clear that NP produced will be the new axis of z. The

moment of the velocity of the origin about NP is seen to be u. MN-v . OM,

which is the same as ug - vf ; this tends in the positive direction round NP.

Similarly the moments of the velocities of about the parallels to x and y will be

vh-wg and wf-uh. If we multiply these three by (?i, I, m) respectively, we have

the moment of the velocity of the centre of gravity about the straight line.

Multiplying this by 31 we have the angular momentum of the mass at the centre of

gravity. The required result follows at once.

Ex. 2. To find the angular momentum of a body about the instantaneous axis

and also about any perpendicular axis lohich intersects the instantaneous axis.

Taking the instantaneous axis for the axis of z, we may use the expressions for

7?i, h^, 7*3 given in Art. 262.

In our case 0)3. = 0, a>y= 0, and w^=0, where fl is the resultant angular velocity

of the body. The angular momenta about the axes of x, y, z are therefore respec-

tively \= - {"Lrnxz) 12, h^=- {^myz) Q, h^^'Zm (x^ + y^) fi.

It appears therefore that the angular momentum about any straight line Ox

perpendicular to the instantaneous axis Oz is not zero unless the product of inertia

about those two axes is zero.

To understand this properly we must remember that the angular velocities

w^, u}y, u}g are used merely to construct the motion of the body during the time

dt. Referring to the figure of Art. 238, let Oz be the instantaneous axis, then the

particle of the body at P is moving perpendicular to the plane PLO, and therefore

the direction of its velocity is not parallel to Ox and does not intersect Ox. The

velocity of this particle has therefore a moment about Ox, although Ox is perpen-

dicular to the instantaneous axis. Let d be the angle PMN, r= PM, then

?-2^ = yz - zy = r^w^ - xziOg — xyojy
,

so that the angular velocity d of the particle P about Ox vanishes when Wj.= and

i>}y= 0, only when the particle lies in either of the planes xy or yz.
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Ex. 3. A straight line OL turns about a fixed point O so that— =A'' where h is

the angular momentum of a body and N the moment of the impressed forces

about OL. Prove that every point of OL is moving perpendicularly to the plane

which contains it and the resultant axis of angular momentum at 0.

Ex. 4. A triangular area AGB whose mass is M is turning round the side CA
with an angular velocity w. Show that the angular momentum about the side

GB is ^^Mab sin^ Cu, where a and 6 are the sides containing the angle C.

Ex. 5. Two rods OA, AB, are hinged together at A and suspended from a fixed

point 0. The system turns with angular velocity w about a vertical straight line

through O so that the two rods are in a vertical plane. If 6, be the inclinations

of the rods to the vertical, a, h their lengths, M, M' their masses, show that the

angular momentum about the vertical axis is

w [{^M+ M') a- sin2 d + M'ah sin ^ sin + ^M '62 siu^ 0].

Ex. 6. A right cone, whose vertex is fixed, has an angular velocity w com-
municated to it about its axis OC, while at the same time its axis is set moving
in space. The semi-angle of the cone is ^ir and its altitude is h. If d be the

inclination of the axis to a fixed straight line Oz and ^j/ the angle the plane zOG
makes with a fixed plane through Oz, prove that the angular momentum about

Oz is |il//i2 / sin^ ^ -^ + 1 w cos ^
|

, where M is the mass of the cone.

Ex. 7. A rod AB is suspended by a string from a fixed point O and is moving
in any manner. If {I, vi, n) {p, q, r) be the direction cosines of the string and rod

referred to any rectangular axes Ox, Oy, Oz, show that the angular momentum
about the axis of z is

nT^ofidm dl\ ^^a?- [ dq dp\ ,^ab / dm dp ,dq dV

V dt dtj 'dYdt ^dtj 2 Y dt dt dt ^dt^

where M is the mass of the rod, and a, b are the lengths of the rod and string.

268. As examples of the use of the expressions for the

an'gular momentum of a body we shall apply them to the solution

of two problems on the motion of a body in three dimensions.

In these the axes of reference are fixed in space, the use of

moving axes being reserved for the present. For further informa-

tion we must refer the reader to the second volume where a

whole chapter is devoted to examples and illustrations of the

different methods of finding the motion of a body in three dimen-
sions.

Problem I. A uniaxal top spins on a perfectly rough table with its axis nearly

vertical, find the small oscillations of the top *.

Let be the apex, OC the axis of the top. Let C and A be the moments of

inertia about the axis OC and any perpendicular to OC through 0. Since the

centre of gravity G of the top is in its axis, the impressed forces have no moment
about OC. Also A = B, hence by Euler's third dynamical equation Cw^= Q.

* The general motion of a top under the action of gravity will be considered in

the second volume. The small oscillations of unsymmetrical and inclined tops will

be found in that volume. A slight historical account will also be given.
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?hu« the angular velocity of the top about its axis is always the same. Let

=nhe this constant angular velocity.

Let ^, f), ^ be the direction-cosines of OC referred to

ixed axes in space, viz. Ox, Oy, Oz where Oz is vertical.

ince the axis of the top is to be always very nearly

ertical we have ^=1 while f, rj are small quantities

hose squares will be neglected. Let l = OG, and let

he mass be represented by unity.

The moments of gravity acting at G round the axes

}i X, y are found by the usual formulae

L^yZ-zY=-lgr,, M=zX~xZ= lg^,

(There X=0, Y=0, Z= -g are the components of gravity. The angular momenta

>f the body about these axes are by Art. 266,

1i-^= - At} + Cn^, h2=A^ + Cnr{.

3ince these axes are fixed in space we have

-A'r}+Cnl=- glr), A^ + Cnrj = gl^.

Che equation obtained by using the angular momentum about the axis of z merely

ihows over again that Wg is constant, a result already deduced from Euler's

equations.

To solve these we put ^ =P cos {fxt+f), r)=Q sin {/xt+f)',

substituting we find

{Afx^ + gl)Q-C7iu.P= 0, CnfMQ-{Afi^ + gl)P^O.

Chese give Aijfi + gl= ^Cnfi.

'i is unnecessary to take both the signs on the right-hand side. If we choose one

dgn the effect of the other sign is merely to change the sign of fi and this merely

liters the as yet undetermined constants Q and /. Without loss of generality we
nay choose the upper sign. This makes both the resulting values of fi positive.

[t also gives P = Q. The values of
fj,

are

2An=Cn^ {Chi^-'igAl)^.

Representing these two by /i= Mi and ^Ug we have

^ = Pj cos (;Ui< 4- /i) + P2 cos (ac2< + /o)

7} = P^sin {fi^t + f-^)+Po sin (fi^t + f^)

.vhere Pj, Po, /i ,/2 are four constants to be determined by the initial values of ^, 77, |, fj.

Let us represent the initial values of the coordinates by the suflBx zero. Then

lo =A cos/i + Pg cos /2

,

- lo = Pj^i sin /^ + P2^2 sinA

,

77o
= Pi sin /i + P2 sin /o

,

r?^= P^fj.^ cos /i -f P^fx^ cos /g

.

rhese give

If 6, \p be the angular coordinates of the axis we have

e2^^2 + ^2^p^2 + p^2 + 2P,P2COs{(Mi-/*2)« + /l-/2}

e^^ = ^ri- ky} = i^lVl + ^2^2 + P1P2 [H + M2) COS
{ (/Xi - M2) « + /l -/2 } •

Supposing Pj and P2 not to be equal we see that 6 can never vanish, i.e. the axis of

the top can never become strictly vertical. Also \p will never vanish unless

P1P2 (/x,i + /A2) is greater than P1V1 + -P2V2' i-^- ^^^ plane ZOG will revolve round OZ
always in the same direction or with temporary reversions of direction according as

P1/P2 does not or does lie between fi^lfJ-i and unity.
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In order that P^ = P.2 it is necessary that initially

This requires that \j/ should initially differ from | {/Xj + /j.^) by small quantities of

the order P. In this case \j/ will keep one sign throughout the motion and the axis

will become vertical at a constant interval equal to 27rj{fx^ - fx^i.

We have assumed that the values of /i are both real and unequal. If the value

of n be so small that the values of ix are imaginary, the values of | and t) will

contain real exponentials. In this case the values of ^ and 77 do not in general

remain small. This indicates that the top has not sufficient rotation about its axis

to keep the axis vertical. It will begin to fall away from the vertical position, but

its subsequent motion has not been investigated here.

If C^n^ — AgAl the two values of n are real and equal. In this case it will be

seen tha* the equations are satisfied by

^= Pj cos (/it + /i) + P2« cos {/xf + /a)

77= Pi sin [fit + /i) + Pgt sin {fxt + f.^)

.

The original disturbance of the top has been supposed to be of the first order of

small quantities. As time goes on the top will deviate from the vertical until ^, rj

become so large that their squares cannot be neglected, that is until they become

large when compared with the original disturbance. The subsequent motion has

not here been investigated and the axis of the top might afterwards return to the

immediate neighbourhood of the vertical. See Vol. 11., Art. 202 g.

Ex. A uniaxal body rotates about its axis with an angular velocity n. Two
inextensible strings are attached to two points on the axis at distances, each equal

to b, from the centre of gravity G of the body. The other extremities of the strings

are attached to two points fixed in space. The length of each string is a and its

tension is T. The mass of the body is unity. Prove that the period 2irjp of the

linear oscillations of G is given by ap^= 2T, while the periods 2Trlq of the angular

oscillations of the axis are given hy Aq^- Cnq = 2r (a + h) bja. [See Vol. 11. , Art. 15.

269. Problem II. To find the motion of a sphere on a perfectly rough plane.

Let the plane be taken as the plane of xy and let F, F' be the frictions at the

point of contact resolved parallel to these axes. Let X, Y be the resolved impressed

forces which we shall suppose to act through the centre. Let a be the radius of

the sphere, A; its radius of gyration about a diameter and let its mass be unity.

Consider the diameters parallel to the axes of x and y. The angular momenta
about them are fc^Wj and k^u}.^. These

directions are fixed in space, hence we

have by Art. 78 or 261,

k^6}e> Fa.

y F'

the plane does not slide u - 1

Eliminating F, F', w^ and Wo we find

]c-C}^ = F'a,

If u and V be the velocities of the

centre of gravity parallel to the axes

u =X^F, v=Y+F'.

Also since the point of contact with

= 0, v + a(j3^ = 0.

du _ a^ dv

di~a^Tl^ ' di

These are the equations of motion of a

rotation on a smooth plane under the action of the same forces but reduced in

the ratio a^l{a^+k'^). Since k^= ^a^ we may enunciate this result as follows.

a^ + k^

phere moving as a particle without
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If a homogeneous sphere* roll on a rough fixed plane under the action of any

forces whatever, whose resultant passes through the centre of the sphere, the motion

of the centre is the same as if the plane were smooth, and all the forces were reduced

to five-sevenths of their former value.

Ex. 1. If the coefficient of friction is greater than ^RjZ where R is the re-

sultant impressed force parallel to the plane and Z the normal force, prove that

the friction will always be sufficient to prevent the sphere from sliding.

Ex. 2. A sphere is placed on an inclined plane sufficiently rough to prevent

sliding, and a velocity in any direction is communicated to it. Show that the

path of the centre will be a parabola. If V be the initial horizontal velocity of

the centre, a the inclination of the plane to the horizon, the latus rectum will be

147-/5/7 sin a.

Ex. 3. A homogeneous sphere rolls on a perfectly rough plane under the action

of a force varying inversely as the square of the distance from a point in the plane

of motion of the centre, prove that its centre describes a conic section; and if, when
the distance of its centre from the centre of force is one-quarter of the major axis

of its orbit, the sphere come to a smooth part of the plane, the major axis of the

orbit will be suddenly reduced to 7/13 of its former value. [Trin. Coll.

Ex. 4. A homogeneous sphere moves, without rotation, on a smooth horizontal

plane, under the action of a central force such that the centre of the sphere describes

an ellipse with the centre of force in the focus. If the sphere arrive at a part of

the plane which is perfectly rough when the distance of its centre from the centre

of force is l/7ith of the major axis of its orbit, show that the major axis is diminished

in the ratio 7:5 + 2n. If the sphere come again to the smooth part of the plane

when the distance of its centre from the focus is the same fraction as before of the

major axis, the major axis is again diminished in the same ratio.

Ex. 5. Two spheres equal in volume but of different masses attract each other

according to the law of nature and roll on a rough plane. Show that they each

describe ellipses relatively to their common centre of gravity with that point for

a focus.

Ex. 6. A uniform circular disc is rotating in its own plane with very large

angular velocity about its centre O which is fixed. Prove that if a tap be given to

the disc in a direction perpendicular to its plane, at a point A, the diameter

through A will approximately describe a plane slightly inchned to the original

position of the plane of the disc, while the diameter at right angles to it will describe

the same plane as before. [Math. Tripos, 1903.

270. The principal axes are generally chosen as the axes of reference because

the moments of the effective forces for these are extremely simple. Thus the

somewhat long equations of Art. 252 reduce to the simple Eulerian forms when
referred to principal axes. But sometimes it is important to choose other axes

which suit better the geometrical conditions of the problem. The discussion of

such axes is reserved for the second volume of this treatise. But when the motion
is steady, so that the angular velocities are constant, the unreduced equations of

Art. 252 will sometimes take so simple a form that an easy solution can be found.

* This theorem was given by the author as a problem in the Mathematical

Tripos 1860 ; see the solutions for that year. Another demonstration is given in

the second volume by which a corresponding theorem is obtained for the case in

which the sphere rolls on another sphere.
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Ex. A heavy body is attached by two hinges to a horizontal axis about lohich it is

capable of moving freely. The axis is made to rotate ivith a uniform angular velocity w
about a vertical axis intersecting it in a point O. It is required to find the conditions

that the body may be inclined at a constant angle to the vertical.

Let the horizontal axis which is fixed in the body be taken as the axis of z.

Then the vertical lies in the plane of xy, let it make angles 6 and \ir - 6 with the

axes of X and y. The whole system turns round the vertical with an angular

velocity w. Hence by resolution ajar= wcos^, Wy = wsin^, Wg= Q. Remembering
that these angular velocities are constant, the general equation of moments of

Art. 252 becomes - 'Lynxy (w^;- - w^') + Sm [x'^ - y^) WxWy= N.

To find N, we resolve the weight Mg parallel to the axes, then X= -Mg cos 0,

Y= - Mg sin 6, Z= 0. If {x, y, z) be the coordinates of the centre of gravity we have

N=xY-yX. The required relation between w and 6 is therefore

oP {cos Id^mxy - \ sin 2^2m (x- -y'^)}= Mg [x sind-y cos 6).

The integrals Zmxy and "Zm (x^-y-) can be expressed in terms of the moments
and products of inertia of the body in the usual manner.

Problems on steady motion may often be easily solved by a direct application of

D'Alembert's principle. Thus, in the problem just discussed, each element of the

body describes with uniform angular velocity a horizontal circle whose centre is in

ihe vertical axis. If r be the radius of this circle the effective force on the element

is mo?r and its direction is along the radius. The body may therefore be regarded

as being in equilibrium under the action of its weight and a system of forces acting

directly from the vertical axis and varying as the distance from that axis. The
equation found above may be obtained by taking moments about Oz.

Ex. 1. If the body be pushed along the axis of z and made to rotate about the

vertical with the same angular velocity as before, show that no effect is produced on
the inclination of the body to the vertical.

Ex. 2. If the body be a heavy disc capable of turning about a horizontal axis Oz
in its own plane, show that the plane of the disc will be vertical unless lt^iJ^>gh^

where h is the distance of the centre of gravity of the disc from Oz and A; the radius

of gyration about Oz.

Ex. 3. If the body be a circular disc capable of turning about a horizontal axis

perpendicular to its plane and intersecting the disc in its circumference, show that

if the tangent to the disc at the hinge make an angle d with the vertical, the angular

velocity w is given by ui^a sin d= g.

Ex. 4. Two equal balls A and B are attached to the extremities of two equal

thin rods Aa, Bb. The ends a and b are attached by hinges to a fixed point and
the whole is set in rotation about a vertical through as in the governor of the

steam-engine. If the mass of the rods be neglected show that the time of rotation is

equal to the time of oscillation of a pendulum ichose length is the vertical distance

of the centre of either sphere below the hinges at 0.

Ex. 5. If in the last example m be the mass of either thin rod and M that

of either sphere, I the length of a rod, r the radius of a sphere, h the depth of either

centre below the hinge, then the length of the pendulum is— M{l + rf + \mll^

l + r M{l + r) + ^ml

ON FINITE ROTATIONS.

271. When the rotations to be compounded are finite in magnitude, the rule

to find the resultant is somewhat complicated. As already mentioned in Art. 229

.such rotations are not very important in rigid dynamics. We shall therefore only
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briefly mention a few propositions which may throw light on those already discussed

when the motion is infinitely small. We begin with the proposition corresponding

to the parallelogram of angular velocities.

Rodrigues' Theorem. A body has tivo rotations, (!) a rotation about an axis

OA through an angle 6 ; (2) a subsequent rotation about an axis OB through an angle

6', and both these axes are fixed in space. It is required to compound the rotations.

Let lengths measured along OA, OB represent the directions of these rotations

in the manner explained in Art. 231.

Let the directions of the axes OA, OB cut a sphere whose centre is at in ^
and B. On this sphere measure the angle BAC equal to \d in a direction opposite

to the rotation round OA and also

the angle ABC equal to \d' in the C'

same direction as the rotation ,^'' ""-^^

round OB, and let the arcs inter- ,.--' ^"^^^

sect in C. Lastly, measure the

angles BAG', ABC respectively

equal to BAC, ABC, but on the

other side of AB.

The rotation d round OA will

then carry any point P in OC into

the straight line OC, and the sub-

sequent rotation d' about OB will

carry the point P back into OC. Thus the points in OC are unmoved by the

double rotation and OC is therefore the axis of the single rotation by which the

given displacement of the body may be constructed. The straight line OC is called

the resultant axis of rotation. If the order of the rotations were reversed, so

that the body was rotated first about OB and then about OA, the resultant axis

would be OC.

If the axes OA, OB were fixed in the body, the rotation d about OA would bring

OB into a position OB'. Then the body may be brought from its first into its

last position by rotations d, 6' about the axes OA, OB' fixed in space: Hence the

same construction will again give the position of the resultant axis and the rotation

about it.

271 a. To find the magnitude d" of the rotation about the resultant axis OC we
notice that if a point P be taken in OA, it is unmoved by the rotation 6 about OA,
and the subsequent rotation 6' about OB will bring it into the position P', where PP'
is bisected at right angles by the plane OBC. But the rotation d" about OC must
give P the same displacement, hence in the standard case 6" is twice the external

angle between the planes OCA, OCB. If the order of the rotations be reversed,

the rotation about the resultant axis OC would be twice the external angle at C,
which is the same as that at C. So that though the position of the resultant axis

of rotation depends on the order of rotation the resultant angle of rotation is

independent of that order.

2T2. A rotation represented by twice any internal angle of the spherical

triangle ABC is equal and opposite to that represented by twice the corresponding

external angle. For since the sum of the internal and external angles is tt, these

two rotations only differ by 27r ; and it is evident that a rotation through an angle

27r cannot alter the position of any point of the body. This is merely another way
of saying that when a body turns about a fixed axis it may be brought from one

given position to another by turning the body either way round the axis.
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273. The rule for compounding finite rotations may be stated thus :

If ABC he a spherical triangle, a rotation round OA from C to B through twice

the internal angle at A, followed by a rotation round OB from A to C through twice

the internal angle at B, is equal and opposite to a rotation round OC from B to A
through twice the internal angle at C.

It will be noticed that the order in which the axes are to be taken as we travel

round the triangle is opposite to that of the rotations.

We observe that the sine of half the angle of rotation about each axis is pro-

portional to the sine of the angle between the other tico axes.

As the demonstrations in Art. 271 are only modifications of those of Rodrigues,

we may call this theorem after his name. Rodrigues' paper may be found in the

fifth volume of Liouville's Journal.

Ex. If two rotations 6, 6' about two axes OA, OB at right angles be com-
pounded into a single rotation <p about an axis OC, then

tan CO.'l = tan ^^'cosec|^, tan COB= tan ^0 coseci^', and cos 10 = cos |^ cos J 5'.

274. Sylvester's Theorezn. From Rodrigues' theorem we may deduce

Sylvester's theorem by drawing the polar triangle A'B'C. Since a side B'C is

the supplement of the angle A, a rotation represented in direction and magnitude

by 2B'C' differs from that represented by 2A in the opposite direction by a rotation

through an angle 27r. But a rotation through 2ir cannot alter the position of the

body, hence the two rotations 2B'C' and 2A are equivalent in magnitude but opposite

in direction. If therefore A'B'C be any spherical triangle, a rotation represented

by twice B'C followed by a rotation twice CA' produces the same displacement of the

body as a rotation twice B'A'. By a rotation B'C is meant a rotation about an axis

perpendicular to the plane of B'C which will bring the point B' to C.

275. The following proof of the preceding theorem was given by Prof. Donkin
in the Phil. Mag. for 1851. Let ABC be any triangle on a sphere fixed in space,

a^y a triangle on an equal and concentric

sphere moveable about its centre. The sides

and angles of a^y are equal to those of ABC,
but differently arranged, one triangle being

the inverse or reflection of the other. If the

triangle a^y be placed in the position I, so

that the sides containing the angle a may be

in the same great circles with those contain-

ing -4 , it is obvious that it may slide along AB
into the position II, and then along BC into

the position III ; into which last position it

might also be brought by sliding along AG.
To slide a^y along AB is equivalent to

moving § and a each through an arc twice

the arc AB about an axis perpendicular to

the plane of AB. A similar remark applies when the triangle slides along BC or AC.

Hence, twice the rotation AB followed by twice the rotation BC produces the same

displacement as twice the rotation AC.

276. Rotation Couples. If it be required to compound the rotations about

two parallel axes, the construction of Rodrigues requires only a slight modification.

Instead of arcs drawn on a sphere, let planes be drawn through the axes making

with the plane containing the axes the same angles as before ; their intersection will

be the resultant axis. One case deserves notice. If ^= - 6', the resultant axis is at

I



ART. 277.] FINITE ROTATIONS. 225

an infinite distance. A rotation about an axis so situated is evidently equivalent to

a translation. It follows that a rotation 6 about any axis OA folloived by an equal

and opposite rotation about a parallel axis O'B is equivalent to a translation t in

some fixed direction.

Supposing the rotation about OA to precede that about O'B, we may apply the

theorem to any point on the axis OA. Since this point is not moved by the rotation

about that axis, it is evident that the translation t must be equal to and coincide with

the chord of the arc described by A when the system is rotated about O'B. The

translation is therefore equal to 2a sin 1 6 and its direction makes an angle ^{tr-d)

with the plane containing the axes OA and O'B ; see Art. 271 a.

We call to mind a corresponding theorem already proved in Art. 223. A rotation

6 about an axis OA is equivalent to an equal rotation about a parallel axis O'B

together with a translation. By the same reasoning as before we see that this

translation is equal to and coincides icith the chord of the arc described by B
when the system is turned round OA. In the same way, the translation, when

reversed, is equal to the chord of the arc described by A when the system is turned

round O'B.

276 a. A simple analytical proof can be given of these theorems. Let a plane

intersecting the axes at right angles be called the plane of xz. .Let (r, 0), [x, z) be

the polar and Cartesian coordinates of any point P in this plane referred to the

point of intersection A as origin and ^J5 as axis of x. The rotation 6 round A will

bring P into a position P' whose coordinates are {x', z'). Then

X' =rGOQ[d + <ji)=XQOBd -ZBind,

z' = r sin {d + (p) = x sind + z cos 6.

Thus x', z' are linear functions of x, z. The rotation - 6 round B will bring P' into

the position P" and we have

x" -a= {x' -a) cosd + z' sin 6, z"= - [x' - a) sin 6 + z' qos 6.

Eliminate {x', z') and we find

x"= x-\-2a sin^ ^B, z" — z + 2a sin 1 6 cos 1 0.

The point P may therefore be moved to P" by a translation t= 2a sin ^6 in a direction

making an angle Kir -6) with the axis of x. The other theorem may be proved in

the same way.

277. Conjugate Rotations. Any given displacement of a body may be repre-

sented by ttco finite rotations^ one about any given straight line and the other about

some other straight line ichich does not necessarily intersect the first. When a dis-

placement is thus represented, the axes are called conjugate axes and the rotations

are called conjugate rotations.

Let OA be the given straight line, and let the given displacement be represented

by a rotation <p about a straight line OR and a translation OT. We wish to resolve

this rotation about OR into two rotations, one about OA to be followed by a rotation

about OB, where OB is some straight line perpendicular to OT. To do this we

follow the rule in Art. 271, we describe a sphere whose centre is and radius

unity and let it intersect OA, OR, OT in A, R and T. Make the angle ARB equal

to the supplement of ^0, and produce RB to B so that TB = \Tr, and join AB. By
the triangle of rotations the rotation is now reiDresented by a rotation about OA
which we may call 6, followed by a rotation about OB which we may call d'.

By Art. 276 the rotation 6' is equivalent to an equal rotation 6' about a parallel

axis CD, together with a translation, which may be made to destroy the translation

OT. This will be the case if the angle OT makes with the plane of OB, CD be

R. D. 15
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1 (tt - d'} on the one side or the other of OT according to the direction of the rotation,

and if the distance r between OB, CD be such that 2rsmhd' is equal to the trans-

lation OT. The whole displacement has thus been reduced to a rotation 6 about OA

followed by a rotation 6' about CD.

278. Composition of Screws. Any tico successive displacements of a body may

he represented by tioo successive scretv motions. It is required to compound these.

Let the body be screwed first along the axis OA with linear displacement a and

angle of rotation d measured as in Art. 271, and secondly along the axis CD with

displacement a' and angle d'. Let OC be the shortest distance between OA and CD,

and for the sake of the perspective let it be called the axis of y. Let be the

origin and let the axis of .r

be parallel to CD, so that

OA lies in the plane of xz.

Let OC=r, and the angle

AOx= a. Draw a plane .xOT

making with the plane of xz

an angle ^^', and let it cut

yz in 02\ Draw another

plane AOR making with xz

an angle hd, and cutting the

plane .t02' in OR.

Produce ^0 to a point I',

not marked in the figure,

80 that PO=a, and let as

choose P as a base point to

which the whole displace-

ment of the body may be

referred. The rotation 6' is equivalent to 4 rotation 0' &bout Ox together with a

translation along OT= 2r sin ^^' by Art. 223^' By Art. 271^he rotation about OA
followed by 6' about Ox is equivalent to a rotation about OR where Q is twice the

angle ART, so that 8in^fi= -cos i^ cos ^^'4- sin ^0 sin ^^' cos a. The whole dis-

placement is now represented by (1) a translation of the base point P to 0, (2) the

rotation fl, (3) a further linear translation which is the resultant of the translations

2rsin|^' along OT and a' along Ox. By Art. 219; these displacements may be

made in any order, being all connected with the same base point. They may
therefore be compounded into a single screw by the rule given in Art. 225^* This is

called the resultant screw. A screw equal and opposite to the resultant screw will

bring the body back to its original position.

The angle of rotation of the resultant screw is ft and its axis is parallel to OR
by Art. 220. It follows by Art. 271 that the sine of half the angle of rotation of

each screw is proportional to the sine of the angle between the axes of the ot

two screws.

To find the linear displacement along the axis of the resultant screw, we must

by Art. 222 add together the projections on OR of the three displacements OT,a
The projection of Or= 2r sin ^e' cos TR = 2r cos Ty . cos TR, which is twice

projection of the shortest distance r on the axis of rotation. If T be the lin

displacement, we have T= 2rGoaRy + acoaRA+a'cosRx.

279. If the component screws are simple rotations, we have a = 0, a'= 0, and it

may be shown without difficulty that T sin ^ ft= 2r sin ^ ^ sin i 6' sin a. It has been

shown in Art. 277 that any displacement may be represented by two conjugate

rotations in an infinite number of ways, but it now follows that in all these

rsin^d, sin ^6' sin a is the same. When the rotations are indefinitely small, and

ust

1
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equal to udt, w'dt respectively, this becomes ^rww' {dtf sin a; that is, the product of

an angular velocity into the moment of its conjugate angular velocity about its axis

is the same for all conjugates representing the same motion.

Ex. If the component screws be simple finite rotations, show that the

equations of the axis of the resultant screw are

- X tan 0' + ?/ sin ^6' + z cos hd'= rB\n^d', y cos ^6' -zsin^d'= r sin \
6'
cos 0' cot ^ ft

,

where 0' is the angle xOR and is the resultant rotation. The first equation

expresses the fact that the central axis lies in a plane which bisects at right angles

a straight line drawn from perpendicular to OR in the plane xOR to represent the

linear translation in that direction. The second expresses the fact that the central

axis lies in a plane parallel to TOR at a distance from it determined by Art. 225.

280. Tlie Velocity of any Point. The formulae corresponding to those given

in Art. 238 for infinitely small motions are rather more complicated.

A displacement of a body is given by a rotation through a finite angle 6 about an
axis 01 passing through the origin whose direction cosines are (l, m, n). It is

required to find the changes produced in the coordinates (x, y, z) of any point P.

Instead of displacing the body, it is more convenient to rotate the axes of co-

ordinates in the opposite direction through an equal angle 6 about the same axis 01.

The problem is then seen to be the converse of that discussed in Art. 217.

Let the axes Ox, Oy, Oz after this rotation take the positions Ox', Oy\ Oz' ; let

the new coordinates of P be x' = x + Sx, y'=y + dy, z'=z + dz. Let a, |3, y be the

direction angles of 01 referred to either system of axes.

Let these axes intersect the surface of a sphere of unit radius in ^, B, G

;

A', B', C. Then by projections

x'= x GO^ AA' -\-y qobBA' ->r z Q0& GA'

.

From the spherical triangle lAA', sin^^^'= sinasin^^. From the two

spherical triangles BIA, BIA', we have

= cos a cos j3 + sin a sin /3 cos Z,

cos BA' = cos a cos /3 + sin a sin /3 cos (Z + 6),

where Z = BIA. Remembering that I = cos a,

//i=cos/3, 71= cos 7, the first gives ta,nZ= -njlm,

and the second gives

cos BA'= lm - Im (cos 6 - tan Z sin 6)

= sind {-n+ Im tan

^

d).

Similarly, by changing the sign of d, we have

cos GA'= sin d {m + In tan ^6); .
B

.-. Qosec,d5x= -xiQ.n\ 6 + mz-ny+lia,n ^d{lx-\- my -^-nz) (1),

with similar expressions for by, dz.

If the origin have a linear displacement whose resolved parts parallel to the

Ox, Oy, Oz are a, b, c, we must add these to the values of 5x, Sy, 5z.

280 a. The central axis. Supposing that the displacement is given by a

translation {a, b, c) and a rotation 6 about the axis {I, m, n) the equations of the

central axis follow without difiiculty. The required axis is parallel to 01 (Art. 225)

and the translation along it is equal to the projection of the translation of the origin

|f (Art. 222). Any point on the central axis must therefore satisfy the equations

^ = ^ = ^-!= Za + m6 + nc (A).

I m n

15—2
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If {/, g, h) be the coordinates of the foot of the perpendicular drawn from the

origin on the central axis we have

2f=a- I {al + bm + cn) - {bn - cm) cot |^,

with similar expressions for g, h. The equation of the central axis then takes the

simple form
x-f^y-g^z-h

I m n

To obtain this value of f, we write /, g, h, for x, y, z, in the expressions for

5a;, dy, Sz. Representing the right-hand side of the equation (A) by K for brevity,

and remembering that fl + gm+ hn=0, we obtain

lK-a={-ftsin^6 + mh-ng) Bind

together with two similar equations. Multiplying these three equations by - tan h 6^

n, -m respectively and adding we find

(a - ZiC) tan 1 ^ - (671 - cm) =/ (1 + tan^i ^) sin ^,

which leads at once to the required value of /.

280 b. Rodrigues' formula. If (^, 77, f) are the coordinates of the middle point

of the whole displacement of any point P we have ^= x + ^5x, &c. The expressions

for the component displacements then take the form

dx = a+ 2tsin^e {m (^ - ^c) - n {v - ib)} (2).

These agree with the results given by Eodrigues. To obtain these, we notice that if

after turning the body round 01 through an angle 6, we rotate it back through the

same angle, it will resume its former position. If therefore we write x + dx, &c. for

X, y, z on the right side of equation (1) and change the sign of 6, we should get the

same left-hand side with - 5x and - 6 written for 5a; and 6. We thus have

cosec d5x=+{x + 5x) tan \d + m{z + 5z) - n {y -\-hy) - I tan h^d {I [x + bx) -^^ . . .]

.

Remembering that Ux + m5y-\-nbz= {), because there is only a rotation, Art. 222, we

find, by addition

5a;= 2 (m^j - ntj^ tan \ d,

where ^j^=x + ^8x, &c. are the coordinates of the middle of the displacement due to

rotation alone. When the origin has a linear displacement also, represented by

a, b, c, we include these in the values of 5x, by, dz. Since ^, r], f, are the coordinates

of the middle point of the ivhole displacement we write ^i = ^-^a, &c. and we then

immediately obtain equations (2).

Since the whole displacement of any point on the central axis is along that

axis, ^, rj, f, are also the coordinates of a point on the axis. The equations of the

central axis may therefore also be found by substituting these values of dx, dy, 5z

in equation (A).

281. By using the formulae for 5a;, dy, 8z we can find, the components of the

whole displacement of any point P due to two screw motions taken in order about

axes {I, m, n), {V, m\ n') draion through any points (/, g, h), (/', g', h'). Let the

rotations and translations be {6, v), {d', v'). The displacement of x, y, z due to

the first is 5x='yi-f sin d {-t{x -f)+m{z -h)-n{y-g) + UP], where

t = t&n^d and P=l{x-f) + m{y - g) + n{z-h),

with similar expressions for 8y, Sz. The displacements 5' a;, d'y, 5'z, due to the

second screw are found by writing a; + 5a!;-/', &c. for x, y, z; I', m', n' for I, m, n;
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and 6', v' for 6, v. Adding the two together we have the whole displacements

Ax = 5a; + 5' a:, &c. due to both screws. There is no difficulty in the process except

that in the general case the result is rather long. We thus arrive at three linear

expressions for the components A.r, Ay, A2; of the whole displacement due to both

screws. These are of the form Ax=a +Ax +By + Cz with similar expressions

for Ay, Az.

To find the central axis of the two screws we notice that the locus of points

whose displacements are equal and parallel is a straight line parallel to the axis of

the resultant screw, Art. 220. Putting then Ax= a, Ay= b, Az = c, we have three

linear equations, any two of which determine the ratios of x, y, z, and therefore

give the direction-cosines of the central axis. Let these be \, fi, v. The equation

of the central axis is then

Ax Ay Az ^ ,—- = —^ = — = a\ + ba+ cu.
X fJL V



CHAPTER VI.

ON MOMENTUM.

282. The term Momentum has been given as the heading
of this Chapter, though it only expresses a portion of its contents.

The object of the Chapter may be enunciated in the following

problem. The circumstances of the motion of a system at any
time 4 are given. At the time t^ the system is moving under
other circumstances. It is required to determine the relations

which may exist between these two motioos. The manner in

which these changes are effected by the forces is not the subject

of enquiry. We only wish to determine what changes have been
effected in the time ^i

—
^o- If the time ^i-^o be very small,

and the forces very great, this becomes the general problem of

impulses. This also will be considered in the Chapter.

Let us refer the system to any fixed axes Oos, Oy, Oz. Then
the six general equations of motion may, by Art. 72, be written in

the form ^ d^z ^ „ \

Integrating these from t — Utot^t-i^, we have

Let an accelerating force F act on a moving particle m during

any time t-^ — U, and let this time be divided into intervals each

equal to dt At the middle of each of these intervals let a line

be drawn from the position of m at that instant, to represent, at

the same instant, the value of mFdt both in direction and magni-

tude. Then the resultant of these forces, found by the rules of

statics, may be called the whole force expended in the time ^i
—

^o-

Thus I mZdt is the whole force resolved parallel to the axis of Z.

These equations then show that
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(1) The change produced by any forces in the resolved part

of the momentum of any system is equal in any time to the whole

resolved force in that direction.

(2) The change produced by any forces in the moment of the

mornentum of the system about any straight line is, in any time,

equal to the whole moment of these forces about that straight line.

When the interval ti — to is very small, the " whole force

"

expended is the usual measure of an impulsive force, and the

preceding equations are identical with those given in Art. 86.

It is not necessary to deduce these two results from the equa-

tions of motion. The following general theorem, which is really

equivalent to the two theorems enunciated above, may be easily

obtained by an application of D'Alembert's principle.

283. Fundamental Theorem. If the momentum of any
particle of a system in motion be compounded and resolved, as if it

were a force acting at the instantaneous position of the particle,

according to the i^ules of statics, then the momenta of all the par-

ticles at any time ti are together equivalent to the momenta at any
previous time to together with the whole forces which have acted

during the interval.

The argument from D'Alembert's principle may be made clearer by being put at

greater length. If %Ye multiply the mass m of any particle P by its velocity v, the

product is the momentum mv of the particle. Let us represent this in direction

and magnitude by a straight line PP' drawn from the particle in the direction of

its motion. For the purposes of composition and resolution this representative

straight line (in accordance with the rules of statics) may be moved to any position

in the line of motion ; let it therefore move with the particle. If the particle be

acted on at any instant by an external force mF, a new momentum equal to mFdt
is generated in the time dt. This also can be represented by a straight line and

compounded with the mv of the particle. If two particles act and react on each

other with a force R for a time dt, two equal and opposite momenta (viz. Rdt) are

communicated to the particles. Taking all the particles, we see that the change in

their momenta is equal to the resultant of every mFdt which has acted on the

system. This being true for each element of time is true for any finite interval

t^ — tQ. Since the resultant of every mFdt has been defined to be the whole force,

the theorem follows at once.

In the case in which no forces act on the system, except the
mutual actions of the particles, we see that the momenta of all

the particles of a system at any two times are equivalent.

The two principles of the Conservation of Linear Momentum
and the Conservation of Areas may be enunciated as follows.

If the forces luhich act on a system he such that they have no
component along a certain fixed straight line, then the motion is such

that the linear momentum resolved along this line is constant.

If the forces be such that they have no moment about a
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certain fixed straight line, then the angular momentum or the

area consei^ved (Art. 77) about this straight line is constant.

It is evident that these principles are only particular cases of

the results proved in Art. 79.

284. Example of a central force. Suppose that a single

particle m describes an orbit about a centre of force 0. Let v, v'

be its velocities at any two points P, P' of its course. Then mv'
supposed to act along the tangent at P' if reversed would be in

equilibrium with mv acting along the tangent at P together with
the whole central force from P to P'. If p, p be the lengths of

the perpendiculars from on the tangents at P, P', we have,

by taking moments about 0, vp=^v'p', and hence vp is constant
throughout the motion. Also if the tangents meet in T, the whole
central force expended must act along the line TO, and may be
found in terms of v, v by the rules for compounding velocities.

Ex. Two particles of masses m, m' move about the same centre of force. If

li, h' be the areas described by each radius vector per unit of time, prove that

mh-i-m'h' is unaltered by an impact between the particles.

285. Example of three particles. Suppose three particles

to start from rest attracting each other, but under the action of no
external forces. Then the momenta of the three particles at any
instant are together equivalent to the three initial momenta and
are therefore in equilibrium. Hence at any instant the tangents
to their paths must meet in some point 0, and if parallels to

their directions of motion be drawn so as to form a triangle, the
momenta of the several particles are proportional to the sides of

that triangle.

If there are n particles it may be shown in the same way that

the n forces represented by rnv, mV, &c. are in equilibrium, and
if parallels be drawn to the directions of motion and proportional

to the momenta of the particles beginning at any point, they will

form a closed polygon.

If F, F', F" be the resultant attractions on the three particles,

the lines of action of F, F\ F" also meet in a point. For let

X, Y, Z be the actions between the particles m'm'\ m"m, mm',
taken in order. Then F is the resultant of — 7 and Z ; F' oi — Z
and X ; F" oi -X and F. Hence the three forces F, F', F" are

in equilibrium*, and therefore their lines of action must meet in

a point 0'
. Also the magnitude of each is proportional to the

sine of the angle between the directions of the other two. This
point is not generally fixed, and does not coincide with 0.

If the attraction be directly proportional to the distance, the
two points 0, 0' coincide with the centre of gravity (?, and are

* This proof is merely an amplification of the following. The three forces

F, F', F", being the internal reactions of a system of bodies, are in equilibrium.
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fixed in space throughout the motion. For it is a known proposi-

tion in statics that, with this law of attraction, the whole attraction

of a system of particles on one of the particles is the same as if

the whole system were collected at its centre of gravity. Hence
0' coincides with G. Also, since each particle starts from rest,

the initial velocity of the centre of gravity is zero, and therefore,

by Art. 79, G is a fixed point. Again, since each particle starts

from rest and is urged towards a fixed point G, it will move in the

straight line joining its initial position with G. Hence coin-

cides with G. When the attraction is directly proportional to the

distance, it is proved in dynamics of a particle, that the time of

reaching the centre of force from a position of rest is independent

of the distance of that position of rest. Hence all the particles of

the system will reach G at the same time, and meet there. If Sm
be the sum of the masses, measured by their attractions in the

usual manner, this time is known to be ^ir/^/Xm.

Similar theorems for some other laws of force are given as

examples at the end of Art. 286 a and the solutions are briefly

indicated.

285 rt. Any three Particles. In the general problem of three mutually

attracting particles we cannot obtain a sufficient number of first integrals to

determine the motion. Since there are no external forces the linear momentum
in the direction of each of three coordinate axes is constant and the three

equations thus obtained can be again integrated. The angular momenta about

these axes are also constant, and this principle supplies three more first integrals.

Besides these we have the equation of vis viva.

The investigations of Bruns, Poincare and Painleve have shown that no other

first integrals which are algebraic and one valued can exist. Bruns, Acta Mathenuitica,

Vol. XI.; VoincQxe, Act. Math. Vol. xiii. 1890, Le>i Methodes nouvelles de la Mecanique

Celeste 1892 ; Painleve, Comptes Eeiidus 1894.

286. Example of Iiagrange's Three Particles. Three particles lohose masses

are m, vi', vi", mutually attracting each other, are so projected that the triangle

formed by joining their positions at any instant remains alioays similar to its original

form. It is required to determine the conditions of projection*

.

The centre of gravity will be either at rest or will move uniformly in a straight

line. We may therefore consider the centre of gravity at rest and may afterwards

generalise the conditions of projection by impressing on each particle an additional

velocity parallel to the direction in which we wish the centre of gravity to move.

Let be the centre of gravity, P, P', P" the positions of the particles at any

time t. Then, by the conditions of the question, the lengths OP, OP', OP" are

always to be proportional, and their angular velocities about are to be equal.

Since the angular momentum of the system about is always the same, we have

mr'^n + m'r'-n + m"r"-ii= constant,

* Lagrange was the first to obtain the two solutions of this problem mentioned

above. In the essay which gained the prize of the Academy of Sciences in 1772, he

speaks of it as a merely curious problem. Another discussion is given by Laplace

in Vol. IV. Chap. vi. of the Mecanique Celeste. A list of writers on this subject is

given in Whittaker's report to the British Association, 1899.
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where r, /, r" are the distances OP, OP', OP", and n is their common angular

velocity. Since the ratios r : r' : r" are constant, it follows from this equation

that mi'^n is constant, i.e. OP traces out equal areas in equal times. Hence by

Newton, Section ii. , the resultant force on P tends towards O.

Let p, p', p" be the sides P'P" , P"P, PP' of the triangle formed by the particles,

and let the law of attraction be ,,. r,,. Then, since the resultant attraction of
(dist.)*^

m', m" on m passes through 0, -ttt sin P'PO= -^ sin P"PO,
p K pK

but, since is the centre of gravity, m'p" sin P'PO = m"p sin P"PO.

Hence either the three particles are in one straight line or p"'f+ir=:p'fc+^. If

}c= -1 the law of attraction is "as the distance." If k be not = - 1, we have

p =p", and the triangle must be equilateral.

Suppose the particles to be projected in directions making equal angles with

their distances from the centre of gravity with velocities proportional to those

distances, and suppose also the resultant attractions towards the centre of gravity

to be proportional to those distances, then in all the three cases the same con-

ditions will hold at the end of a time dt, and so on continually. The three

particles will therefore describe similar orbits about the centre of gravity in a

similar manner.

Firstly, let us suppose that the three particles are to be in one straight line. To
fix our ideas, let m' lie between m and m", and between m and m\ Then since

the attraction on any particle must be proportional to the distance of that particle

from 0, the three attractions, measured in the direction PP",

(PP>)k ' (pp")k> (^p"p')k {pp'jk^ {PF'f {P'P"Y'

must be proportional to OP, OP', OP". Since 2wOP= 0, these two equations

amount to but one on the whole. Let z = P'P"jPP', so that

OP _ OP' _ PP'

m' -\-vi" {1 + z) -m^m"z m + m' + m"'

Then we have ( vi' + j- r-^
]
{- m + m"z) = (—^ -m\ {m' + m" (1 + 2)}

,

which agrees with the result given by Laplace.

In the case in which the attraction follows the law of nature k~2, and the

equation becomes

W22 {(1 + 2)3 _ 1 > _ m' (1 + 2)2 (1 - z^) - m"
{ (1 + zf -z^\= 0.

This is an equation of the fifth degree, and it has therefore always one real root.

The left side of the equation has opposite signs when 2 = and 2=00 , and hence

this real root is positive. It is therefore always possible to project the three masses

so that they shall remain in a straight line. Laplace remarks that if m be the sun,

111' the earth, m" the moon, we have very nearly z= » /

—

= —— . If then,

originally, the earth and moon had been placed in the same straight line with the

sun, at distances from the sun proportional to 1 and 1 + -—
-, and if their velocities

had been initially parallel and proportional to those distances, the moon would
have always been in opposition to the sun. The moon would have been too distant
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to have been in a state of continual eclipse, and thus would have been full every

night. It has however been shown by Liouville, in the Additions a la Connaissaiice

des Temps, 1845, that such a motion would be unstable. Another proof is given in

the author's treatise on Dynamics of a Particle, 1898, Art. 412.

The paths of the particles will be similar ellipses having the centre of gravity

for a common focus.

Secondly. Let us suppose that the law of attraction is "as the distance." In

this case the attraction on each particle is the same as if all the three particles

were collected at the centre of gravity. Each particle will describe an ellipse

having this point for centre in the same time. The necessary conditions of pro-

jection are that the velocities of projection should be proportional to the initial

distances from the centre of gravity, and that the directions of projection should

make equal angles with those distances.

Thirdly. Let us suppose the particles to be at the angular points of an equi-

lateral triangle. The resultant accelerating force on the particle m is

^ cos P'PO +% cos P"PO.
p'K pK

The condition that the forces on the particles should be proportional to their

distances from shows that the ratio of this force to the distance OP is the same

for all the particles. Since by a property of the centre of gravity

m'p" cos P'PO + m"p' cos P"PO= {m+ n\! + m") OP,

it is clear that the condition is initially satisfied when p= p'= p". Hence, by the

same reasoning as before, if the particles be projected in directions making equal

angles with OP, OP', OP" respectively, with velocities proportional to those

* distances, they will always remain at the angular points of an equilateral triangle.

A discussion of the stability of this motion will be given in Vol. ii. of this work.

These results may be conveniently arrived at by reducing one angular point, as

P, of the triangle to rest. The resolved part of all the forces which act on each

particle perpendicular to the straight line joining it to P will then be zero. The
process is a little shorter than that given above, but does not illustrate so well the

subject of the chapter.

286 a. Examples. Ex. 1. Show that if the three particles attract each other

according to the law of nature, the paths of the particles, when at the corners of an

equilateral triangle, are similar ellipses having for a common focus. Find the

periodic time.

Ex. 2. Three unequal particles, attracting according to the inverse kth. power
of the distance, are placed at rest at the corners of an equilateral triangle. Prove

that they will finally meet at their common centre of gravity.

The velocities, being zero, may be said to be proportional to the distances of

the particles from O and to have the proper directions. Thus the Laplacian

conditions of projection are satisfied. The particles therefore always remain at

* the corners of an equilateral triangle and these corners move directly towards the

I

centre of gravity 0. The three particles therefore describe straight lines and arrive

;
simultaneously at O. The time t of transit is given by

V(2m) ^ = p'^^^'^(l - Afj
\l - y^-'y-'dy,

' where
ij,
= m + m' + m" and p is a side of the initial equilateral triangle. This

integral can be expressed in gamma functions by putting y'^-^= z or 1/z according
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as k is less or greater than unity. When k = 3 the integration can be effected

without difficulty.

Ex. 3. If the solar system consisted only of the sun, earth and moon moving

in one plane, prove that S {E + MfH+{S + E + 31) EMh= constant,

where h is the rate at which a unit particle at the moon describes areas about the

earth, and H the rate at which the centre of gravity of the earth and moon
describes areas about the sun.

T. .

,

r- . . , ^, ^ dH SEMA /I 1 \
If the sun were fixed m space prove also that -^~ =

,
—-, ( -; ~ —

1 ,^ ^ dt {E + 3I)^\r^ r'V
'

where r, r' are the distances of M and E from S, and A is twice the area of the

triangle formed by the three bodies. [St John's Coll. , 1896.

Let G be the centre of gravity of the whole system, K that of E and M. Let
w be the angular velocity in space of EM, Q that of SK. Now the area conserved

by the whole system about G is constant, that conserved by E and M is, by Art. 75,

{E . KE"^ +M . KM^) u} + {E + M) GK^Q, and that conserved by S iq S . GS^ . fi. We
have given h= Ei\P.o}, H= SK'KQ; also the distances KE, KM, GK, GS, are

known in terms of the distances EBI, SK and the masses S, E, M by the definition

of the centre of gravity. Making these substitutions and equating the sum of the

conserved areas to a constant, the first result follows at once. The second is

obtained by taking moments about *S' and K.

286 1). Jacobi's theorem. Ex. 1. A free system of particles moves under their

mutual attractions only, the force function U being a homogeneous function of the

?ith degree. Prove that j^^ZmR'^ = 2 {n + 2) U+2G, i

where R^, R.2, t&c. are the distances of the particles m^, iiu^, &c. from the common
centre of gravity and is a constant. If the law of attraction is the inverse

cube prove that "LmR- =^A + Bt-]- Ct^.

Vorlesungeii i'lher Dynamik, edited by A. Clebsch, supplementary volume, page 22.

To prove this we have by simple differentiation

d^x^) ^ fdxV ^ d^x ^ dU
dt^ \dt J dt' dx

Summing this for the coordinates x, y, z and for all the particles, we have

since C/ is a homogeneous function —^ (Smr^) - 2'Zmv'= 2nU.

By the principle of vis viva (Art. 138 or 350)

Smy2= 2C/+C\ G-.

^Smr2= 2(;t + 2) [7+2(7.

Hence

Now Sww'- = 2?MiJ2 + (2 wt) (ar-2 + y^ + ^2)

,

but since there are no external forces dxfdt is a constant, and therefore d!^ [xy^fdt'^

is zero. Similar results being true for y and g, the theorem to be proved follows

at once.

Ex. 2. Three particles attracting each other according to the inverse cube of

the distance are placed at rest in any positions. Deduce from Jacobi's theorem

that an impact must occur before the time t given by ^ + Cf'-^ = 0.
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Since the particles start from rest B=iO and C= -217q= - S —g" "^^^re p is

I
the side of the triangle joining the initial positions of m', m". Also A is the initial

'{ moment of inertia of the three particles with regard to their common centre of

!j gravity. We notice that A is positive and G negative and that the quadratic

,J + C«2= has real roots.

If two of the particles during the motion impinge on each other, we know by

the equation of vis viva that their velocities will at that moment be infinite. The
whole subsequent motion also will be affected by the impact. If this impact does

not occur before the time given by (74^= -A, we see that at that instant Swi?2= 0.

All the particles must therefore be in contact.

It also follows from Jacobi's theorem that, if the law of attraction were the

inverse cube, the present arrangement of the solar system could not be stable.

If the roots of the equation A+Bt + Ct^= are real, an impact will occur at the

end of a finite time. If the roots are imaginary, since ^ is a moment of inertia

and therefore positive, C must be positive, and hence the radii vectores of some of

the planets must be infinite when t is infinite.

Does JacohVs equation hold indefinitely ? If we assume that when two particles

meet they pass through each other without resistance it might be expected that

the equation ^mR^=A + Bt+Ct'^ would hold throughout all time. But if C is

negative and t sufiiciently great the two sides have opposite signs, so that the

equality cannot then hold indefinitely.

The cause of this discrepancy is a certain discontinuity which occurs when the

particles meet. When the particles m, ni' are at a very small distance x apart we
have ultimately i2= £-/x^ where E^=m + m'. Extracting the square root we find

x= dzEjx. When the particles are approaching each other, the negative sign must

be given to the root because x is positive and x negative. When the particles pass

through each other, their distance x changes sign through zero but the instantaneous

value of the velocity is nnaltered. We must therefore give the square root the

positive sign. Hence xx changes sign, or, which amounts to the same thing, the

constant E is discontinuous, changing sign suddenly when the particles meet.

Each meeting therefore marks a stage at which a new problem begins and at

which the values of some of the arbitrary constants have to be determined afresh.

There has been much difference of opinion on the true interpretation of the

equations of motion at the singular points where either the velocity or the force

is infinite. We have no space for the discussion here and must refer the reader to

the author's treatise on Dynamics of a Particle where also various references are

given, Art. 465.

287. Examples of living things. Ex. 1. A man is fastened to a vertical

axis which can turn without friction and only the man's arms are free. The system

being initially at rest, explain how the man by moving his arms in space can turn

his body round and face the other way.

If the man move his arms in any way the whole area conserved about the axis

is zero. Art. 283. Having placed his right hand close to his side, let the man push

it out sideways, and then move it forward so as to describe a quarter of a horizon-

tal circle. Let him next draw the hand inwards close to his body, thus bringing it

back into its initial position. It is evident that each point of the arm and hand

has described an area round the axis from right to left. The man's body must
therefore turn round the vertical axis from left to right through such an angle that

the whole area described is zero. Eepeating this process he can turn his body

through any angle.
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In this way a person standing erect on a perfectly smooth table can turn round

a vertical axis passing through his centre of gravity and face any direction he

may desire.

Ex. 2. A person lies down on his back on a perfectly smooth table, explain how

he can turn round and face the table.

Extending one arm he hits the table with it and thus acquires angular momen-
tum about his axis. When he has turned through two right angles, his extended

arm or arms again strike the table, and can be used to gradually stop the motion.

The same effect would be produced by throwing away sideways some portion of his

dress. He might also use the method described in the last example.

Ex. 3. Explain how it is that a cat held with its feet upwards and let go is

found, after falling through a sufficient height, to alight on its feet.

During the first stage of the fall the cat stretches out its hind legs almost per-

pendicularly to the axis of the body and pulls the fore legs close to the neck. In

this position it twists the fore part of the body through as large an angle as it can,

the hinder part turning through a smaller angle in the opposite direction, so that

the whole area conserved about the axis is zero, as in Ex. 1, In the second phase

of the fall the attitude of the feet is reversed, the hind legs being close to the body

and the fore legs pushed out. The cat now turns the hind part of the body through

the large angle, the fore part rotating through the small angle. The result is that

both parts of the cat are turned round the axis through nearly equal angles.

See a series of photographs of a falling cat in Nature, Nov. 22, 1894, reproduced

from M. Marey's paper, Comptes Rendus, cxix. 1894. The true explanation is due

to M. Guyon. M. Maurice Levy in the same volume puts the argument into a

mathematical form and shows how a man placed in empty space can turn on his

axis without initial velocity or the assistance of any external force. Also

M. Lecornu shows how a serpent by internal motions continually repeated could

rotate its body about its axis of length ivithout changing its external form or

position in space.

Ex, 4. A person is enclosed in a light box which is placed on a rough floor.

Show by what motions he can take advantage of the friction to move the box and

himself any distance along the floor.

Starting from one end, he runs along the box, but not so quickly that the

friction is insufficient to hold the box at rest. He thus moves his own centre of

gravity and acquires momentum. Then jumping up he lifts the box off the floor

and carries it with him. When gravity brings the box again to the floor, he

repeats the operation. Another method is indicated in Chap. ii. Ex. 3.

Certain Mexican seed vessels, called jumping beans, have been observed to

move about by a series of jumps. Each bean is found to contain a grub con-

siderably smaller than the cavity within which it is confined. The manner in

which the grub makes the bean jump a distance equal to two or three times the

length of the bean has not been properly explained. See the Royal Botanical

Society, Nov. 1894, and Chambers's Journal, 1896. There is also a brief account in

Nature, Nov. 19, 1896, of some recent experiments on African specimens made by

Dr D. Sharp with the view of discovering the cause and object of these movements.

Ex. 5. Two buckets of given weights are suspended by a fine inelastic string

placed over a fixed pulley, and at the centre of the base of one of the buckets a

frog of given weight is sitting. At an instant of instantaneous rest of the buckets,

the frog leaps vertically upwards so as just to arrive at the level of the rim of its

bucket. Prove that the ratio of the absolute length h' of the frog's vertical ascent
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in space to the length h of its bucket and the time t which elapses before the frog

again arrives at the base of its bucket are given by

[m+ m' + fif h'= 2m' {m+ m') h, m'cft^= 4 {m + m') h,

the last result being independent of the frog's weight.

[Walton's problem. Math. Tripos, 1864.

Ex. 6. Show that a person when swinging can increase the angle of vibration

by alternately crouching at the highest point and straightening himself along the

rope when at the lowest point.

Let 2a, 2b be the heights of the man when crouching and standing erect ; M, m
the masses of the swing and man, I the moment of inertia of the swing, and c the

distance of its centre of gravity from the point of support. First the system, with
the man crouched, descends from rest through an angle a and has an angular
velocity w at the lowest point. Suddenly when the man stands erect, the angular

velocity w is changed to w'. Lastly the system ascends through an angle j3.

We therefore have

where A = I+7ii{l-ay^ + ^ma^, A'=Mc +m {I- a), and B, B' are obtained from
A, A' by writing 6 for a. The first and third of these equations follow from the

principle of vis viva, and the second from that of angular momentum. Hence
8in^ ^^Isin^ ^a= A A'IBB' . Now A'>B' since b>a ; also A>B since in swings the

length I of the rope is usually longer than the height of the man. Hence /3 is

greater than a.

Consider the equation A(a= Bo}'; each time the man straightens himself he
decreases the moment of inertia and therefore increases the angular velocity. At
the highest point, when the system is instantaneously at rest, no change in the

angular velocity is made by crouching, but the moment of inertia is increased.

By the continued repetition of these two processes the angular velocity at each

passage through the lowest point is increased. Again, the moment of gravity is

greater on the descending than on the ascending arc, hence from both causes the

amplitude of the swing is increased.

288. Sudden Fixtures. A rigid body is moving freely in

space in a known manner. Suddenly a straight line in the body
becomes fixed, or has its motion changed in some given manner.
It is required to find the changes which occur in the motion of the

rest of the body.

Such problems as these are all solved by one mechanical prin-

ciple. The change in the motion is produced by impulsive forces

; acting at points situated in this straight line. Hence, by Art. 283,

; the angular momentum of the body about the axis is the same after

as before the change takes place. This dynamical principle supplies

one equation which is sufficient to determine the subsequent
motion of the body round the straight line.

We may also use this principle in a more general case. Suppose
we have any system of moving bodies which suddenly become
rigidly connected together and are constrained to turn round some

I
axis. Then the subsequent angular velocity about this axis may

\ be found by equating the angular momentum of the system about
this axis after the change to that before the change.



240 MOMENTUM. [CHAP. VI.

In applying this principle to various bodies it is convenient

to use different methods of finding the angular momentum. The
following list will assist the reader in choosing the method best

adapted to each particular case.

289. Case 1. Suppose the body to be a disc moving in any

manner in its own plane, and let the axis whose motion is changed

be perpendicular to its plane. This case has been already solved

in Art. 171.

290. Case 2. Suppose the body to be a disc turning about an

instantaneous axis Ooc in its own plane with an angular velocity co.

Let an axis Ox' also in its own plane be suddenly fixed.

In this case the calculation of the angular momentum is so

simple that we may with ad-

vantage recur to first principles.

Let da be any element of the

area of the disc; y, y' its dis-

tances from Ow, Ox', Then yto,

y'w are the velocities of c?cr just

before and just after the impact.

The moments of the momentum
about Ox just before and just

after are therefore yy'a>dcr and
y'-w'da-. Summing these for the

whole area of the disc, we have

o)"ly'^d(T==(olyy'dcT (1).

Firstly, let Ox, Ox be parallel, so that the point is at infinity.

Let h be the distance between the axes, then y' — y — )i. Hence

we have ay'^y'^do- = (o {^y-do- — Kl^yda-].

Let ^, ^' be the moments of inertia of the disc about Ox, Ox
respectively, y the distance of the centre of gravity from Ox, ilf the

mass of the disc. Then we have

A'on' = ft) (^ — Mhy). f
Secondly, let Ox, Ox' not be parallel. Let be the origin

and let the angle xOx = a, then y' = y cos a — x sin a. Let F be

the product of inertia of the disc about Ox, Oy where Oy is perpen-

dicular to Ox. Then by substitution in (1) we have

A' (a' = w{A cos OL— F sin a).

Ex. 1. An elliptic area of eccentricity e is turning about one latus rectum.

Suddenly this latus rectum is loosed and the other fixed. Show that the angular

velocity is -—^-s of its former value.

Ex. 2. A right-angled triangular area ACB is turning about the side AC.

Suddenly ^C is loosed and BC fixed. If C be the right angle, the angular velocity

is \BCIAC of its former value.
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Ex. 3. A rectangle ABGD has its plane vertical and its lower edge AB horizon-

tal and fixed in space. A slight disturbance being given the rectangle turns round
AB, but when its plane becomes horizontal the side JD is fixed and AB released.

It then begins to turn round AD and when the plane is again vertical AB is fixed

and AD released. Show that the final angular velocity about AB is given by the

equation b}^= 21g{l6a + 9b)l512b^, where AB= 2a and AD = 2b.

Ex. 4. A point is suddenly fixed in a lamina which is instantaneously rotating

about any given axis in its own plane. Show that if the new instantaneous axis

is at right angles to the former the point must lie on a hyperbola one of whose

asymptotes is perpendicular to the given axis and the other is its conjugate with

regard to the momental ellipse at the centre of gravity.

291. Case 3. Let the body be turning round an instantaneous

axis 01 with a known angular velocity co, and let some axis 0/'

which intersects the former in a point be suddenly fixed.

Let I, m, n be the direction-cosines of 01 referred to the

principal axes at 0, and /', m', n' the direction-cosines of 0I\ Then
by Art. 264, the angular momenta about these principal axes just

before the change are Acol, Bcoin, C(on. The angular momentum
about 01' just before the change is therefore (by Art. 265)
{AW -\- Bmm! -\- Gnn')(o. If w be the angular velocity of the

body about Oi' just after 01' becomes fixed in space the angular

momentum is {Al"^ + Bm"^ -h Cn^) w'. Equating these we have w.

Ex. 1. A solid right cone of semi-vertical angle a is rotating about a generating

line. Suddenly another generating line is fixed, the axial planes through the

generating lines being inclined at an angle 0. Show that the ratio of the angular

velocities is equal to (2 + (4 + w) co8 0) : (6 + n), where n= iQ.rx^a.

Ex. 2. When a body turns about a fixed point the product of the moment of

inertia about the instantaneous axis into the square of the angular velocity is called

the vis viva. Let 2T be the vis viva of the body when it is turning freely about

the axis 01, and 2T' its vis viva when the axis 01' is suddenly fixed. Construct

the momental ellipsoid at the point 0, and let 6 be the angle between the eccentric

lines of the two axes 01, 01'. Prove that T' = T cos^ d. It follows that the vis viva

is always lessened by fixing a new axis.

292. Case 4. Let the motion of the body be given by its

components of motion u, v, w, (Ox, Wy, (Oz, the centre of gravity

being the base point. Let the equation to the straight line whose

motion is suddenly changed be —j^ = -—- = , where I, m, n

are the actual direction-cosines.

Suppose this straight line to be suddenly fixed in space. The
angular momentum before the " fixing " is given in Arts. 263, 265,

266. If o)' be the angular velocity about this straight line after

the " fixing," the angular momentum is Iw, where / is given in

Art. 17, Ex. 9. Equating the two values we have w.

293. Suppose the sudden motion forced on the straight line

to be represented by the velocities £/", F, W of some point P on

R. D. 16
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the straight line, and the angular velocities 6,
(f),

yjr. Then the

motion of the body may be represented by the linear velocities

U, V, W of the same base P and the angular velocities 6 + D^l,

if) + Urn, o/r + Q.n, where H is the only unknown quantity.

The angular velocities d, (p, xp may be chosen in an infinite variety of ways to

represent the given motion of the straight line, because an angular velocity about

the straight line does not move the line itself. If 0, <p, xj/ have been chosen to

make the component W + vKp + nxj/ about the line equal to zero, and if {I, m, n) be

the actual direction-cosines of the straight line, then will be the angular velocity

of the body about the axis just after the change.

This quantity O, whatever meaning it may have, is to be

found by equating the angular momenta about the axis before

and after the change. These momenta may be written down as

explained in Art. 266.

294. Suppose the sudden motion forced on the straight line

to be represented by giving the velocities of two points P, P' on

the line. And let the required motion of the body after the change
be represented by the components of motion u\ v', w' , Wx, (Oy\ o)/

at the centre of gravity taken as the base. The angular momentum
both before and after the change may be written down as already

explained. Equating these we have the dynamical equation. The
resolved velocities of P and P' may be found by Art. 238 and
equated to their given forced values. Thus we have on the whole
six independent equations to find the six components of motion
after the change.

Ex. 1. An elliptic disc is at rest. Suddenly one extremity of the major axis

and one extremity of the minor are made to move perpendicularly to the plane of

the disc with velocities U and V. Show that the centre of gravity will begin to

move with a velocity equal to \{JJ+V).

Ex. 2. An elliptic disc is at rest. Suddenly one extremity of the latus rectum

is made to move parallel to the major axis with a velocity U, while the other

extremity is made to move perpendicularly to the plane of the disc with a velocity

W. Show that the velocities of the centre resolved parallel to the axes of the disc are

U -Ue W
2' 2(1-^2)' 2(l-i-4e2)-

Ex. 3. A circular disc turning freely in its own plane which is vertical falls on

another equal circular disc whose plane is horizontal and which is turning about

a fixed vertical axis through its centre. At the moment of impact the two discs

become rigidly connected. If the point of impact bisect a radius of the horizontal

circle, show that the angular velocity about the fixed vertical axis is reduced one half.

Ex. 4. Let the motion of a free body be given by the components u, v, w,

Wx' ^y ^z referred to any base. Let the sudden motion given to a straight line be

represented by the components U, V, W, 6, cp, xj/ referred to the same base. Then

the relative motion is given by the components u-U, v-V, &c. Taking these as

the given quantities, find the components of motion after the change on the

supposition that the straight line is suddenly fixed. Let these results be u', v', &c.

Then prove that the required motion is represented by the components U+u\
V+v', &c. This process of solution may he called reducing the straight line to rest.
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295. Case 5. In some cases, instead of a straight line, a
single point P in the body is seized and made to move in some
given manner. In this case the angular momentum about every
straight line through the fixed point is unchanged. Choosing
some three convenient axes through the point and equating the
angular momentum about each before the change to that after

the change we have three dynamical equations. Besides these we
have the geometrical equations, supplied by Art. 238, expressing

the fact that the resolved velocities of P are equal to the given
forced velocities. In this way we may form six equations to find

the six components of motion.

296. Let us consider an example of this process. Suppose
the motion of the body to be given by the components u, v, w,

(Ox, (Oy, coz, the centre of gravity being the base; and let the point

P whose coordinates are /, g, h be suddenly fixed. Let A, B, C,

D, E, F be the moments and products of inertia of the body
about the axes at the centre of gravity, and let accented letters

represent the corresponding quantities for parallel axes at P. Let
Xla;, Hj,, H^ be the required angular velocities of the body about
the axes meeting at P parallel to those at the centre of gravity.

Then the equations of momenta give

A(o^- Ftoy - Ewz + M{vh -wg)= A'fl^ - F'^y - E'D.^,

- Fcoa, + Bcoy - D(Oz + M{wf - uh) = - F'n^ + 5'% - D'fl^,

- Eco^ - Bcoy +C(Oz-{-M {ug -vf) = - E'n^ - D'^y + G'^^.

It is obvious that these equations may be greatly simplified by
choosing the axes so that one set may be principal axes.

297. If the body be turning about an axis GI through the

centre of gravity G just before the point P is fixed, the terms which
contain the velocities of the centre of gravity disappear from the

equations. They now admit of an easy geometrical interpretation.

The equation to the momental ellipsoid at the centre of gravity is

AX' + BY' + GZ' - 2DYZ- 2EZX - 'lFXY=Me\
It is therefore clear that the left-hand sides of these equations are

proportional to the direction-cosines of the diametral plane of a
straight line whose direction-cosines are proportional to {co^, (Oy, to^).

In the same way if we construct the momental ellipsoid at P, the

right-hand sides are proportional to the direction-cosines of the

diametral plane of the axis (Ha;, D^y, II^). Thus the instantaneous

axes of rotation, before and after P is fixed, are so related that

their diametral planes with regard to the momental ellipsoids at G
and P respectively are parallel.

We may also deduce this result, without difficulty, from Art.

118. The motion of the body about the axis GI may be produced
by an impulsive couple in the plane diametral to GI with regard

16—2
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to the momental ellipsoid at G. Let us then suppose the body

at rest and P fixed, and let it he acted on hy this couple. It

follows from the same article, that the body will begin to turn

about an axis PI' which is such that its diametral plane with

regard to the momental ellipsoid at P is parallel to the plane of

the couple.

To find the direction of the blow at P we notice that the centre

of gravity being at rest suddenly begins to move perpendicularly

to the plane containing it and the axis PI'. This is obviously

the direction of the blow.

298. Ex. 1. A sphere, in co-latitude 6, hung up hy a point in its surface, is in

equilibrium under the action of gravity. Suddenly the rotation of the earth is

stopped, it is required to determine the motion of the sphere. [Math. Tripos, 1857.

Let G be the centre of the sphere, its point of susjiension, and a its radius.

Let C be the centre of the earth. Let us suppose the figure so drawn that the

sphere is moving away from the observer. Let w= angular velocity of the earth,

then if GG= fxa, the sphere is turning about an axis Gp parallel to GP, the axis

of the earth, with angular velocity w, while the centre of gravity is moving with

velocity /xa sin 6 . co.

Let DC, Op, and the perpendicular to the plane of OG, Op be taken as the axes

of X, y, z respectively, and let Q^, ^y, J}^ be the angular velocities about them just

after the rotation of the earth is stopped.

By Art. 295, the angular momenta about Ox, just before and just after the rota-

tion is stopped, are equal to each other
;

/. Mk^cj cos 6= Mk^ilx,

where Mk^ is the moment of inertia of the sphere about a diameter.

Again, the angular momenta about Oy are equal to each other

;

.-. - 3Ik~ w sin d + Mfia^u} sin e= 31 {k'^ + a^)Qy.

Lastly, the angular momenta about Oz are

equal; .-. = Mk^n^.

Solving these equations, we get

k"^ + aa^ . „ - 2 + 5u
=:wsm^ ~— .^y = u)sin6

of a
But i2j.= w cos d. Adding together the squares

^y, Ug we have

J^2= a;Mcos2^+ -
2 + 5AtY

sin2 6)

where fi is the angular velocity of the sphere

about its instantaneous axis.

Ex. 2. A particle of mass M, without ve-

locity, is suddenly attached to the surface of

the earth at the extremity of a radius vector making an angle d with the axis

of the earth. If E be the mass of the earth before the addition of M, A and G
its principal moments of inertia at the centre, w the angular velocity about its

w , EMAr"^ sin^d
axis, prove that 7^ = 1 + r«

cot = cot^ +

(£ -f- M) ^ (7 + EMGr'^ C082 d

E +M A
Mf^ sin ^ cos
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where ^ is the initial angular velocity about an axis parallel to the axis of the earth,

and the angle that the initial axis of rotation makes with the axis of the earth.

Ex, 3. A regular homogeneous prism whose normal section is a regular polygon
of n sides rolls on a perfectly rough plane. Prove that, when the axis of rotation

changes from one edge to another, the angular velocity is reduced in the ratio of

. rr
27r ^ 27r

1^ + 7 cos — : 8 + COS — .

n n

299. Gradual Changes. In these examples the changes
produced in the motion were sudden, but the method of proceed-
ing is the same if the changes are gradual.

Ex. 1. A bead of mass m slides on a circular wire of mass M and radius a,

and the wire can turn freely about a vertical diameter. Prove that, if w, Q be the

angular velocities of the wire when the bead is respectively at the extremities of

a horizontal and a vertical diameter, - = 1 + 2^7.
w M

Ex. 2. If the earth gradually contracted by radiation of heat, so as to be

always "similar to itself as regards its physical constitution and form, prove that

when every radius vector has contracted an n^^ part of its length, where n is small,

the angular velocity has increased a 271**^ part of its value.

Ex. 3. If two railway trains each of mass M were to travel in opposite

directions from the pole along a meridian and to arrive at the equator at the same

time, prove that the angular velocity of the earth would be decreased by IMa^jEW^

of itself, where a is the equatorial radius of the earth and Ek^ its moment of inertia

about its axis of figure. What would be the effect if one train only were to travel

from the pole to the equator ?

Ex. 4. A fly alights perpendicularly on a sheet of paper lying on a smooth

horizontal plane and proceeds to describe the curve r=f{d) traced on the sheet of

paper, the equation of the curve being referred to the centre of gravity of the paper

as origin. Supposing the fly to be able to prevent himself from slipping on the

paper, show that his angular velocity in space about the common centre of gravity

of the paper and fly is equal to -—, —j- . -— , where 31 and m are the masses

of the paper and the fly, and k is the radius of gyration of the paper about its

centre of gravity. Hence find the path of the fly in space.

Ex. 5. Suppose the ice to melt from the polar regions twenty degrees round

each pole to the extent of something more than a foot thick, enough to give 1^^ feet

over those areas or '066 of a foot of water spread over the whole globe, which would

in reality raise the sea-level by only some such undiscoverable difference as fths of

an inch or an inch, then this would slacken the earth's rate as a time-keeper by

one-tenth of a second per year. This and the next example are taken from the

Phil. Mag. They are both due to Sir W. Thomson, now Lord Kelvin.

If E be the mass of the earth, a its radius, k its radius of gyration about the

polar axis, w its angular velocity before the melting, we have by the principle

of angular momentum — = - —^:^y^cos^ (1-f cos0), where ilf is the mass of the ice
CO oEk

melted and 6 is twenty degrees. Substituting for the letters their known numerical

values, the value of 5w is easily found.

Ex. 6. A layer of dust is formed on the earth h feet thick, where h is small, by

the fall of meteors reaching the earth from all directions. Show that the change in
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the length of the day is nearly —
"n

°^ ^ ^^^^ where a is the radius of the earth

in feet, p and D the densities of the dust and earth respectively. If the density of

the dust be twice that of water and h= ^V . express this result numerically.

Oppolzer in a paper in the Astronomische Nachrichten (No. 2573) and more
recently H. A. Newton in the American Journal of Science, Vol. xxx. 1884, have
considered the effects on the earth both of the impact of meteors and the gravitation

attraction of those which pass near the earth without hitting it. Prof. E, S.

Woodward and Dr Johnstone Stoney have also written on this subject in the

Astronomical Journal, July 1901 and Jan. 1902. They agree that the effect is

inappreciable.

Ex. 7. A spiral tube of small uniform section can turn freely about a vertical

axis and has its two extremities on the axis. A variable quantity Q of fluid per

second enters at its upper extremity and flows out at the lower. If M be the mass
of the tube, m that of the fluid contained, show that (M+ m) k^u+Qjr sin (f)ds is

constant, where <p is the angle the tangent to the tube at any point P makes with
the plane containing P and the axis and r is the distance of P from the axis. One
form of this experiment was used by Maxwell to determine whether electricity had
momentum. See Electricity, Vol. ii. Art. 574.

Ex. 8. A light cord passing over a smooth pulley has a mass ma attached to

one end and a bucket to the other, while from a point vertically over the bucket is

suspended a uniform chain of mass m per unit length. The chain is released and
after falling freely through a distance a the lower end strikes the bucket, which is

released at that instant, prove that whatever be the mass of the bucket, the chain

enters it at a uniform rate ^{2ga). [Math. Tripos, 1902.

300. The principle of linear momentum may also be used,

like that of angular momentum, to determine the gradual changes
produced by alterations of mass. The general theory is as follows.

Let a body of mass M, whose resolved velocity parallel to x
is V, be acted on by a finite force X Let this body lose a small
portion m = — dM of its mass in each element of time dt. It is

required to find its equation of motion. In this time the force

increases the linear momentum by Xdt, while the momentum lost

by diminution of mass is mv. But the gain of momentum is d (Mv).

The equation of motion is therefore

d{Mv) = Xdt + vdM. .'. M^ =X (1).

This equation may also be obtained by taking M to represent the mass of the

body just after the loss of the element m. Then equating the two expressions for

the gain of momentum in the next element of time, we have Mdv = Xdt.

Next, let us suppose that the body gains a mass m = dM in

the time dt, and let the resolved velocity of this increment just

before it is attached to M be v. The total gain of momentum is

now, Xdt due to the force, and mv' due to the impact produced by
the sudden junction of the masses Jf and m with different velocities.

The equation of motion is therefore

d(Mv)=Xdt + vdM (2).

If 2;' = i; this reduces to the former result.
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According to the rule given in Art. 85 the finite force X should
be neglected in determining the effect of an impulse. But since

m is infinitely small, being equal to dM, the change of momentum
produced by the impulse is of the same order of small quantities

as Xdt. We must therefore include the force X in the equation.

These principles may be illustrated by the solution of some problems on the

rectilinear motion of strings. The curvilinear motion of strings will be discussed

in the second volume. The reader may also consult the author's treatise on

Dynamics of a Particle (1898), where a slight history is given together with a

further collection of problems set in the University.

Ex. 1. A uniform string of length 21 hangs over a small smooth pulley A^

which is at a height I above an inelastic table ; and to each end of the string is

attached a mass equal to that of half the string. Initially one mass P is very near

to the pulley, the other mass Q lying on the table with half the string coiled up
beside it. If the upper mass be now let go, prove that the greatest height to which
the other mass will eventually rise is ^l, where ^ is given by the equation

^ 4 2 log (1 - 1 ^)= 16/243. [St John's Coll., 1896.

There are three stages of the motion. First, P descends and successive links

(with velocity v'= 0) are taken from the heap and added to the moving chain.

Since the mass of P is equal to that of a length I of the chain, we have, if x= APf

d[{x + 2l)v]= xgdt.

Multiplying by {x + 21) v and integrating, we find that P arrives at the table with a
velocity v-^ given by v-^=^^lg.

At this instant there is an impact, P is reduced to rest by the table, but the

chain and Q move. If Vg be the initial velocity of Q, we have

^mlv2= 2mLv^; :. v^= ^v^.

The weight Q now ascends ; and successive links are removed from the chain

and heaped on the table. If y be the space ascended by Q, (3i -y)dv— -{JL-y) gdt.

Writing dvldt= vdvldy and integrating, we find that the velocity v of Q is given by

{v^^-v^)l2g = y + 2l]og(l-ylSl).

Putting v = and y = l^, the result follows.

Ex. 2. One portion of a heavy uniform string is coiled up on a table in a small

heap A, the other portion, viz. ACB, passes over a small pulley G (which is situated

vertically over A) and hangs freely down on the other side of the pulley to a depth

CB = b. li CA=a and b is greater than a, find the motion when the system starts

from rest. [Tait and Steele's Dynamics, 1856.

When the length of GB is =x, the velocity is given by

{x + afv^= ^g{x-b){x^ + bx + b'^-Sa^).

Ex. 3. A flexible chain ABCDE hangs in equilibrium over a smooth vertical

circle with one end A fixed to the extremity of a horizontal diameter. One portion

ABG hangs vertically on one side and another portion DE hangs vertically on the

other side of the circle. If the fixed end A be set free, show that the equation for

determining the distance (viz. y) of the lowest point of the chain from the horizontal

diameter during the first part of the motion is

{i~y-\-hgtYy-{y-gtf=g{y + \c),

where I is the whole length of the string and 2c the circumference of the circle.

[Math. Tripos, 1870.
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Before A is set free the lengths AB, BC and DE are all equal and ABC forms a

catenary whose parameter is zero. When A is set free, AB begins first to descend.

Each element of AB falls freely under gravity; if therefore x = AB we have

y-x = lgt\ The successive elements of AB are transferred to BG each with a

velocity v' = gt, the length of each element being -dx. Thus as BG descends and

DE ascends the equation of motion of BGDE is i

d[{l-x)v] = {-dx)v' + g{2y + x + c--l)dt. '

Here v is the velocity of the chain BGDE and this is equal to the velocity of E
upwards (not that of JB downwards). Since DE=l-c-x-y we have v = x + y.

Substituting for v and v' the result follows without difficulty.

Ex. 4. An inelastic string of length I is attached by one end to the lower

surface of the edge of a smooth horizontal table with a fine edge on which the rest

of the string lies, being held taut at right angles to the edge by a force at the other

end. If this end be set free, show that the velocity with which it will leave the

table will be sj{2,gl (log 4-1)}. [June Exam.

Ex. 5. A fine uniform chain is collected in a heap on a horizontal table, and to

one end is attached a fine string which passes over a smooth pulley vertically above

the chain and carries a weight equal to the weight of a length a of the chain. Prove

that the length of the chain raised before the weight comes to rest is a^/(3), and

find the length suspended when the weight next comes to rest. [May Exam.

Ex. 6. A chain of length a is coiled up on a ledge at the top of a rough inclined

plane and one end is allowed to slide down. Show that if the inclination of the

plane is double the angle of friction (viz. X), the chain will be moving freely at the

end of a time t given by gt^= &a cotX. [Coll. Exam. 1887.

Ex. 7. A balloon is at a certain moment at a height h, descending with velocity

F, and moving horizontally with a velocity V equal to the velocity of the wind at

that height. If the velocity of the wind be proportional to the height, and if with

a view of descending at a particular spot the escape of the gas be regulated so as to

keep the velocity of descent constant, prove that a miscalculation dh in the initial

height will produce in the point reached an error := {1 + ^c^ - g-« (1 + c)}, where

V^c= gh. [Math. Tripos, 1871.

Ex. 8. A spherical raindrop, descending by the action of gravity, receives

continually by the precipitation of vapour an accession of mass proportional to its

surface ; c being its radius when it begins to descend, and r its radius after the

ot f c c^ c \
interval t, show that its velocity Fis given by F=^ (In t--2 + l3)» *^® resistance

of the air being left out of account. [Smith's Prize Ex., 1853.

301. The Invariable Plane. Let us represent the mo-
mentum mv of a particle P by a straight line PP' drawn from

the particle in the direction of its motion ; see Art. 283. By
the rules of statics, this momentum is equivalent to an equal

and parallel linear momentum applied at any arbitrary point 0,

together with a couple whose moment is invp, where p is the

perpendicular from on PP\ Let us represent this transferred

linear momentum by the straight line OM, which of course is

equal and parallel to PP\ The plane of the couple is the plane

containing OM and P, and it may be represented in direction and
magnitude by an axis ON perpendicular to its plane.
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Taking all the particles of the system we may compound the

linear and couple momenta of the several particles into a single

resultant linear momentum applied at the arbitrary point 0,

together with a single couple momentum. Let OF and OH he

two straight lines drawn from to represent in direction and

magnitude these two resultants. Then these two straight lines will

represent graphically the instantaneous momenta of the particles

considered as one system.

Let us refer the system to Cartesian coordinates. Since mx,

my, mz are the resolved parts of the momentum of the particle m,

the vector OF is the resultant of 1,mx, '^my, l^rnz. Again, as in

Art. 75, m{yz — zy) is the moment of the momentum of the same

particle about the axis of x. Hence OH is the resultant of the

three couple-momenta h-^ = %m {yz — zij)^

/i2 = ^m {zx — xz),

hs = 2m (xy - yx).

Let us now suppose that no external forces act on the system,

so that it moves subject only to the mutual actions and reactions

of its several parts. In this case, since no additional momentum
is given to the system, the straight lines F and OH are fixed in

magnitude and direction throughout the motion ; Art. 283.

The resolved parts of F and OH must be constant. It follows

that each of the quantities h^, h^, h^ is constant. If we represent

by h the angular momentum about OH, we have h^ =V + h^^ + ^s'^-

The ratios -r , ^ , ^ are therefore the direction-cosines of a
h h h

straight line (viz. OH) which is fixed throughout the motion.

That the resolved angular momenta h^, h^, h^ are constant

follows also at once from Art. 78. Referring to the second equation

given in that article, we see that, when the moment of the external

forces about any straight line fixed in space is zero, the angular

momentum about that line is constant.

The straight line OH is called the invariable line at 0. A
plane perpendicular to OH is called the invariable plane at 0.

The straight line OH is sometimes called the resultant axis of

angular or couple momentum at 0.

If any straight line OL be drawn through making an angle B
with the invariable line OH at 0, the angular momentum about

OL is hcosd. For the axis of the resultant momentum-couple is

OH, and the resolved part about OL is therefore OH cos 6. Hence
tJie invariable line at may also be defined as that axis through

about which the moment of the momentum is greatest.

At different points of the system the positions of the invariable

line are different. But the rules by which they are connected are
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the same as those which connect the axes of the resultant couple

of a system of forces when the origin of reference is varied.

These have been already stated in Art. 235 of Chap, v., and it is

unnecessary here to do more than generally to refer to them.

In a memoir on the differential coefficients and determinants of lines, Mr Cohen
has discussed some properties of these resultant lines. Phil. Trans. 1862,

302. The position of the invariable plane at the centre of

gravity of the solar system may be found in the following manner.
Let the system be referred to any rectangular axes meeting in the

centre of gravity. Let co be the angular velocity of any body about
its axis of rotation. Let Mk^ be its moment of inertia about that

axis and (a, /3, 7) the direction-angles of that axis. The axis of

revolution and two perpendicular axes form a system of principal

axes at the centre of gravity. The angular momentum about the

axis of revolution is Mk^co, hence the angular momentum about
an axis parallel to the axis of z is Mk^co cos 7. The moment
of the momentum about the axis of z of the whole mass collected

at the centre of gravity is M (x -^ — y -rrj , hence we have

hs = tMk'^co cos 7 + XM i^-^-y-^'

The values of Aj, A2 niay be found in a similar manner. The
position of the invariable plane is then known.

303. The Invariable Plane may be used in Astronomy as

a standard of reference. We may observe the positions of the

heavenly bodies with the greatest care, determining the coordi-

nates of each with regard to any axes we please. It is, however,

clear that, unless these axes are fixed in space, or if in motion
unless their motion is known, we have no means of transmitting

our knowledge to posterity. The planes of the ecliptic and the

equator have been generally made the chief planes of reference.

Both these are in motion, and their motions are known to a near

degree of approximation, and will hereafter probably be known
more accurately. It might, therefore, be possible to calculate at

some future time what their positions in space were when any

set of valuable observations were made. But in a very long time

some error may accumulate from year to year and finally become
considerable. The present positions of these planes in space may
also be transmitted to posterity by making observations on the

fixed stars. These bodies, however, are not absolutely fixed, and,

as time goes on, the positions of the planes of reference can be

determined from these observations with less and less accuracy.

A third method, which has been suggested by Laplace, is to make
use of the Invariable Plane. If we suppose the bodies forming our
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system, viz. the sun, planets, satellites, comets, &c., to be subject

only to their mutual attractions, it follows from the preceding

articles that the direction in space of the Invariable Plane at the

centre of gravity is absolutely fixed. It also follows from Art. 79

that the centre of gravity either is at rest or moves uniformly in

a straight line. We have here neglected the attractions of the

stars ; these, however, are too small to be taken account of in the

present state of our astronomical knowledge. We may, therefore,

determine to some extent the positions of our coordinate planes

in space, by referring them to the Invariable Plane, as being a

plane which is more nearly fixed than any other known plane in

the solar system. The position of this plane may be calculated at

the present time from the present state of the solar system, and at

any future time a similar calculation may be made founded on the

then state of the system. Thus a knowledge of its position cannot

be lost. A knowledge of the coordinates of the Invariable Plane

is not, however, sufficient to determine conversely the position of

our planes of reference. We must also know the coordinates of

some straight line in the Invariable Plane whose direction is fixed

in space. Such a line, as Poisson has suggested, is supplied by
projecting on the Invariable Plane the direction of motion of the

centre of gravity of the system. If the centre of gravity of the

solar system is at rest or moves perpendicularly to the Invariable

Plane, this method fails. In any case our knowledge of the motion
of the centre of gravity is not at present sufficient to enable us to

make much use of this fixed direction in space.

304. If the planets and bodies forming the solar system can

be regarded as spheres whose strata of ecfual density are con-

centric spheres, their mutual attractions act along the straight

lines joining their centres. In this case the motion of their

centres is the same as if each mass were collected into its centre

of gravity, while the motion of each about its centre of gravity

iwould continue unchanged for ever. Thus we may obtain another

! fixed plane by omitting these latter motions altogether. This is

'what Laplace has done, and in his formulae the terms depending on

Ithe rotations of the bodies in the preceding values of h^, h^, h^ are

I omitted. This plane may be called the Astronomical Invariable

I Plane to distinguish it from the true Dynamical Invariable Plane.

*The former is perpendicular to the axis of the momentum couple

rdue to the motions of translation of the several bodies, the latter

pis perpendicular to the axis of the momentum couple due to the

(smotions of translation and rotation.

f
Poinsot, in a note to his Statics, called attention to the fact

that Laplace's plane is not the true invariable plane. He remarks

that the area due to the rotation of the sun is at least 25 times

that due to the motion of the earth round the sun. This omission
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alters by some minutes the inclination of the plane to the ecliptic

and by several degrees the longitude of the ascending node.

The Astronomical Invariable Plane is not strictly fixed in

space, because the mutual attractions of the bodies do not strictly

act along the straight lines joining their centres of gravity, so

that the terms omitted in the expressions for /ii, h.2, h^ are not

absolutely constant. The effect of precession is to make the axis

of rotation of each body describe a cone in space, so that, even
though the angular velocity is unaltered, the position in space

of the Astronomical Invariable Plane must be slightly altered.

A collision between two bodies of the system, if such a thing

were possible, or an explosion of a planet similar to that by vvhich

Olbers in 1802 supposed the planets Ceres, Pallas, Juno and Vesta,

&c., to have been produced, might make a considerable change in

the sum of the terms omitted. In this case there would be a

change in the position of the Astronomical Invariable Plane, but
the Dynamical Invariable Plane would be altogether unaffected.

It might be supposed that it would be preferable to use in

Astronomy the true Invariable Plane. But this is not necessarily

the case, for the angular velocities and moments of inertia of the

bodies forming our system are not all known, so that the position

of the Dynamical Invariable Plane cannot be calculated to any
near degree of approximation, while we do know that the terms

into which these unknown quantities enter are all very small or

nearly constant. All the terms rejected being small compared with

those retained, the Astronomical Invariable Plane must make only

a small angle with the Dynamical Invariable Plane. Although
the plane is very nearly fixed in space, yet its intersection with

the Dynamical Invariable Plane, owing to the smallness of the

inclination, may undergo considerable changes of position.

In the Mecanique Celeste, Tome, ill., p. 188, Laplace calculated

the position of the Astronomical Invariable Plane at the two
epochs, 1750 and 1950, assuming the correctness for this period of

his formulae for the variations of the eccentricities, inclinations

and nodes of the planetary orbits. Neglecting the areas due to

the motion of the satellites about their primaries (that due to the

planet Neptune being also omitted) he found that at the first

epoch the inclination of this plane to the ecliptic was 1° 35' 31",

and the longitude of the ascending node 102° 57^ 29''
; at the

second epoch the inclination will be the same as before, and the

longitude of the node 102° 57' 14".

In the Smithsonian Contributions to Knoiuledge, Vol. 18, 1873,

J. N. Stockwell gives the inclination of the Astronomical Invariable

Plane to the ecliptic of 1850 (supposed fixed) as 1° 35' 19"*376.

He includes Neptune, but omits the Satellites. The inclination

is not constant but it must lie between the limits 0° and 3° 6'.
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He has also calculated the inclinations of the orbits of the eight

principal planets to the invariable plane and their maximum and
minimum values, together with the positions of the nodes and
their mean motions per Julian year.

In the Astronomische Nachrichten, No. 3923, there is an

important memoir by Prof. See on the degree of accuracy attain-

able in determining the 'position of Laplace's Invariable Plane^

1903. He particularly discusses the best determination of the

masses of the several planets and the degree of uncertainty in

each. He finds 106° 8' 46'''688 for the longitude of the ascending

node and 1° 35' 7'''745 for the inclination of the plane referred to

the fixed ecliptic of 1850*0. He considers that the inclination is

uncertain only to the extent of 1'' and the node by about 1'. The
plane has therefore now been determined with very considerable

accuracy.

305. Laplace remarks that, the origin of coordinates being at the centre of

gravity of the system, tlie equation

h = -EM{xy-yx) (1)

may be put into the form

/i2iV/=SSJIiilf2{(a;2-a;,)(?/2-?/i)-(y2-yi)(i2-ii)} (2),

where the SS may include or exclude the terms in which the suffixes are the same..

To prove this, collect the terms which have the factor M^ . These are

M^ [Sx¥„
{
{xj^ - y^x^)} + {x,y, - ij,x,) SiHJ

+ M,[-x,^MJ^ - ij^^M^x^+ y^ 2M„i„ + x^ Si»4?/J,

where the S implies summation for all values of n, including n= l. The last four

terms vanish because the origin is at the centre of gravity. We now repeat this

process and collect the terms in (2) which contain M^ as a factor. We are thus

taking every term in (2) twice over, because the product M-^M^ is made to supply a

term to each collection. After adding the results of all the collections together we

have

(ilfi + Jf2 + &c.) S {M^{xJ^-y^xJ}
+ {Ml {x^ij^ - T/i^i) + M^ {x^y^ - y^x^) + &g. } SM,,

,

and this is twice the left-hand side of (2).

In this form the equation of moments is made to depend on the differences of the

coordinates of the bodies which form the solar system. We shall now change the

origin to the centre of the sun. Let S be the mass of the sun, M^, M^, &c. those of

the other bodies, (^j, t/j, ^^) (^2> %» ^2) *c- ^^^^^ coordinates referred to the centre of

the sun. The equation (2) then becomes

/i(S + SM) = 6f.SiH(|^-,,^) + SS.¥iM2{(f2-?i)(^2-^i)-{'72-'7i)&-li)}-(3).

If a be the semi-major axis of any planetary orbit, e= sin the eccentricity, n the

mean motion in a Julian year, x ^^^ angle the plane of the orbit makes with the

plane of xy, say, the ecliptic, we have

^7] - 7}^= na^ cos (j) cosx (4).

The terms of the second order depending on the products of the masses of the

planets are omitted. The two greatest planets are Jupiter and Saturn, their masses

are respectively only 1/1047 and 1/3500 of that of the sun. These terms are therefore
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less than the uncertainty attaching to the terms of the first order. The satellites,

asteroids and comets are too small and too symmetrically distributed to exert a

sensible influence on the position of the plane.

Since the ratios of h^ , h.2, h^ are all that we want, we write unity for the mass
of the sun and express the masses of the several planets as fractions of that of the

sun. The formulae used to find h^ , h^ , h^ now become

h^= 'Z{Mna'^ cos (p cos x), /ii = S (Mwa'-^cos sin xcos;/'),

/t2= 2 {Mna^ cos
(f)

sin x sin xp),

where xj/ is the longitude of the ascending node of the planet's orbit on the fixed

plane of reference at a particular epoch.

305 a. Ex. 1. Show that the invariable plane at any point of space in the

straight line described by the centre of gravity of the solar system is parallel to

that at the centre of gravity.

Ex. 2. If the invariable planes at all points in a certain straight line are

parallel, then that straight line is parallel to the straight line described by the

centre of gravity.

Impulsive Forces in Three Dimensions.

306. Constrained single body. To determine the general

equations of motion of a body about a fixed point under the action

of given impulses.

Let the fixed point be taken as the origin, and let the axes

of coordinates be rectangular. Let {fix, ^y, ^z), (^a;> (^y, «»z) be

the angular velocities of the body just before and just after the

impulse, and let the differences cox — fl^, (Oy — £ly, Wz — ^z be

called Wx, ©/, o)/. Then (Ox, Wy, «/ are the angular velocities

generated by the impulse. By D'Alembert's Principle, see Art. 87,

the difference between the angular momenta of the system just

before and just after the action of the impulses is equal to the

moment of the impulses. Hence by Art. 262

AcDx — (Emooy) coy — (Smxz) o)/ = Z "j

Bcoy — (%myz) Wz — (^myx) (Ox =" M\ (1)

Oft)/ — (Xmzoc) Q)x' — i^mzy) coy = N)

where L, M, N are the moments of the impulsive forces about

the axes. These three equations will suffice to determine the

values of cox, coy, co/. By adding these to the angular velocities

before the impulse, the initial motion of the body after the impulse

is found.

307. Ex. 1. Show that these equations are independent of each other, and that

none of the angular velocities w^., coy, Wg is infinite.

This follows from Art. 20, where it is shown that the eliminant of the equations

cannot vanish.

Ex. 2. Show that, if the body be acted on by a finite number of given impulses

following each other at infinitely short intervals, the final motion is independent

of their order.

I
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308. It is to be observed that in these equations the axes of

reference are any whatever. They should be so chosen that the

values of A, Xmxy, &c., may be most easily found. If the positions

of the principal axes at the fixed point are known, these will in

general be found the most suitable.

In that case the equations reduce to the simple forms

A(o^' = L, Bcoy' = M, CcD.'^N (2).

The values of Wx, (Oy, co/ being known, we can find the pressures

on the fixed point. For by D'Alembert's Principle the change in

the linear momentum of the body in any direction is equal to the

resolved part of the impulsive forces. Hence if F, G, H be the

pressures of the fixed point on the body

SX + i^=if.^by Art. 86

(3).= M{a)yZ - (o^'y) by Art. 238

tY+G = M{(o,'x-(o^z)

XZ +H=M {(o^y- (Dy'x)

308 a. If X, Y, Z are the components of any blow, jp, q, r the coordinates of its

point of application, the equations (2) may be written

A{o}^-n-^) = '2{qZ-rY), &c., &c.

The gain of vis viva due to the impulses is by Art. 363,

A (0,^2 _ i2^2) +B (V _ fi/) + G (a,/ - O/)

= (w^ + OJ i:{qZ-rY) + {cjy + Qy) S {rX-pZ) + &c.

Separate the terms with X, Y, Z and this becomes by Art. 238

S {X{ui + U2) + Y{v^+V2) +Z (wj^ + w^)},

where {u^, v^, Wj) {u^, v^, w^) are the resolved velocities of the point of application

just before and just after the blow. See Arts. 171, 346, 384.

309. Ex. 1. A uniform disc hounded by an arc OP of a parabola, the axis ON,

and the ordinate PN, has its _

vertex fixed. A blow B is

given to it perpendicular to

its plane at the extremity P
of the curved boundary. Sup-

jaosing the disc to be at rest

before the application of the

blow, find the initial motion.

Let the equation to the

parabola be y^=4oax, and let

the axis of z be perpen-

•dicular to its plane. Then
2mxz= 0, 1imyz= 0. Let fi

be the mass of a unit of area

And let ON=c. Also i:mxy = fi j lxydxdy = ju. I x^dx= 2fji. I ax^dx=

A = ^lj.j y^dx=^fji,a^c^, B = fi j
x^ydx=j-= ^fia^c^,

ixac^

and C=A + B, by Art. 7.
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The moments of the blow B about the axes are L = BsJAac, M= -Be, N=0. The
equations of Art. 306 will become after substitution of these values

^^fjLa^c^(ay.-^fjiac^u}j,= 2Ba^c^, j^fia^c^u}y-^fiac^u3^=-Bc, a>^=0.

These equations determine the initial motion. By eliminating B we find the

ratio of Wy to w^. It easily follows that if NQ is taken equal to ^V-^-f*> the disc

begins to rotate about OQ.

Ex. 2. One end of an inelastic string is attached to a fixed point and the other

to a point in the surface of a body of mass 31. The body is allowed to fall freely

under gravity without rotation. Show that just before the string becomes tight

/ / 1 X2 u2 ,;2\

the loss of kinetic energy due to the impact is ^V^
( Tr + "7 "^

r^
"^ ?i" ) '

'^^®^^ ^ ^^

the resolved velocity of the body in the direction of the string just before impact^

the string only touching the body at the point of attachment, I, m, n, X, ix, v are

the coordinates of the string at the instant it becomes tight and A, B, C the

principal moments of inertia of the body with respect to its principal axes at its

centre of inertia. [Math. Tripos, 1899.

The result in the question follows from the equations of Arts. 308 and 238.

Here \, fi, v are the moments about the axes of a unit force acting along the string,

and I, m, n are its resolved parts. See the author's Statics, 1896, Art. 260 for

references.

310. New statement of the Problem. When a body free

to turn about a fixed point is acted on by any number of impulses,

each impulse is equivalent to an equal and parallel impulse

acting at the fixed point together with an impulsive couple. The
impulse at the fixed point can have no effect on the motion of the

body, and may therefore be left out of consideration if only the

motion is wanted. Compounding all the couples, we see that the

general problem may be stated thus :

—

A body moving about a fixed

point is acted on by a given impulsive couple, find the change

produced in the motion. The analytical solution is comprised in

the equations which have bee^i written down in Art 306. The
following examples express the result in a geometrical form.

Ex. 1. Show from these equations that the resultant axis of the angular

velocity generated by the couple is the diametral line of the plane of the couple

with regard to the momental ellipsoid. See also Art. 118.

Ex. 2. Let G be the magnitude of the couple, p the perpendicular from the

fixed point on the tangent plane to the momental ellipsoid parallel to the plane

of the couple G. Let 12 be the angular velocity generated, r the radius vector of

the ellipsoid which is the axis of i^. Let K be the parameter of the ellipsoid,

as in Art. 19. Prove that Kil=prG.

Ex. 3. If fia;' ^2/' ^e ^^ angular velocities about three conjugate diameters of

the momental ellipsoid at the fixed point, such that their resultant is the angular

velocity generated by an impulsive couple G, A', B', G' the moments of inertia

about these conjugate diameters, prove that A'^^= G cosa, B'Qy — G cos ^,

C'Qg=GGOBy, where a, /3, y are the angles the axis of G makes with the conjugate

diameters.

Ex. 4. If a body free to turn about a fixed point O be acted on by an impulsive
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couple G, whose axis is the radius vector r of the ellipsoid of gyration at 0, and if

p be the perpendicular from on the tangent plane at the extremity of r, then the

axis of the angular velocity generated by the blow will be the perpendicular p, and

the magnitude ii is given by G= Mpr^.

Ex. 5. Show that, if a body at rest be acted on by any impulses, we may take

moments about the initial axis of rotation, according to the rule given in Art. 89,

as if it were a fixed axis.

Ex. 6. When a body turns about a fixed point, the product of the moment of

inertia about the instantaneous axis and the square of the angular velocity is

called the Vis Viva. Let the vis viva generated from rest by any impulse be 2T,

and let the vis viva generated by the same impulse when the body is constrained to

turn about a fixed axis passing through the fixed point be 2T'. Then prove that

T' = Tcoa^d, where 6 is the angle between the eccentric lines of the two axes of

rotation with regard to the momental ellipsoid at the fixed point.

Ex. 7. Hence deduce Euler's theorem, that the vis viva generated from rest

by an impulse is greater when the body is free to turn about the fixed point than

when constrained to turn about any axis through the fixed point. This theorem

was riterwards generalized by Lagrange and Bertrand in the second part of the first

volume of the Mecanique Analytique.

311. Free single body. To determine the motion of a free
body acted on by any given impulse.

Since the body is free, the motion round the centre of gravity

is the same as if that point were fixed. Hence, the axes being
any three straight lines at right angles meeting at the centre of

gravity, the angular velocities of the body may still be found by
equations (1) and (2) of Art. 306.

To find the motion of the centre of gravity, let (U, V, TT),

(w, V, w) be the resolved velocities of the centre of gravity just

before and just after the impulse. Let X, Y, Z be the components
of the blow, and let M be the whole mass. Then by resolving

parallel to the axes we have

M{u-U) = X, M(v-V) = Y, M{w-W) = Z.

If we follow the same notation as in Art. 306, the differences

\u — U,v — V,w — W may be called u, v\ w

.

312. Ex. 1. A body at rest is acted on by an impulse whose components

[parallel to the principal axes at the centre of gravity are (Z, y, Z) and the co-

[ordinates of whose point of application referred to these axes are (p, g, r). Prove

I that if the resulting motion be one of rotation only about some axis,

A{B - G)pYZ ^B {G - A) qZX^G {A -B)rXY=Q).

Is this condition sufficient as well as necessary? See Art. 241.

Ex. 2. A homogeneous cricket-ball is set rotating about a horizontal axis in

[the vertical plane of projection with an angular velocity fl. When it strikes the

)und, supposed perfectly rough and inelastic, the centre is moving with velocity

[F in a direction making an angle a with the horizon, prove that the direction of

Ithe motion of the ball after impact will make with the plane of projection an angle

|tan~i - ,^ , where a is the radius of the ball.
5Fcosa

R. D. 17
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Ex. 3. A rough lamina, turning with angular velocity fi about a fixed axis

perpendicular to its plane, is impulsively gripped by a solid cone of semi-vertical

angle a, whose vertex is fixed at the point where the axis meets the lamina, turning

about its own axis with angular velocity w. The moments of inertia of the cone

being denoted by ^, ^, G and that of the lamina by I, prove that the loss of kinetic

energy is |(0 - w sin a)^ (j + ^°^ " + -77^) • [Math. Tripos, 1902.

The cone will begin to roll on the lamina which can only turn about its axis,

say the axis of z. Let G be the couple of reaction between the cone and lamina, its

axis being that of z. Let the cone touch the lamina along the axis of x. Take
moments for the cone about its principal axes DC, GA and for the lamina about its

principal axis GZ ; we find C (wg' - w) = (r sin a, Ao}/= - G cos a, I (S2' - fi) = - G.

Since the cone rolls on the lamina Wg' sin a - w/ cos a= 0'. Solving these we find G
and thence Wg', w/, and Q\ The loss of energy follows at once.

313. Motion of any point of the body. To prove that the

components of the change of velocity of any point of the body are

linear functions of the components of the blow. The equations of

Art. 311 completely determine the motion of a free body acted on
by a given impulse, and from these by Art. 238 we may determine
the initial motion of any point of the body. Let (p, q, r) be the

coordinates of the point of application of the blow, then the

moments of the blow round the axes are respectively qZ — rY,
rX—pZ, pY—qX. These must be written on the right-hand

sides of the equations of Art. 306. Let {p', q, r') be the co-

ordinates of the point whose initial velocities parallel to the axes

are required. Let {u^, Vi, w^, {u^, v^, w^) be its velocities just

before and just after the impulse. Let the rest of the notation be
the same as that used in Art. 306. Then

U2 — Uj = u' + coy'r — (o^q',

with similar equations for v^ — v^, w^ — w^. Substituting in these

equations the value of ii, v\ w\ ©/, «/, 0)^' given by Art. 311 we
see that u^ — u^,v^ — v^,w<^ — w^ are linear functions of X, Y, Z, of

the form u^-u^^FX -^-GY^EZ,
where F, G, H depend on the structure of the body and the
coordinates of the two points.

314. When the point whose initial motion is required is the point of application

of the blow, and the axes of reference are the principal axes at the centre of

gravity, these expressions take the simple forms

The right-hand sides of these equations are the differential coefficients of a

quadratic function of X, F, Z, which we may call E. It follows that for all blows

at the same point P of the same body the resultant change in the velocity of the point
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P of application is perpendicular to the diametral plane of the direction of the blow

with regard to a certain ellipsoid, whose centre is at P, and whose equation is

E= constant.

The expression for E may be written in either of the equivalent forms

:

2E=^X!±^±^' + -^{{Ap^ + Bq^+Cr^) (AX^ + BY^+CZ^) - {ApX+BqY+ GrZf)

- M ^^{^Z-rYf^-{rX-pZf^^-{pY-qX)\

In this latter form we see that 1E= M{u"'-^-v"'"^w"^)^Aia^'^^B(>}^^ + Ci^;^,

which is the vis viva of the motion generated by the impulse.

Impact of any two bodies.

315. Two bodies moving in any manner impinge on each other.

To find the motion after impact.

Inelastic Bodies. If the bodies are inelastic and either

perfectly smooth or so rough that the sliding must be destroyed

before the termination of the impact, it is unnecessary to introduce

the reactions into the equations. In either case we take the

point of contact as the origin. Let the axes of x and y be in

the tangent plane, and that of z be normal. Let U, V, W be the
resolved velocities of the centre of gravity of one body just before

the impact, and u, v, lu the resolved velocities just after the impact.

Let Ha;, Hj,, fl^, a)a;, Wj,, 0)2 be the angular velocities just before and
just after. Let A, B, C, D, E, F be the moments and products of

inertia at the centre of gravity. Let M be the mass of the body,

and X, 2/, z the coordinates of its centre of gravity. Let accented
letters denote the same quantities for the other body.

Then taking moments about the axes for one body we have,

by Arts. 306 and 78,

A{ay^-n^)-F{iOy-ay)-E{(o^-n,)-{v-V)z-^{w-W)y=^0,

-F{w^-^^) + B{ayy-^y)-D{(c,-n,)-{w-W)x+{u-U)z^O,
-E{co^^n^)-j){(Oy-ny)+C(co,-n,)-(u-U)y+(v-V)x = o.

Three similar equations apply for the other body, differing from
these only in having all the letters accented.

Resolving along the axis of z for both bodies, we have

M(w-W)-{-M'{w'-W') = 0.

The relative velocity of compression is zero at the moment of

greatest compression, we have therefore

w — (o^y -\- coyX = w' — cox'y' + (Oyx\

We thus have eight equations between the twelve unknown
resolved velocities and angular velocities.

17—2
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316. If the bodies he smooth we obtain four more equations by
resolving for each body parallel to the axes of x and y. For the

one body we have u—U=0, v — V = 0,

with similar equations for the other body.

317. If the bodies be rough we obtain two of the four equations

by resolving the linear momenta parallel to the axes of a; and y, viz.

M{u-U)-{-M'(u-U') = 0\

M{v-V) + M'{v' -V') = 0\

We have also two geometrical equations obtained by equating to

zero the resolved relative velocity of sliding, viz.

U — 0)yZ + (Ozy =U — COyZ' + ftj/t/'

V — (jDzOC + QJa;^ =V' — (OzOC + W^Z

318. Smooth Elastic Bodies. If the bodies be smooth and
imperfectly elastic, we must introduce the normal reaction into the

equations. In this case we proceed exactly as in the general case

when the bodies are rough and elastic, which we shall consider in

the following articles. The process is of course simplified by putting

both the frictions P and Q equal to zero in the twelve equations

of motion (1), (2), (3) and (4). We also have the velocity G of

compression equal to zero at the moment of greatest compression.

Thus we have one more equation from which the normal reaction R
may be found. Multiplying this value oi R hy 1 \- e, where e has

the meaning given to it in Art. 179, we have the complete value

of R for the whole impact. Substituting this last value of R in

the twelve equations of motion (1) and (2), (3) and (4), the motion

of both bodies just after impact is found.

319. Rough Elastic Bodies. The problem of determining

the motion of any two rough bodies after a collision involves some
rather long analysis and yet in some points it differs essentially

from the corresponding problem in two dimensions. We shall,

therefore, first consider a special problem which admits of being

treated briefly, and will then apply the same principles to the

general problem in three dimensions.

320. Two rough ellipsoids moving in any manner impinge

on each other so that the extremity of a principal diameter of one

strikes the extremity of a principal diameter of the other, at an
instant when the three principal diameters of one are parallel to

those of the other. Find the motion just after impact.

Let us refer the motion to coordinate axes parallel to the

principal diameters of either ellipsoid at the beginning of the

impact. Then since the duration of the impact is indefinitely

small and the velocities are finite, the bodies will not have time

to change their position, and therefore the principal diameters will

be parallel to the coordinate axes throughout the impact.
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Let U, V, W be the resolved velocities of the centre of gravity

of one body just before impact; u, v, tu the resolved velocities

at any time t after the beginning of the impact, but before its

termination. Let fl^j ^y^ ^z be the angular velocities of the

body just before impact about its principal diameters at the centre

of gravity; cox, cOy, odz the angular velocities at the time t. Let

a, b, c be the semiaxes of the ellipsoid, and A, B, C the moments
of inertia at the centre of gravity about these axes respectively.

Let M be the mass of the body. Let accented letters denote the

same quantities for the other body. Let the bodies impinge at

the extremities of the axes c, d

.

Let P, Q, U be the resolved parts parallel to the axes of the

momentum generated in the body M by the blow during the time

t. Then —P, — Q, — R are the resolved parts of the momentum
generated in the other body in the same time.

The equations of motion of the body M are

B(cOy-ny)=-Pc\ (1),

O(a,,-a) = J

M(u-U) = P\

Miv-V)=Q\ (2).

M(w-W) = r]

There are six corresponding equations for the other body
which may be derived from these by accenting all the letters on

the left-hand side and writing — P, —Q, — P, — c for P, Q, R
and c on the right-hand side. Let us call these new equations

respectively (3) and (4).

Let 8 be the velocity with which one ellipsoid slides along the

other, and the angle which the direction of sliding makes with

the axis of x, then, as in Art. 192,

S C0?> = U -\- C (Oy — U -{ CWy (5),

8^1X10 = V' — c'Wx — V - C(Ox (6).

Let C be the relative velocity of compression, then

C = w' -w (7).

Substituting in these equations from the dynamical equations

we have 8 cos 6 = 8q cos 6q — pP (8),

8 sin e = SoSm do -qQ (9),

G=Co-rR (10),

where 8o cos 6o= V -\- c^ly -U \- c^y\

>Sfosin(9o=r-c'n!,'-F-cni (ii),

G, = W'-W j
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lie c'\

1 1
r= h —M^ M'

These are the constants of the impact. >S^0) C^o '^^^ ^be initial

velocities of sliding and compression, and Oq the angle which the

direction of initial sliding makes with the axis of x. Let us take

as the standard case that in which the body M' is sliding along and
compressing the body M, so that 8q and Go are both positive. The
other three constants p, q, r are independent of the initial motion

and are essentially positive quantities.

321. Exactly as in the corresponding problem in two dimen-

sions, we shall adopt a graphical method of tracing the changes

which occur in the frictions. Let us measure along the axes

of cc, y, z three lengths OF, OQ, OR to represent the three re-

actions P, Q, B. Then, if these be regarded as the coordinates

of a point T, the motion of T will represent the changes in the

forces. It will be convenient to trace the loci given by >S^ = 0,

(7 = 0. The locus given by 8 = is a straight line parallel to

the axis of R ; this we may call the line of no sliding. The
locus given by C=0 is a plane parallel to the plane POQ; this

we may call the plane of greatest compression. At the beginning

of the impact one ellipsoid is sliding along the other, so that

according to Art. 154 the friction called into play is limiting.

Since P, Q, R are the whole resolved momenta generated in the

time t, dP, dQ, dR are the resolved momenta generated m
the time dt, the two former being due to the frictional, and the

latter to the normal blow. Then the direction of the resultant of

dP, dQ must be opposite to the direction in which one point of

contact slides over the other, and the magnitude of the resultant

must be equal to fidR, where fi is the coefficient of friction. We
have therefore

-— = cott^=^,

—

,
—-

—

^ (13),dQ SoSmOo-qQ

{dPy + (dQy = fjL'(dRy..... (i4).

The solution of these equations will indicate the manner in

which the representative point T approaches the line of no sliding.

The equation (13) can be solved by separating the variables.

We ffet 1 I

(So cos (9o
- pPy = OL (So sin Oo - qQY

,

where a is an arbitrary constant. At the beginning of the motion
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P and Q are zero, hence we have
1 1

fSo Coseo-pPy ^ fSo sin Op- qQy
[ 'Socose, J \ Sosiudo J ^

^^'

which may also be written

Scosd y _f Ssiue y . .

Socoseo) "Usin6'o/ ^ ^'

/sin 6 Y^-P /cos Ooy-Ps=s,r44v-^r^»r^ (i7).
Vsm 6o^ Vcos 6 J

This equation gives the relation between the direction and the

velocity of sliding.

322. If the direction of sliding does not change during the

impact, 6 must be constant and equal to 6o. We see from (16)
that, if p = q, then 6 = 6^', and that conversely if = 6q, S is

constant unless p = q. Also, if sin 0^ or cos 6o be zero, 8 must
be zero or infinite unless 6 = 6o. The necessary and sufficient

condition that the direction of friction should not change during

the impact is therefore p — q or sin 2^o = 0. The former of these

two conditions, by (12), leads to

i-i)+'='=(i-i)=« <^«>-

If this condition holds, we have by (13) P = Qcot^o and
therefore by (14)

P = fMRcosdo, Q = fMRsmOo (19).

It follows from these equations that, when the friction is

limiting, the representative point T moves along a straight line

making an angle tan~^ /jl with the axis of R, in such a direction

as to meet the straight line of no sliding.

323. If the condition p = q does not hold, we may, by dif-

ferentiating (8) and (9) and eliminating P. Q, and Sy reduce the

determination of R in terms of 6 to an integral.

By substituting for S from (17) in (8) and (9), we then have
P, Q, R expressed as functions of 0. Thus we have the equations

to the curve along which the representative point T travels. The
curve along which T travels may more conveniently be defined

by the property that its tangent, by (14), makes a constant angle

tan-^yLt with the axis of R and its projection on the plane of PQ
is given by (15). And it follows that this curve must meet the

straight line of no sliding, for the equation (15) is satisfied by
pP = 80^0^60, qQ = 80^1x160.

324. The whole progress of the impact may now be traced

exactly as in the corresponding problem in two dimensions. The

representative point T travels along a certain known curve, until
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it reaches the line of no sliding. It then proceeds along the line

of no sliding, in such a direction that the abscissa R increases.

The complete value R^ of R for the whole impact is found by

multiplying the abscissa R^ of the point at which T crosses the

plane of greatest compression byl-\-e, so that R^ = jRi (1 + e), if e be

the measure of the elasticity of the two bodies. The complete values

of the frictions called into play are the ordinates of the positions

of T corresponding to the abscissa R^R,^. Substituting these in the

dynamical equations (1), (2), (3), (4), the motion of the two bodies

just after impact may be found.

325. Since the line of no sliding is perpendicular to the

plane of PQ, P and Q are constant when T travels along this

line. So that, when once the sliding friction has ceased, no more
friction is called into play. If therefore sliding ceases a't any
instant before the termination of the impact, as when the bodies

are either very rough or perfectly rough, the whole frictional

impulses are given by

P^ Sq cos 00 ^ ^
/Sfp sin 6^

~ p ' q '

If a be the arc of the curve in the plane of PQ whose equation

is (15) measured from the origin to the point where it meets the

line of no sliding, then the representative point T cuts the line of

no slidinsf at a point whose abscissa is R = - . If the bodies are
/A

so rough that - < — , the point T will not cross the plane of

greatest compression until after it has reached the line of

no sliding. The whole normal impulse is therefore given by
CR = — {l-he). Substituting these values of P, Q, R in the

dynamical equations, the motion just after impact may be found.

326. Ex. 1. If ^ be the angle which the direction of sliding of one ellipsoid over

the other makes with the axis of x, prove that d continually increases or continually

decreases throughout the impact. And if the initial value of 6 lie between and ^tt,

then 6 approaches ^tt or zero according as p> or <q. Show also that the repre-

sentative point reaches the line of no sliding when 6 has either of these values.

Ex. 2. If the bodies be such that the direction of sliding continues unchanged

during the impact and the sliding ceases before the termination of the impact, the

S r
roughness must be such that u.> ^—r"—

-

.

CoP{l + e)

Ex. 3. If two rough spheres impinge on each other, prove that the direction

of sliding is the same throughout the impact. This proposition was given by

J. A. Euler, and by Coriolis, Jeu de billard, 1835. See Art. 322.

Ex. 4. If two inelastic solids of revolution impinge on each other, the vertex

of each being the point of contact, prove that the direction of sliding is the same

throughout the impact. This and the next proposition have been given by

M. Phillips in the fourteenth volume of Liouville's Journal.
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Ex. 5. If two bodies having the principal axes at their centres of gravity

parallel impinge, so that these centres of gravity are in the common normal at the

point of contact, and if the initial direction of sliding be parallel to a principal axis

at either centre of gravity, then the direction of sliding will be the same throughout

the impact.

Ex. 6. If two ellipsoids of equal mass impinge on each other at the ex-

tremities of their axes c, c', and if aa' = bb' and ca' = bc', prove that the direction

of friction is constant throughout the impact.

Ex. 7. A billiard ball rolls without sliding on the table and impinges against a

cushion, find the subsequent motion. See also Vol. ii. x\rt, 239. Ed. 1905.

Let the planes of the cushion and table be called the planes of xy and xz

respectively. Let the initial velocity of the centre of gravity resolved parallel to x

and z he -u and - w and let the angular velocity about the vertical be n. After

rebounding the ball will describe a series of very small parabolic jumps which are

hardly perceptible. Finally the ball may be regarded as rolling on the table. This

final motion is given by U' = - u + ^y {u + aji), W = -w + f {l + y + e)w,

where y is the smaller of the two quantities ^ and /a (1 + e) wl{w^ +{u + an)"Y.

327. Two rough bodies moving in any manner impinge on each

other. Find the motion just after impact.

Let us refer the motion to coordinate axes, the axes of x, y
being in the tangent plane at the point of impact and the axis

of z along the normal. Let U, V, W be the resolved velocities of

the centre of gravity of one body just before impact, u, v, w the

resolved velocities at any time t after the beginning, but before

the termination of the impact. Let D^x, ^yy ^z be the angular

velocities of the same body just before impact about axes parallel

to the coordinate axes, meeting at the centre of gravity; Wx,coyy (Oz

the angular velocities at the time t. Let A, B, G, D, E, F be
the moments and products of inertia about axes parallel to the

coordinate axes meeting at the centre of gravity. Let M be the

mass of the body. Let accented letters denote the same quantities

for the other body.

Let P, Q, R be the resolved parts parallel to the axes of the

momentum generated in the body M from the beginning of the

impact, up to the time t. Then — P,-Q,—R are the resolved parts

of the momentum generated in the other body in the same time.

Let (x, y, z), (oo\ y', z') be the coordinates of the centres of

gravity of the two bodies referred to the point of contact as origin.

The equations of motion are therefore

A{(Dx-^cc)-F{(^y-^y)-E{(Dz-nz)==-yR + zQ\

-F(cox-nx) + B(coy-ny)-Diwz-nz) = -zP-\-xR[ (i),

-E{cDx-nx)-D(cOy-ny) + C(aiz-nz) = -xQ + yP\

M{u-U) = P]

M(v-V) = q\... (2).

M(w-W) = R]
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We have six similar equations for the other body, which differ

from these in having all the letters, except P, Q, R, accented,

and in having the signs of P, Q, R changed. These we shall call

equations (3) and (4). Let S be the velocity with which one

body slides along the other and 6 the angle which the direction

of sliding makes with the axis of x. Also let G be the relative

velocity of compression, then

8 cos = u' — coyz' + (Ozy — u + coyZ - cozy)

S sin $ = V — cozw' + a)x2' — v -\- cozX — w^z \ (5).

C =W' — (Oxy + 0)yX —W-\- Wxy — (OyOC)

If we substitute from (1) (2) (3) (4) in (5) we find, (Art. 314)

^0 cos e- S cos d = aP-]-fQ+ eR)

Sosm6-Ssme=fP-hbQ + dR[ (6),

Co- C=:^eP +dQ-\-cR)

where So, 6o, Go are the initial values of S, 0, G and are found from

(5) by writing for the letters their initial values. The expressions

for a, h, c, d, e, f are rather complicated, but it is unnecessary to

calculate them.

328. We may now trace the whole progress of the impact by
the use of a graphical method. Let us measure from the point of

contact 0, along the axes of coordinates, three lengths OP, OQ, OR
to represent the three reactions, P, Q, R. Then if, as before, these

are regarded as the coordinates of a point T, the motion of T
will represent the changes in the forces. The equations of the

line of no sliding are found by putting 8 = in the first two

of equations (6). We see that it is a straight line.

The equation of the plane of greatest compression is found by
putting (7= in the third of equations (6).

At the beginning of the impact one body is sliding along the

other, so that the friction called into play is limiting. The path

of the representative point as it travels from is given, as in

Art. 321, by dP dQ .^ /^x•^

^ = -^ = fidR (7),
cos ^ sm ^ '^

When the representative point T reaches the line of no sliding,

the sliding of one body along the other ceases for the instant.

After this, only so much friction is called into play as will suffice to

prevent sliding, provided that this amount is less than the limiting

friction. If therefore the angle which the line of no sliding makes
with the axis of R be less than tan"^ /x, the point T travels along it.

But if the angle be greater than tan~^ /m, more friction is necessary

to prevent sliding than can be called into play. Accordingly the

friction continues to be limiting, but its direction is changed if 8
changes sign. The point T then travels along a curve given by
equation (7) with 6 increased by tt. See Art. 194.



ART. 330.] IMPACT OF ROUGH ELASTIC BODIES. 267

The complete value R^ of R for the whole impact is found

by multiplying the abscissa R^ of the point at which T crosses the

plane of greatest compression by 1 + e, where e is the measure of

el isticity, so that i^2 = -^i (1 + ^)- The complete values of P and Q
Ml represented by the ordinates corresponding to the abscissa R^.

Substituting in the dynamical equations, the motion just after

impact may be found.

329. The path of the representative point before it reaches

the line of no sliding must be found by integrating (7). By
differentiating (6) we have

d (S cos 6) _ adP +fdQ + edR __ a^i cos 6
-\-
f^i s\n 6 -\- e .„.

d{S sin 6) ~fdP + hdQ + ddR"fyucos 6 + bfism 6 + d'"^ ^'

which reduces to

^cos2l9 + /'sin2l9 +
.(9).

- ,^ -^r— + ^s— cos2^ + /sm2^+-cos^4--sm^
1 dS_2 2

"^
/x /JL

TT— sm 26 -\- f cos 26 + - cos 6 sm ^

From this equation we may find >Sf as a function of 6 in

the form S = Af(6), the constant A being determined from the

j

condition that S — So when 6 = 6^. Differentiating the first of

equations (6) and substituting from (7) we get

-Ad{cos6f (6)}= (fia cos + fif sin + e)dR (10),

whence we find R = AF(0) + B, the constant B being determined
from the condition that R vanishes when 6 = 6q. By substituting

sthese values of S and R in the first two equations of (6) we find

P and Q in terms of 6. The three equations giving P, Q, R as

functions of 6 are the equations to the path of the representative

ipoint. It should be noticed that the tangent to the path at any
(point makes with the axis of R an angle equal to tan~^ /x.

330. If the direction of friction does not change during the

impact, 6 is constant and equal to 6^, so that 6 cannot be chosen as

the independent variable. In this case P = fjuR cos 6o,Q= jjlR sin 6^

and the representative point moves along a straight line making
with the axis of R an angle tan~^ /i. Substituting these values of

P and Q in the first two of equations (6) we have

-^^ sin 2l9o +/cos 26^ + - cos 6>o
- - sin (9o

= . . .(11)
Z '^

/JL fJb

as a necessary condition that the direction of friction should not

change. Conversely, if this condition is satisfied, the equations

[Q) and (7) may all be satisfied by making 6 constant. In this

sase it is also easy to see that the path of the representative point

intersects the line of no sliding.

If Sq be zero, the representative point is situated on the line of
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no sliding. If the angle made by this straight line with the axis

of R be less than tan~^ ^, the representative point travels along it.

But if the angle be greater than tan~^yu,, more friction is necessary

to prevent sliding than can be called into play. Since S^^ is zero,

the initial value of 6 is unknown. In this case, differentiating the

first two equations of (6) and putting >S^= 0, we see by division that

the initial value of 6 must satisfy equation (11). The condition

that the direction of friction does not change is therefore satisfied.

This value of 6 makes the subject of integration in (9) infinite, so

that the reasoning there given must be modified. But, by what
has just been said, we see that the path of the representative point

is a straight line, which makes with the axis of R an angle equal

to tan~^ fjL, and has the proper initial value of 6.

331. Ex. 1. Let G= A -F -E yR-zQ
-F B -D zP-xR
-E -D G xQ-yP

yR-zQ zP-xR xQ-yP

and let A be the determinant obtained by leaving out the last row and the last

column. Let G', A' be corresponding expressions for the other body. Then

a, b, c, d, e, /are the coefficients of P-, Q^, R-, 2QR, 2RP, 2PQ in the quadric

where 2E is a constant, which may be shown to be the sum of the vires vivae of the

motions generated in the two bodies, as explained in Art. 314.

This quadric may be shown to be an ellipsoid by comparing its equation with

that given in Art. 28, Ex. 3.

Show also that a, b, c are necessarily positive, and that ab>f^, bod^, ca>e^.

Show that, by turning the axes of reference round the axis of R through the

proper angle, we can make / zero.

Ex. 2. Prove that the line of no sliding is parallel to the conjugate diameter

of the plane containing the frictions P, Q. Prove also that the plane of greatest

compression is the diametral plane of the reaction R.

Ex. 3, The line of no sliding is the intersection of the polar planes of two

points situated on the axes of P and Q, at distances from the origin respectively

op 0,V
and :^

—
-.
—— . The plane of greatest compression is the polar plane of

>Sft sin Q,

2E
a point on the axis of R, distant —- from the origin.

C,

Ex. 4. The plane of PQ cuts the ellipsoid of Ex. 1 in an ellipse, whose axer

divide the plane into four quadrants; the line of no sliding cuts the plane of PQ in

that quadrant in which the initial sliding Sq occurs.

Ex. 5. A parallel to the line of no sliding through the origin cuts the plane of

greatest compression in a point whose abscissa R has the same sign as Cq. Hence

show, from geometrical considerations, that the representative point T must cross

the plane of greatest compression.
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EXAMPLES*.

1. A cone revolves round its axis with a known angular velocity. The altitude

begins to diminish and the angle to increase, the volume being constant. Show
that the angular velocity is proportional to the altitude. Art. 299.

2. A circular disc is revolving in its own plane about its centre ; if a point in

the circumference becomes fixed, find the new angular velocity. Art. 171 a.

3. A uniform rod of length 2a lying on a smooth horizontal plane passes

through a ring which permits the rod to rotate freely in the horizontal plane. The

middle point of the rod being indefinitely near the ring, any angular velocity is

impressed on it, show that when it leaves the ring the radius vector of the middle

point has swept out an area equal to }a^.

4. An elliptic lamina is rotating about its centre on a smooth horizontal table.

If Wi, W2, W3 be its angular velocities when the extremity of its major axis, its

focus, and the extremity of its minor axis respectively become fixed, prove that

5. A rigid body moveable about a fixed point at which the principal moments

are A, B, C is struck by a blow of given magnitude at a given point. If the

angular velocity thus impressed on the body be the greatest possible, prove that,

[a, b, c) being the coordinates of the given point referred to the principal axes

at 0, and {I, m, n) the direction cosines of the blow.

a/1 1\6/1 l\c/l 1
al + bm+ cn= 0, - (^_ - _

j
+ _ (^_ - _

j
+ - (^_ - _ :0.

6. Any triangular lamina ABC has the angular point C fixed and is capable

of free motion about it. A blow is struck at B perpendicularly to the plane of the

triangle. Show that the initial axis of rotation is that trisector of the side AB
which is furthest from B.

Eeplacing the lamina by its three equivalent particles and equating to zero the

angular momentum about BC, Art. 149, it is evident that the particles at E and F
(bisecting AC, AB) have equal and opposite initial velocities. It follows that the

instantaneous axis bisects EF and passes through C. Considering this axis as a

transversal of the triangle AEF, we deduce the result given.

7. A cone of mass vi and vertical angle 2a can move freely about its axis,

which is vertical and has a fine smooth groove cut along its surface so as to make a

constant angle /3 with the generating lines of the cone. A heavy particle of mass P
moves along the groove under the action of gravity, the system being initially at

itst with the particle at a distance c from the vertex. Show that, if 6 be the angle

through which the cone has turned when the particle is at any distance r from the

vertex,

mk^ + Pr^sin^a _ .q ^^^ „ ^ot/S

mk^ + Pc^sin^a

k being the radius of gyration of the cone about its axis.

8. A body is turning about an axis through its centre of gravity when a

point P in it becomes suddenly fixed. If the new instantaneous axis be a principal

axis at P, show that the locus of P is a rectangular hyperbola.

* These examples are taken from Examination Papers which have been set in

the University or in the Colleges.
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Just before P is fixed the whole momentum is equivalent to a couple G acting

in the diametral plane of the instantaneous axis with regard to the momental
ellipsoid at 0, Art. 118 or 310. When P is fixed we may suppose the body to be

at rest and acted on by the couple G ; it therefore begins to turn about the diame-

tral line of the plane of G with r^ard to the momental ellipsoid at P ; see Art 297.

By the question this is to be a principal axis, and it is therefore perpendicular to

its diametral plane. The locus of P is therefore such that one principal axis at P
is parallel to a fixed straight line, viz. the perpendicular to the plane of G. The
locus is a rectangular hyperbola by Art. 51, Ex. 4.

9- A cube is rotating with angular velocity u about a diagonal when one of

its edges which does not meet the diagonal suddenly becomes fixed. Show that the

angular velocity u' about this edge is given by 4 ^/3a>'= w.

10. Two masses m, m' are connected by a fine smooth string which passes

rotmd a right circidar cylinder of radius a. The two particles are in motion in

one plane under no impressed forces, show that, if J be the sum of the absolute

areas swept out in a time t by the two unwrapped portions of the string,

T being the tension of the string at any time.

11. A piece of wire in the form of a circle lies at rest with its plane in contact

with a smooth horizontal table, when an insect on it suddenly starts walking along

the arc with uniform relative velocity. Show that the wire revolves round its

centre with tmiform angular velocity, while that centre describes a circle in space

with uniform angular velocity.

12. A uniform circular wire of radius a, moveable about a fixed point in its

circumference, lies on a smooth horizontal plane. An insect of mass equal to that

of the wire crawls along it, starting from the extremity of the diameter opposite

to the fixed point, its velocity relative to the wire being uniform and equal to V.

Prove that after a time t the wire will have turned through an angle

73*^"(;r3*^9-2a V3
13. A small insect moves along a uniform bar, of mass equal to itself, and oi

length 2a, the extremities of which are constrained to remain on the circumference

of a fixed circle, whose radius is 2a/^3. Supposing the insect to start from the

middle point of the bar, and its velocity relatively to the bar to be uniform and equal

to F; prove that the bar in time t will turn through an angle 6 where a tan {d^fS) = Vt

14. A circular disc can revolve freely in a horizontal plane about a vertical asi

through its centre. An equiangular spiral is traced on the disc, having the cent:

for pole. An insect whose mass is n times that of the disc crawls along the curve

starting from the point at which it cuts the edge. Show that, when the insect reache

the centre, the disc has revolved through an angle ^ tan a log (1 + 2n), where a i

the angle between the tangent and the radius vector at any point of the spiral.

15. A uniform circular disc moveable about its centre in its own plane (whic

is horizontal) has a fine groove in it cut along a radius, and is set rotating wit

an angular velocity w. A small rocket whose weight is an n^^ of the weight of th

disc is placed at the inner extremity of the groove and discharged ; when it ha

left the groove the same is done with another equal rocket, and so on. Find th

angular velocity after n of these operations, and, if n be indefinitely increased, she

that the limiting value of the same is we"^.
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16. A rigid body is rotating about an axis through its centre of gravity, when a

ain point of the body becomes suddenly fixed, the axis being simultaneously set

; find the equations of the new instantaneous axis ; and prove that, if it be

allel to the originally fixed axis, the point must lie in the line represented by

equations a^ lx + h^my + c^nz = 0, (62 -c^)j + (c^ - a^) | + (a^ -b^)^-= 0; where the

Lucipal axes through the centre of gravity are taken as axes of coordinates, a, b, c

p> the radii of gyration about these lines, and I, m, n the direction-cosines of

originally fixed axis referred to them. Art. 296.

17. A solid body rotating with uniform velocity w about a fixed axis contains

osed tubular channel of small uniform section, filled with an incompressible fluid

1 relative equilibrium ; if the rotation of the solid body were suddenly destroyed

t; fluid would move in the tube with a velocity v given by vl= 2A(a, where A is the

a of the projection of the axis of the tube on a plane perpendicular to the axis

otatiqn, and I is the length of the tube.

Any element of mass mds is moving with velocity a;r in a direction normally to

plane containing the element and the axis of rotation. The normal pressures

cthe tube destroy all motion perpendicular to the tube, so that we need only

cisider the component wr.rddlds, Art. 307. Each element impinges on those

aacent, but the hnear momentum is unaltered by this impact. Integrating the

omentum along the whole tube, we have mlv=jin<ar^d0, which gives the result.

18. A gate without a latch, in the form of a rectangnlar lamina, is fitted with a

uversal joint at the upper corner, and at the lower comer there is a short bar,

irmal to the plane of the gate and projecting equally on both sides of it. As the

ge swings to either side from its stable position of rest, one or other end of the

b becomes a fixed point. If h be the height of the gate, ht&na its length, and

the angle which the bar subtends at the upper comer, show that the angular

jcity of the gate as it passes through the position of rest is impulsively di-

lished in the ratio . J^~ ^
Jt i

and that the time between successive impacts
8m2a + tan3/3'

ven the oscillations became small decreases in the same ratio, the weights of the

y and joint being neglected.



CHAPTER VII.

VIS VIVA.

The Force-function and Work.

382. Time and space integrals. If a particle of mass m
is projected along the axis of x with an initial velocity V and is

acted on by a force F in the same direction, the motion i§ given

d X
by the equation m -j- = F.

Integrating this with regard to t, if v be the velocity after

a time t, we have , tt-x f^ n 7,' 7n(v-V)= \ Fdt.
JO

If we multiply both sides of the differential equation of the

second order by dx/dt and integrate, we get*

lm(v'-V')= r Fdx.
^ Jo

* It is seldom that Mathematicians can be found engaged in a controversy such

as that which raged for forty years in the eighteenth century. The object of the

dispute was to determine how the force of a body in motion was to be measured.

Up to the year 1686, the measure taken was the product of the mass of the body

and its velocity. Leibnitz, however, thought he perceived an error in the common
opinion, and undertook to show that the proper measure should be the product

of the mass and the square of the velocity. Shortly all Europe was divided

between the rival theories. Germany took part with Leibnitz and Bernoulli ; while

England, true to the old measure, combated their arguments with great success.

France was divided, an illustrious lady, the Marquise du Chatelet, being first a

warm supporter and then an opponent of Leibnitzian opinions. Holland and Italy

were in general favourable to the German philosopher. But what was most strange

in this great dispute was, that the same problem, solved by geometers of opposite

opinions, had the same solution. However the force was measured, whether by the

first or by the second power of the velocity, the result was the same. The arguments

and replies advanced on both sides are briefly given in Montucla's History, and are

most interesting. For these however we have no space. The controversy was at

last closed by D'Alembert, who showed in his treatise on Dynamics that the whole

dispute was a mere question of words. When we speak, he says, of the force of

a moving body, we either attach no clear meaning to the word or we understand

only the property that certain resistances can be overcome by the moving body. It

is not then by any simple considerations of merely the mass and the velocity of the

body that we must estimate this force, but by the nature of the obstacles overcome.

The greater the resistance overcome, the greater we may say is the force
;
provided

we do not understand by this word a pretended existence inherent in the body, but
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The first of these integrals shows that the change of the
momentum is equal to the time-integral of the force. By applying

similar reasoning to the motion of a dynamical system we have
been led in the last chapter to the general principle enunciated

in Art. 283, and afterwards to its application in determining the

changes produced by very great forces acting for a very short time.

The second integral shows that half the change of the vis viva

is equal to the space-integral of the force. It is our object in this

chapter to extend this result also, and to apply it to the general

motion of a system of bodies.

333. Vis viva. For purposes of description it is convenient

to give names to the two sides of this equation. Twice the left-

hand side is usually called the vis viva of the particle, a term
introduced by Leibnitz about the year 1695. Half the vis viva

is also called the kinetic energy of the particle. Many names have
been given to the right-hand side at various times. It is now
commonly called the work of the force F. When the force does

not act in the direction of the motion of its point of application

the term " work " requires a more extended definition. This we
shall discuss in the next article.

334. Work, Let a force F act at a point ^ of a body in the

direction AB, and let us suppose the point A to move into any
other position A' very near A. If <^ be the angle made by the direc-

tion AB of the force with the direction AA' of the displacement of

the point of application, then the product F .AA' .qo^<I> is called

the work done by the force. If for </> we write the angle made
by the direction AB oi the force with the direction A'A, opposite

to the displacement, the product is called the work done against

the force. If we drop a perpendicular A'M on AB, the work done
by the force is also equal to the product F .AM, where AM is to

be estimated as positive when in the direction of the force. If F'
be the resolved part of F in the direction of the displacement, the

work is also equal to F' . AA'. If several forces act, we can in the

same way find the work done by each. The sum of all these is

the work done by the whole system of forces.

Thus defined, the work done by a force, corresponding to any
indefinitely small displacement, is the same as the virtual moment
of the force. In statics we are only concerned with the small

I hypothetical displacements given to the system in applying

the principle of virtual work, and this definition is therefore

^sufficient. But in dynamics the bodies are in motion, and we

i simply use it as an abridged mode of expressing a fact. D'Alembert then points

out that there are different kinds of obstacles and examines how their different

kinds of resistances may be used as measures. It will perhaps be sufficient to

observe, that the resistance may in some cases be more conveniently measured

by a space-integral and in others by a time-integral. See Montucla's Historyy

'"Vol. III. and Whewell's History, Vol. ii.

R. D. 18
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must extend our definition of work to include the case of a

displacement of any magnitude. When the points of application

of the forces receive finite displacements we must divide the path
of each into elements. The work done in each element may be

found by the definition given above. The sum of all these is the

whole work.

It should be noticed that the work done by given forces, as the

body moves from one given position to another, is independent of

the time of transit. As stated in Art. 332, the work is a space-

integral and not a time-integral.

335. If two systems of forgoes be equivalent, the work done by

one in any small displacement is equal to that done by the other.

This follows at once from the principle of virtual work in statics.

For if every force in one system be reversed in direction without

altering its point of application or its magnitude, the two systems

will be in equilibrium, and the sum of their virtual moments will

therefore be zero. Restoring the system of forces to its original

state, we see that the virtual moments of the two systems are

equal. If the displacements are finite the same remark applies to

each successive element of the displacement, and therefore to the

whole displacement.

336. We may now find an analytical expression for the work
done by a system of forces. Let {x, y, z) be the rectangular

coordinates of a particle of the system and let the mass ot this

particle be m. Let (X, F, Z) be the accelerating forces acting on
the particle resolved parallel to the axes of coordinates. Then
mX, mY, mZ are the dynamical measures of the acting forces.

Let us suppose the particle to move into the position x + dx,

y + dy,jz + dz; then, according to the definition, the work done by
the forces will be

%{mXdx + mYdy + mZdz) (1),

the summation extending to all the forces of the system. If the

bodies receive any finite displacements, the whole work will be

l.mj{Xdx + Ydy + Zdz) (2),

the limits of the integral being determined by the extreme
positions of the system.

337. Force-flinction. When the forces are such as gener-

ally occur in nature, it will be proved that the summation (1) of

the last Article is a complete differential, i.e. it can be integrated

independently of any relation between the coordinates x^ y, z.

The summation (2) can therefore be expressed as a function of the

coordinates of the system. When this is the case the indefinite

integral of the summation (2) is called the force-function. This

name was given to the function by Sir W. R. Hamilton and Jacobi

independently of each other.
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If the force-function be called U, the work done by the forces

when the bodies move from one given position to another is the
definite integral U^ — U^, where U^ and U^ are the values of U
corresponding to the two given positions of the bodies. It follows

that the work is independent of the mode in which the system

I

moves from the first given position to the second. In other words,
\the work depends on the coordinates of the two given extreme
.positions, and not on the coordinates of any intermediate position.

When the forces are such as to possess this property, i.e. when
: they possess a force-function, they have been called a conservative

system of forces. This name was given by Sir W. Thomson, now
iLord Kelvin.

:^38. There will he a forcefunction, firstly, when the external

forces tend to fi^ed centres at finite distances and are functions

of tlie distances from those centres ; and, secondly, when the forces
due to the mutual attractions or repulsions of the particles of the

system are functions of the distances between the attracting or

repelling particles.

i Let m<f>{r) be the action of any fixed centre of force on a
[particle m distant r, estimated positive in the direction in which r
is measured, i.e. from the centre of force. Then the summation (1)
in Art. 336 is clearly %m(f){r)dr. This is a complete differential.

Thus the force-function exists and is equal to ^mjcf) (r) dr.

Let mm'(f) (r) be the action between two particles m, m' whose
distance apart is r, and as before let this force be considered

positive when repulsive. Then the summation (1) becomes
\1mm'(f>(r)dr. The force-function therefore exists, and is equal

to Xmm^j (j) (r) dr.

If the law of attraction be the inverse square of the distance,

^ (r) = and the integral is - . Thus the force-function differs

from the Potential by a constant quantity.

339. It is clear that there is nothing in the definition of the

force-function to compel us to use Cartesian coordinates. If P, Q,
kc. be forces acting on a particle, Pdp, Qdq, &c. their virtual

moments, m the mass of the particle, then the force-function is

U= ^mf(Pdp + Qdq -}- &c.),

the summation extending to all the forces of the system.

Ex. 1. If {p, <p, z) be the cylindrical or semi-polar coordinates of the particle

m; P, Q, Z the resolved parts of the forces respectively along and perpendicular to

) and along z, prove that dU= Sw {Pdp + Qpdcp + Zdz).

Ex, 2. If (r, 6, <f>)
be the polar coordinates of the particle m; P, Q, R the

cesolved parts of the forces respectively along the radius vector, perpendicular to it

n the plane of 6, and perpendicular to that plane, prove that

dU= i:m{Pdr + Qrdd + Rr sin dd(p).

18—2
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Ex. 3. If {x, y, z) be the oblique Cartesian coordinates of m; X, Y, Z the

components along the axes, prove that

dU= I>ni
{
X {dx + vdy + ixdz) + Y (udx + dy + Xdz) + Z {[xdx + \dy + dz)],

where (\, /*, v) are the cosines of the angles between the axes yz, zx, xy respectively.

This result is due to Poinsot.

340. If a system receive any small displacement ds parallel to

a given straight line and an angular displacement dO round the

line, then the partial differential coefficients dll/ds and dU/dO
represent respectively the resolved part of all the forces along the

line and the moment of the forces about it.

Since dU is the sum of the virtual moments of all the forces

due to any displacement, it is independent of any particular co-

ordinate axes. Let the straight line along which ds is measured
be taken as the axis of 2. Taking the same notation as before,

dU=lm {Xdx + Ydy + Zdz).

But dx = 0, dy = 0, and dz = ds, hence we have

dU^ds.XmZ', .\dUlds = lmZ.

Here dU means the change produced in Uhy the single dis-

placement of the system, taken as one body, parallel to the given

straight line, through a space ds.

Again, the moment of all the forces about the axis of z is

'Zm(a)Y—yX), but dx = — yd6, dy = ocdd ,
'a,nd dz = 0. Hence the

above moment _^ Ydy + Xdx + Zdz dJJ=^™-^^^ =d0-
Here dll is the change produced in U by the single rotation

of the system, taken as one body, round the given axis, through
an angle dO.

341. As considerable use will be made of the force-function,

the student will find it advantageous to acquire a facility in

writing down its form. The following examples have therefore

been chosen as likely to be most useful.

342. Work done by gravity. A system of bodies falls

under the action of gravity. If M be the whole mass, h the space

descended by the centre of gravity of the whole system, the work
done by gravity is Mgh. See Art. 140.

Let the axis of z be vertical and let the positive direction be downwards. Then

in the summation (1) of Art. 336, X=0, F=0 and Z = g. Hence dU=I,mgdz. If i

be the depth of the centre of gravity below the plane of xy, and C be any constant,

we find V= Mgz + C. Taking this between limits we easily obtain the result given.

Units of work. The theoretical unit of work is the work
done by a dynamical unit of force acting through a unit of space.

We may use the result of this example to supply a practical unit.
1

The work required to raise the centre of gravity of a given massj
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a given height at a given place may be taken as the unit of work.

English engineers use a pound for the mass and a foot for the

height, and the unit is then called d^ foot-pound. The term Horse-

power is used to express the work done per unit of time. The
unit of horse-power is usually taken to be 33000 foot-pounds per

minute. The duty of a steam-engine is the actual work done by

the consumption of a unit quantity, usually a bushel, of coal.

A more complete account of the various units used in dynamics is given in the

author's treatise on Dynamics of a Particle.

Ex. 1. A force communicates to a particle whose mass is equal to that of a

cubic foot of water a velocity of one foot per minute. Find the work in foot-pounds.

Ex. 2. Determine the resistance of a steamer in tons when 8000 effective horse-

power is required to drive it at 17^ knots (of 6080 feet) per hour.

[Univ. of London, 1886.

Ex. 3. Supposing a tricycle and rider weighing together 200 lbs. to run

uniformly at 8 miles an hour down an incline of one in 100 against the resistances

of the air and of the road, without working the pedals
;
prove that to go up an

incline of one in 200 at the same speed the rider must be working at the rate of -064

of a horse-power ; and that the mean pressure on each pedal will then be about

12*672 lbs., supposing the cranks to be 5 inches long and to make 100 revolutions a

minute. [Univ. of London, 1886.

Ex. 4. Prove that the amount of work required to raise to the surface of the earth

the homogeneous contents of a very small conical cavity, whose vertex is at the

centre of the earth, is equal to that which would be expended in raising the whole

mass of the contents through a space from the surface equal to one-fifth of the

earth's radius, supposing the force of gravity to remain constant. [Coll. Exam.

343. Work of an elastic string. Ex. If the length of an

elastic string or rod which is uniformly stretched be altered, the

work done by the tension is the product of the compression of the

length and the arithmetic mean of the initial and final tensions.

Let the length be altered from r to r'. Let p be any length between these two,

let I be the unstretched length, and let E be the constant of elasticity. The tension

is T = E ^-r— and acts opposite to the direction in which p is measured. The

work done while p becomes p-\-dp\^ therefore equal to - Tdp. If we integrate this

2i
from p= r to p = r' we find that the work required is -^^ {(^' - 0^~ (^~ ^)^}- This

leads at once to the result given.

If a string becomes slack, the tension is supposed to vanish, and no work is

done until the string again becomes tight. In applying the rule, the compression is

the difference between the two terminal lengths if the string he tight in both,

whether it has been slack or not during the various changes of length which may
have occurred during the process. If the string be slack in either terminal state we

must in calculating the compression suppose the string to have its unstretched

length in that terminal state.

In the case of a rod the tension becomes negative when the rod is compressed,

and the rule applies so long as the rod remains straight, and we can suppose

Hooke's law to be true.
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If the string is not straight but is uniformly stretched over a surface or in a

fine tube, the same rule to find the work is still true. To prove this, we divide the

string into elements, each of which may be considered as straight. When the

whole string is now uniformly stretched the work done is the mean of the tensions

into the sum of the contractions of all the elements. This last is clearly the con-

traction of the whole string.

If the surface be fixed the string cannot contract without one, at least, of the

extremities moving, and in this case the work is done at that extremity.

If the surface move, and the extremities of the string be fixed in space, the work

is transferred to the surface by means of the reactions. If the string have no

effective forces, these reactions are in equilibrium with the tensions at the points

A, B where the string leaves the surface. Now let the surface receive any small

displacement. By the principle of virtual work the work done by the reactions

on the surface is equal to that done by the two equal tensions at the points A, B.

But this work is the instantaneous tension into the contraction of the string, i.e. it

is - Tdp. If the surface receive a finite displacement, the work done is the integral

of this expression, and the rule is of course the same as before.

Whether the string have mass or not, we may consider each separate element of

it as one of the moving bodies whose motion enters into the equation of vis

viva. The work done by the contraction of all the elements is to be regarded as

distributed over all the bodies. The work done by the equal and opposite reactions

between the string and surface will then be zero.

344. Work of collecting a body. Ex. 1. If m, m' be the

TYlTt}!

masses of two particles attracting each other with a force ——^

where r is the distance between them, show that the work done by

the mutual force when they have moved from an infinite distance

apart to a distance r is . This follows from Art. 338. If the

particles repel each other we regard either m or m' as negative.

Ex. 2. Let two finite masses M, M' attract each other and
occupy given positions. Prove that the work of bringing the par-

ticles of one from infinite distances apart into their given positions

Tinder the attraction of the second, supposed fixed in its given

position, is the same as that of bringing the particles of the second

from infinity into their positions under the attraction of the first.

Prove also that this work may he found by taking both bodies in

their final positions and multiplying the mass of each element of
one body by the potential of the other at that element, then inte-

grating throughout the volume of the former body. This integral is

sometimes called the mutual work or the inutual potential of the

two bodies.

Let there be two sets of attracting particles which we may represent by

wij, mg, &c., TOj', Wg', &c., and let the particles of each set attract the particles of

the other set, but not the particles of its own set. Suppose the particles m^, m^, &g.

to occupy any given positions, and let one particle mf of the second set be brought

from an infinite distance to any given position, say to a position at distances
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Vj, u, &c. from the particles m^ , m^, &c. The work done is w' (
—i + — +&c..) =m'V,

where V is the potential of the attracting masses at the given position of m'.

Let us now bring in succession all the particles r/i/, m.2, &c. from infinite

distances to their given final positions under the attraction solely of the masses

; m^, ruo, &c. The whole work is 1,m'V, which may also be written in the sym-

\ metrical form S , where r is the distance between the particles m, mf, and the

[ S implies summation for every combination of each particle of one set with each

particle of the other. This symmetrical form proves the first part of the pro-

position.

The particles may be elementary, and in that case we see that the work of

collecting any mass M' into a given position under the attraction of a mass M
placed in a given position is equal to jVdm', where V is the potential of the mass

M at the final position of dm' and the integration extends over the whole mass

of M\

Ex. 3. If the particles composing any given mass were sepa-

rated from each other, work might be obtained from their mutual
attractions by allowing the particles to approach each other. The
work thus obtained is greatest when the particles are collected

together from infinite distances. If dv be an element of volume
of a solid mass attracting according to the law of nature, p the

density of the element, V the potential of the solid mass at the

element dv, prove that the work performed in collecting the particles

composing the mass from infinite distances is ^fVpdv.

The problem of determining how much work can be obtained

from the bodies forming the solar system by allowing them to

consolidate into a solid mass has been considered by several philo-

sophers. Sir W. Thomson has calculated that the potential energy

or the work which can be obtained from the existing solar system
is 38 XW foot-pounds. Edin. Trans. 1854.

As we bring the particles in succession into their proper places we find the

whole work by multiplying the mass of each by the potential at it of the mass

already collected and summing the products. We shall prove that the same result

is obtained by mnltiplying the mass of each by the potential at it of the whole mass

finally collected together, provided we take only half the sum.

Let wij, wig, &c. be the masses of the particles ; let (1, 2); (2, 3) ; &c. be the

distances between the masses m^, wig ; wig, m^ ; <fec. in the given final arrangement.

Supposing the particles Wj, Wg, ... m„_i to have been brought into their proper

places, let us bring m„ from infinity into its place under the attraction of

wij, Wg, ... mn-i- '^^^ work is

(1, n) (2, n) (n-1, n)

Thus m^ is taken once with each of the masses m^, m2, ...

bring in succession m^+i, m^+2^ &c. from infinity we obtain a similar series for

each, and therefore m^ is taken once with each of these masses as it is brought in.

Thus m„ is taken once with every mass except itself. If m, m' are the masses of
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any two particles, r their distance apart in the final arrangement, we may write the

work in the form F=S .

r

If Fj is the potential in the given final arrangement at the particle wij of all

the particles except itself, '^i= t^j—^ + /T~^ + *^- ^^* ^s' ^3' *c. have similar
(1, 2) (1, 6)

meanings. We shall now consider how often the mass m^ occurs in the expression

V^m-^ + V^m^ + '•* occurs once in FjWij combined with m-^ , once in V^m^ combined

with Wg and so on. Again it occurs in V^m^ combined with every other mass.

Thus on the whole m„ occurs twice combined with every other mass. It follows

that the work of collecting the body into the given arrangement is

We have thus two rules to find the work of collecting a system of particles

;

(1) the work is the sum of the products of the masses taken two together, divided by

the distance
; (2) the work is half the sum of the products of the mass of each

particle by the potential at that particle of the rest of the system. For two particles

these rules give respectively and - <m 1- w —

]

In finding the potential of any solid mass at any point P we may disregard the

matter within any indefinitely small element enclosing P if its density he finite.

For, since potential is "mass divided by distance," and the mass varies as the cube

of the linear dimensions, it follows that the potential of similar figures at points

similarly situated must vary as the square of the linear dimensions and must vanish

when the mass becomes elementary and the distance indefinitely small. In

applying, therefore, the form U= J S Fm to a solid body we may write pdv for m, and

take F to be the potential of the whole mass at the element dv.

Ex. 4. The particles composing a homogeneous sphere of mass M and radius r

were originally at infinite distances from each other. Prove that the work done by

3 M^
their mutual attractions is -— .

5 r

Ex. 5. The particles of a homogeneous ellipsoid, whose mass is M and semiaxes

are a, h, c, are collected from infinite distances, show that the work done is

Im^T ^' --

Ex. 6. If a given system is regarded as the sum of two masses

M, M', external to each other, the work of collecting the particles

of the system if+ if' is equal to the sum of the works of collecting

M, M' separately plus the mutual potential ofM and if'.

If a given system is regarded as the difference if — if' of two
masses M, M' (the second being a part of the first) the work
of collecting if— if' is equal to the sum of the works of collecting

if, if' separately minus the mutual potential of if and if'.

To prove the first theorem, let M, M' be the masses already collected. Let us

bring an additional particle dM from an infinite distance and add it to the mass M.

The addition to the work of collecting M-{-M', is that due to the attraction of 1/

plus that due to the attraction of M'. The first of these is the addition required to

change the work of collecting iH into that of collecting M+dM, the second changes

the mutual work of {M, 31') into that of {M + dM, M'). It follows, by symmetry,

that an addition to M' also does not disturb the equality.
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In the same way we may prove that the second equality is not disturbed by

giving increments dM, dM' in succession to M, M'. The following verification of a

simple case will indicate another mode of proof.

To simplify the second theorem, let us suppose that the body M contains four

particles Wj, m^, m^', m^ while the body M' has two particles m^', m<^ which are

common to both bodies. The works of collecting M-M' and M' are respectively

ihn ^^^ nK^>\ • ^^^ work of collecting M is
(12) (1 2

)

rn^Tn^ m^m^' m^m^ m^m^ m^m^ m{m^

The mutual potential of M, M' is

""i
V(ll') (21') (r2') j

^^
V(12') (22') (2'!')/

'

where, as explained above, the term m^ is omitted in the first bracket and m^ in the

second. The theorem follows by an obvious substitution.

Ex. 7. A quantity of homogeneous matter is bounded by two spheres which do

not intersect, one sphere being wholly within the other. The radii of the spheres

are a and h, and the distance between the centres is c. Show that the work of

collectmg this matter from infinite distances is <— — + ttt + -a~\ •

345. Work of a gaseous pressure. Ex. 1. An envelope

lof any shape, whose volume is v, contains gas at a uniform

pressure p. Assuming that the pressure of the gas per unit of

area is some function of the volume occupied by it, prove that the

work done hy the pressure when the volume increases from v = a to

v = b is fpdv, the limits being v = a to v = b.

Divide the surface into elementary areas each equal to rfcr, then pdcr is the

pressure on dcr. When the volume has increased to v + dv, let any element da- take

the position dcr', and let dn be the length of the perpendicular drawn from the

central point of da' on the plane of da, then pdcxdn is the work done by the pressure

on da and pjdadn is the work done over the whole area. But dadn is the volume

of the oblique cylinder whose base is da and opposite face da' ; so that jdadn is the

whole increment of volume. The whole work done when the volume increases by

4v is therefore pdv.

Ex. 2. A spherical envelope of radius a contains gas at pressure P. Assuming
that the pressure of the gas per unit of area is inversely proportional to the volume

occupied by it, prove that the work required to compress the envelope into a sphere

of radius b is Aira'^P log a/b.

Ex. 3. An envelope of any shape contains gas and the shape is altered

without altering the volume. Show that the work done over the whole surface is

zero.

I
Ex. 4. A hollow cylinder contains equal masses of two different elastic fluids

)
at the same pressure P separated by a piston without weight. Show that the

work done in moving the piston till the densities of the two fluids are inter-

^ changed is PA {a - b) log a/b, where A is the area of the piston, and a, b are the

lengths of the portions of the cylinder occupied by the fluid.

[Pembroke College, 1868.

Ex. 5. A mass of air of uniform density p (1 + s) is enclosed in an envelope and

I
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surrounded by air of atmospheric density p. If the mass expand until its density is

equal to that of the atmosphere, prove that the work done is k ( log (1 + s)
1 + s

where k is the product of the pressure and the volume. If s be small the work is

very nearly ^ks^. This result is useful in the theory of sound.

346. Work of an Impulse , Ex. 1. An impulsive force

acts on a body in a fixed direction in space. Show that, if F be
the whole momentum communicated by the force, Uq, u^ the velo-

cities of the point of application, resolved in the direction of the

force, just before and just after the impulse, the work done by the

impulse is \F{Uq + Wj). This result is given in Thomson and Tait's

Natural Philosophy.

When a force is measured in the usual way by the momentum generated per unit

of time, the work is measured by the product of the force into the resolved displace-

ment. But impulses are not so measured, we cannot therefore directly apply this

rule to find the work of an impulse.

Let us regard the impulse as the limit of a finite force acting in the fixed direc-

tion for a very short time T. Let the direction of the axis of x be taken parallel to

the fixed direction and let X be the whole momentum communicated during a time

t measured from the commencement of the impulse. Here t is any time less than

T, and X varies from zero to i^ as f varies from to T. Also, since X is the whole

momentum up to the time t, X is the acting force on the body at the time t. Let

M he the resolved velocity of the point of application at the time t, then m,, and Mj are

the values of u when t = and t= T. Since udt is the space described in the time dt

by the point of application of the force X, the work done in the time T is jtidX,

from Z= to F. To integrate this we must know what function u is of X.

If the body be a particle of mass m, we know that, when the time of action is very

small, m{u- Uq) = X, hence, substituting for u, we find after integrating U(,F + ^F^jm.

When X =F we have by definition u= Ui, :. m [u^ - u^ = F. Eliminating m, we find

the work is \F{Uq-\-u^).

If the body be moving in two dimensions, let u be the velocity of the centre of

gravity at the time t resolved parallel to the direction of the impulse, and w the

angular velocity ; we then have by Arts. 168 and 137

m {u - Uq) — X, mW (w - Wq) = Xp, u =u+ wp.

Hence u= Uq +LX where i, is a quantity independent of X and therefore constant

during the integration. Substituting for u, the integral takes the form F {u^ + \LF).

But as before u-^^ = Uq-\-LF. Eliminating L the result follows at once.

If the body be moving in three dimensions, the velocity u is known by Art. 313

to be a linear function of X, so that we may write w= m<)-|- LX, where L is a constant

depending on the nature of the body. Substituting this value of u, we have the

work equal to \[uq + LX) dX= UqF+L — , the limits being to F. But w^ = w^ -f LF.

Eliminating L we find that the work= |(wo + Mi) F.

Ex. 2. If one blow Fj be followed immediately by a second blow Fg ^-t the same

point in the same straight Ime, and if u^, u-^^^u^ be the resolved velocities of the point

of application before and after the blows, verify that the work ^ ("0 + ^*2) (^i + -^2) ^^

the whole blow is the sum of the works of the separate blows, viz. ^ {uq + u-^) F^ and

\{u^ + u<^F<^. This follows at once, since u^ = Hq + LF-^ and u^= u^-{-LF^. The

results of Ex. 3 may be deduced from Ex. 1 in this manner.
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Ex. 3. Find the wftrk done by an impulse whose direction is not necessarily

the same during the indefinitely short duration of the force.

Let X, Y, Z be the components of the whole momentum given to the body in

any time t measured from the commencement of the impulse. Let u, v, w be the

resolved velocities of the point of application at the time t. Then, by the same
fT .

reasoning as before, the work done =
/

{Xu+Yv + Zw) dt. But by Art. 314 when T
Jo

. . , ^ ., , „ dE dE dE . ^ . .

IS mdefinitely small u= Uq + ——, ^ = ^o+ :rv-» ^ = ^o + :r^» where E is a known
dX d 1 dZ

quadratic function of {X, Y, Z) depending on the nature of the body. Substituting

we have the work

= u^X^ + v^Y^ +WQZ^+\(^dX+ -^dY-\--^dz\=u^X^ + v^Y^ + io^Z^+E^,

where X^, Y^, Z^, E^ are the values of X, 7, Z, E when t = T.

We may eliminate the form of the body and express the work in terms of

the resolved velocities of the point of application just after the termination of the

impulse. Since jEj is a homogeneous quadratic function of X-^, Y^, Z-^, we have

Substituting we find the work = ^^4^i X, + "^4^ Y, + "^^^^ Z^.
£i 2i £

347. "Work of a membrane equally stretched in all directions. Consider

a rectangle whose sides are a and &, which may be considered as an element. Let

T be the tension across any line referred as usual to a unit of length. The tension

across the side a is Ta, and when the side b has increased to &' the work done by

these will be Ta{b'-b). Supposing the tension across the side b' to be still T,

(which is true when the rectangle is an element) the tension across the whole

length will be Tb', and, when the side a becomes a', the work will be Tb' {a' - a).

The whole work is therefore T {a'b' -ab), i.e. the work is the product of the

tension and the change of area.

If the membrane is spherical, the area is 47rr2. The increase of area is therefore

8irrdr. Hence the work done by the tensions when the radius is increased from

r=a to r= b is SirjTrdr, the limits being r=a to b.

If the membrane be such that we may apply Hooke's law to the tension T,

we have T=E , where a is the natural radius of the membrane and E is the
a

coefficient of elasticity. Substituting this value of T we find that the work done
A -pi

by the tensions, when the radius increases from a to b, is — {b-a)^{2b + a).
o a

If we assume that for a soap-bubble T is constant, we find that the work done

when the radius increases from a to 6 is AttT {b'^-a^).

If we suppose the spherical membrane to be slowly stretched by filling it with

gas at a pressure^, we have by a theorem in hydrostatics |>r= 2T. In this case the

work required has been shown to he jpdv, and, since v= ^Trr^, this leads to the same

result as before.

348. Work of a couple. Ex. A given couple is moved in

its own plane from one position to another ; show that the work is

the product of its moment by the angle turned through.
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Any displacement of a couple is equivalent to a rotation round one extremity

of its arm and a transference of the whole couple parallel to itself. The work
done by the two forces during the transference is clearly zero. We need therefore

only consider the work done during the rotation.

Let F be the force, a the length of the arm, and let the couple be turned round

one extremity A of its arm through an angle dd. The force at A does no work, and
the work done by the other force is F . add. Integrating this we have the work done

by the couple when it turns through any finite angle.

349. Work of bending a rod. Ex. 1. A rod originally

straight is bent in one plane. If L be the stress couple at any
point, p the radius of curvature, it is known both bv experiment

E
and by theory that Z = — , where ^ is a constant depending on the

nature of the material, and the form of a section of the rod.

Assuming this, prove (1) when the rod is bent into a given form, so

that /9 is a known function of s (whether the forces are known or

{E
not) the work is ^ j-^ds, (2) when the rod is bent by known forces

so that X is a known function of s (whether the form of the rod is

known or not) the work is \ I^ ds. The limits of integration are

from one end of the rod to the other.

Let PQ be any element of the rod and let its length be ds. As PQ is being bent,

let yp be the indefinitely small angle between the tangents at its extremities, then

the stress couple is E^. As \^ increases from to — the work done is i- / i^dxp,

which is the same as —-^ . The work done on the whole rod is therefore

Ex. 2. A uniform heavy rod of length I and weight w is supported at its two

extremities so as to be horizontal. Show that the work done by gravity in bending

''
'' mE-
Ex. 3. A uniform light rod is supported at its extremities A and B, and supports

a weight iv at any point C. If AC=a, BG= b and l= a+ b, the work done by gravity

in bendmg the rod is ^ c^; •

Conservation of Vis Viva and Energy.

350. Def. The Vis Viva of a particle is the product of its

mass and the square of its velocity.

The principle of vis viva. If a system be in motion under
the action of finite forces, and if the geometrical i^elations of the

parts of the system be expressed by equations which do not con-

tain the time explicitly, the change in the vis viva of the system in

passing from any one position to any other is equal to twice the

corresponding work done by the forces.

1 [^^
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In determining the force-function all forces may be omitted

which do not appear in the equation of virtual work.

Let X, y, z be the coordinates of any particle m, and let X, F, Z
be the resolved parts in the directions of the axes of the impressed

accelerating forces acting on the particle.

The effective forces acting on the particle m at any time t are

S?x d?y (Pz

^^' ^^^' ^^-
If the effective forces on all the particles be reversed, they will be

in equilibrium with the whole group of impressed forces, by Art. 67.

Hence, by the principle of virtual work,

.„j(._S),.,(._g)a,.(.-£)4=o,
where hx. By, Sz are any small arbitrary displacements of the par-

ticle m consistent with the geometrical relations at the time t.

Now if the geometrical relations are expressed by equations

which do not contain the time explicitly, the geometrical relations

which hold at the time t will hold throughout the time 8t ; and,

therefore, we can take the arbitrary displacements Bx, By, Bz to be

respectively equal to the actual displacements -7- Bt, ~ Bt, -r. Bt,

of the particle in the time Bt

Making this substitution, the equation becomes

V /(PoG dx d^y dy d^z dz\ ^ ( v dx
^

^^dy
^

r, dz\

Integrating, we get

^™ {sy + (ST + (SI
= ^+ ^^^/^^'^^ + ^'^^ +^'^^>'

where (7 is a constant to be determined by the initial conditions

of motion.

Let V and v' be the velocities of the particle m at the times

t and t'. Also let C/i, C/g be the values of the force -function

for the system in the two positions which it has at the times

t and t'. Then l^mv' - Smi;^ = 2{U'^- U^).

351. The following illustration, taken from Poisson, may show

more clearly why it is necessary that the geometrical relations

should not contain the time explicitly. Let, for example,

<f>{x,y,z,t) = (1)

be any geometrical relation connecting the coordinates of the

particle m. This may be regarded as the equation to a moving

surface on which the particle is constrained to rest. The quantities
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hx, By, Bb are the projections on the axes of any arbitrary

displacement of the particle m consistent with the geometrical
relations which hold at the time t. They must therefore satisfy

the equation ^^^Md^^^'^^_
ax ay ^ dz

The quantities -^fBt, ~^Bt, -rrBt are the projections on the

axes of the displacement of the particle due to its motion in the

time Bt. They must therefore satisfy the equation

ax at ay at dz dt dt

Hence, unless ~ is zero throughout the whole motion, we

cannot take Bx, By, Bz to be respectively equal to -^ Bt, -^ Bt, -^ Bt.

The equation -^ = expresses the condition that the geometrical
az

equation (1) should not contain the time explicitly.

352. The great advantage of this principle is that it gives

at once a relation between the velocities of the bodies considered

and the variables or coordinates which determine their positions

in space, so that when, from the nature of the problem, the

positions of all the bodies may be made to depend on one variable,

the equation of vis viva is sufficient to determine the motion.

In general the principle of vis viva will give a first integral of

the equations of motion of the second order. If, at the same
time, some of the other principles enunciated in Art. 282 can be
applied to the bodies under consideration, so that the whole number
of equations thus obtained is equal to the number of independent
coordinates of the system, it becomes unnecessary to write down
any equations of motion of the second order. See Art. 143.

The principle of vis viva was first used by Huyghens in his determination of

the centre of oscillation of a body, but in a form different from that now used. See

the note to Art. 92. The principle was extended by John Bernoulli and applied by

his son, Daniel Bernoulli, to the solution of a great variety of problems, such as the

motion of fluids in vases, and the motion of rigid bodies under certain given con-

ditions. See Montucla, Histoire des Mathematiques, Tome iii.

353. Initial motion. Suppose the system to begin to move from rest under

the action of the forces X, Y, Z, &c. After a time dt the vis viva is given by

Swv'2= 2Sm [Xdx + Ydy + Zdz).

The left-hand side of this equation is necessarily positive. We therefore infer that

if a system start from rest, the initial motion must be such that the virtual work of

the forces for that motion must be positive.

There may be several different ways (geometrically considered) in which the

system could begin to move from its initial state of rest. Let the system be com-

I
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pelled to take any one of these ways of motion by obliging a sufficient number of

its points to describe certain smooth curves, or by introducing any forces which

have no virtual work for that particular mode of displacement. The system can

now move only in one way, or as we often express it, the system has only one path

open. There are two directions in which it can travel along this path. The
question arises—in which direction will it begin to move ? Since the virtual work of

the forces is in general positive for one of these directions and negative for the

other, the system must begin to move along the former.

354. Examples of the principle. If a system be under the action of no

external forces, we have X=0, Y=0, Z = 0, and hence the vis viva of the system is

constant.

If, however, the mutual reactions between the particles of the system are such

as do appear in the equation of virtual work, then the vis viva of the system

will not be constant. Thus, even if the solar system were not acted on by any

external forces, its vis viva would not be constant. For the mutual attractions

between the several planets are reactions between particles whose distances do not

remain the same, and hence the sum of the virtual works is not zero.

Again, if the earth be regarded as a body rotating about an axis and in course

of time slowly contracting from loss of heat, the vis viva will not be constant, for

the same reason as before. The increase of angular velocity produced by this con-

traction can be easily found by the principle of angular momentum. See Art. 299.

355. Let gravity be the only force acting on the system. Let the axis of z be

vertical, then we have X= 0, Y= 0, Z= -g. Hence the equation of vis viva becomes

Sm?;'2 - Smv2 = _ 2Mg {z' - z).

Thus the vis viva of the system depends only on the altitude of the centre of

gravity. If any horizontal plane be drawn, the vis viva of the system is the same

whenever the centre of gravity passes through the plane. See Art. 142.

356. Ex. If a system in motion pass through a position of equilibrium, i.e. a

position in which, if placed at rest, it would remain in equilibrium under the action

of the forces, prove that the vis viva of the system is either a maximum or a

minimum. De Courtivron's Theorem, Mem. de VAcad. 1748 and 1749.

357. The equation of virtual work in statics is known to

contain in one formula all the conditions of equilibrium. In the

same way the general equation

Sm (J S^ +g Sy +J hz^ = %m {Xhx + Yhy + Z^z\

may be made to give all the equations of motion by properly

choosing the arbitrary displacements hx, By, 8z. In Article 350
we made one choice of these displacements and thus obtained an

equation in an integrable form.

If we give the whole system a displacement parallel to the axis

of z we have Boo = 0, By = 0, and Bz is arbitrary. The equation

<Pz
then becomes Sm^ = ImZ, which represents any one of the

three first general equations of motion in Art. 72.

If we give the whole system a displacement round the axis
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of z through an angle '^Q, we have S^ = — yW, Sy = xSd, Bz = 0.

The equation then becomes '%m\x-~ — y-~\=%m{xY—yX),

which represents any one of the last three general equations of

motion in Art. 72.

358. Potential and kinetic energy*. Suppose a weight

mg to be placed at any height h above the surface of the earth.

As it falls through a height z, the force of gravity does work which
is measured by mgz. The weight acquires a velocity v, half of

its vis viva is \mv'^, which is known to be equal to mgz. If the

weight fall through the remainder of the height h, gravity may be
made to do more work, measured by mg{h — z). When the weight

has reached the ground, it has fallen as far as the circumstances

of the case permit, and no more work can be done by gravity

until the weight has been lifted up again. Throughout the motion

we see that, when the w^eight has descended any space z, half its

vis viva, together with the work that can be done during the rest

of the descent, is independent of z and equal to the work done by
gravity during the whole descent h.

If we complicate the motion by making the weight work some
machine during its descent, the same theorem is still true. By
the principle of vis viva, proved in Art. 350, half the vis viva of

the particle, when it has descended any space z, is equal to the

work mgz which has been done by gravity during this descent,

diminished by the work done on the machine. Hence, as before,

half the vis viva, together with the difference between the work
done by gravity and that done on the machine during the re-

mainder of the descent, is constant and equal to the excess of the

work done by gravity over that done on the machine during the

whole descent.

Let us now extend this principle to the general case of a

system of bodies acted on by any conservative system of forces.

359. Let us select some position of a moving system of bodies

as a position of reference. This may be an actual final position

passed through by the system in its motion, or any position which

it may be convenient to choose, into which the system could be

moved. Suppose the system to start from some position which we
may call A, and at the time t, to occupy some position P. Then
at the time t, half the vis viva generated is equal to the work

done from A to P. Hence half the vis viva at P together with

* Coriolis, Helmholtz and others have suggested that it would be more con-

venient if the vis viva were defined to be half the sum of the products of the

masses into the squares of the velocities. See Phil. Trans. 1854, p. 89. But this

change in the meaning of a term so widely established in Europe would be very

likely to cause some confusion. It seems better for the present to use another

name, such as kinetic energy.
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the work which can be done from P to the position of reference

is constant for all positions of P.

To express this, the word energy has been used. Half the vis

viva is called the kinetic energy of the system. The work which
the forces can do as the system is moved from its existing position

to the position of reference is called the potential energy of the

system. The sum of the kinetic and potential energies is called

the energy of the system. The principle of the conservation of

energy may be thus enunciated :

—

When a system moves under any conservative forces^ the sum of
the kinetic and potential energies is constant throughout the motion.

360. The distinction between work done and potential energy
maiy be analytically stated thus. The force-function has been
defined in Art. 337 to be the indefinite integral of the virtual

work of the forces. As the system moves the work done is

the definite integral taken with its lower limit determined by
some standard position of reference, which we may call C, and
its upper limit determined by the instantaneous position of the

system. The potential energy is the definite integral taken with

its upper limit determined by some fixed position of reference

which we may call D, and its lower limit determined by the

instantaneous position of the system. If the two fixed positions

of reference which we have distinguished by the letters G and D
are identical, the work integral is the same as the potential integral

with its sign changed. But this is not generally the case ; the

positions of reference are chosen each to suit the particular integral

in connection with which it is used.

361. Examples of Potential Energy. Ex. 1. A particle describes an ellipse

freely about a centre offorce in its centre. Find the whole energy of its motion.

Let m be the mass of the particle, r its distance at any time from the centre,

I
jLir the accelerating force on the particle. If coincidence of the particle with the

\ Centre of force be taken as the position of reference, the potential energy by Art. 360

is j{-mfir) dr=^mfji,r^ when taken between the limits r= r to r= 0. If r' be the

I semi-conjugate of r, the velocity of the particle is r'^fx and the kinetic energy is

(therefore ^m/xr'^. As the particle describes its ellipse round the centre of force, the

\ sum of the potential and kinetic energies is equal to |m/A {a^ + b^) where a and 6 are

the semi-axes of the ellipse.

Ex. 2. A particle describes an ellipse freely about a centre of force in the

centre. Show that the mean kinetic energy during a complete revolution is equal

to the mean potential energy ; the means being taken with regard to time,

Ex. 3. If in the last example the means be taken with regard to the angle

described round the centre, the difference of the means is ^mfi{a-bf.

Ex. 4. A mass 31 of fluid is running round a circular channel of radius a with

I
velocity u, another equal mass of fluid is running round a channel of radius b with

\ velocity v, the radius of one channel is made to increase and the other to decrease

until each has the original value of the other, show that the work required to pro-

duce the change is
^ [^

- ^^ {b-' - a^) M. [Math. Tripos, 1866.

R. D. 19
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362. Iiist of Forces to be omitted. In applying the principle of vis viva to

any actual cases, it is important to know beforehand what forces and internal

reactions may be disregarded in forming the equation. The general rule is that all

forces may be neglected which do not appear in the equation of virtual work.

These forces may be enumerated as follows

:

A. Those reactions whose virtual displacements are zero.

1. Any force whose line of action passes through an instantaneous axis ; as

rolling friction, but not sliding friction or the resistance of any medium.

2. Any force whose line of action is perpendicular to the direction of motion

of the point of application ; as the reaction of a smooth fixed surface, but not that

of a moving surface.

B. Those reactions whose virtual displacements are not zero and which there-

fore would enter into the equation, but disappear when joined to other reactions.

1. The reaction between two particles whose distance apart remains the same

;

as the tension of an inextensible string, but not that of an elastic string.

2. The reaction between two rigid bodies, parts of the same system, which roll

on each other. It is necessary however to include both these bodies in the same

equation of vis viva.

C. All tensions which act along inextensible strings, even though the strings

are bent by passing through smooth fixed rings.

For let a string whose tension is T connect the particles m, m', and pass through

a ring distant respectively r, r' from the particles. The virtual work is clearly

- Tbr - Tbr', because the tension acts along the string. But, since the string is

inextensible, 5r + 5r' = 0; therefore the virtual work is zero.

363. Expressions for the vis viva of a rigid body in

motion. If a body move in any manner its vis viva at any instant

is equal to the vis viva of the whole mass collected at its centre

of gravity, together with the vis viva due to motion round the

centre of gravity considered as a fixed point : or

. the vis viva of a body = vis viva due to translation

+ vis viva due to rotation.

Let X, y, z be the coordinates of a particle whose mass is m
and velocity v, and let x, y, z be the coordinates of the centre of

gravity G of the body. Let x = x + ^, y =y -\-7j, z = z + ^. Then,

by a property of the centre of gravity, Xm^ = 0, Sm?; = 0, 1m^= 0.

Hence 2m -^ = 0, %m -^ = 0, 2m ^ = 0. Now the vis viva of
dt dt dt

"""' w=.»{(5)vg)-.g)
Substituting for x, y, z, this becomes

2^y ^4-2^2 ^-4-2—2 —
dt dt dt dt dt dt

'

All the terms in the last line vanish, as they should do, by Art. 1^
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The first term in the first line is the vis viva of the whole mass
2m, collected at the centre of gravity. The second term is the
vis viva due to rotation round the centre of gravity.

This expression for the vis viva may be put into a more con-
venient shape.

364. Firstly. Let the motion he in two dimensions. See Art. 139.

Let V be the velocity of the centre of gravity, r, 6 its polar co-

ordinates referred to any origin in the plane of motion. Let r-^

be the distance from the centre of gravity of any particle whose
mass is m, and let v^ be its velocity relatively to the centre of
gravity. Let o) be the angular velocity of the whole body about
the centre of gravity, and Mlc^ its moment of inertia about the
same point.

The vis viva of the whole mass collected at G is MW, which
may be put into either of the forms

Mv' =M\i^ m\-"\m-'Q
But since the body is turning

about G, we have -^i
= ri(o. Hence ^mv^ = &)^ . ^m7\^ = co^ . Mk^.

The whole vis viva of the body is therefore

^mv^ = MW + Mk^co\

If the body be turning about an instantaneous axis, whose
distance from the centre of gravity is r, we have v = rco. Hence

Imv^ = ifct)2 (r^ + k^) = Mk'^co'',

where Mk''^ is the moment of inertia about the instantaneous axis.

Secondly, Let the motion be in space of three dimensions.

Let V be the velocity of (r ; r, 5, ^ its polar coordinates

referred to any origin. Let cox, (Oy, coz be the angular velocities

of the body about any three axes at right angles meeting in G,

and let A, B, G be the moments of inertia of the body about the
axes. Let f, t], f be the coordinates of a particle m referred to

these axes.

The vis viva of the whole mass collected at G is Mv^, which
may be put equal to

according as we wish to use Cartesian or polar coordinates.

The vis viva due to the motion about G is

r> . d^
^^

drj
'

d^ ^

19—2



292 VIS VIVA. [chap. vii.

Substituting these values, we get, since A = Sm (rj'^ + f^),

5 = 2m (?2 + p), (7 = Sm (f^ + V'),

Sm^i^ = -4a>a;^ 4- Bwy- + (7ct)/

- 2 (2mf?7) toajojj, - 2 (SmT/f ) oj^/W^ - 2 (Xmf^) w^cd^;.

We may find the vis viva of the motion about G in another manner. Let 12 be

the angular velocity about the instantaneous axis, I the moment of inertia about

it. The vis viva is then clearly 10,^, Now I is found in Art. 15, and in our case

Wj = fia, a;2= fi/3, o).^= Uy, following the notation of that article. Eliminating a, ^, y
we get the same result as before.

If the axes of coordinates be the principal axes at G, this

reduces to %mvi^ = Aay^^ -{ Bcoy^ + Oo)/.

If the body be turning about a point 0, whose position is fixed

for the moment, the vis viva may be proved in the same way to be

l.mv'' = A'dii + jB'ft)/ + C.

where A\ B\ C are the principal moments of inertia at the point

0, and Wx, ft>t/, ft>z are the angular velocities of the body about the

principal axes at 0.

365. Examples of vis viva. Ex. 1. A rigid body of mass M is moving in

space in any manner, and its position is determined by the coordinates of its

centre of gravity and the angles 6, 0, i/' which the principal axes at the centre of

gravity make with some fixed axes, in the manner explained in Art. 256. Show
that its vis viva is given by

+ sin2 e {A cos2 + B sin2 <p) yp'^+ 2{B - A)s\nd sin ^ cos (pdyp.

Show also that, when two of the principal moments A and B are equal, this

expression takes the simpler form

This result will be often found useful.

Ex. 2. A body moving freely about a fixed point is expanding under the in-

fluence of heat, so that in structure and form it remains always similar to itself.

If the law of expansion be that the distance between any two particles at the

temperature 6 is equal to their distance at temperature zero multiplied by f{d),

show that the vis viva of the bo'dy=^w/+ £a;/ + Ca;/ + ^(^ +B + C) /^^Qg/(^)y^

where A, B, C are the principal moments at the fixed point.

Ex. 3. A body is moving about a fixed point and its vis viva is given by the

equation 2T= ^ Wj.'- + Bojy'^ + Cw/ - ^BiOyW^ - lEwgW^ - IFw^Wy

.

dT dT dT
Show that the angular momenta about the axes are -—

, ^— , -—

,

dooy. dwy d(i)g

Let the body be moving freely and let 2Tq be the vis viva of translation. Prove

that, if X, y,z he the coordinates of the centre of gravity referred to any rectangular

axes fixed or moving about a fixed point, and if accents denote differential coefficients

with regard to the time, the linear momenta parallel to the axes will be dTJdx\
dT,ldy', dTJdz'.
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Ex. 4. The elliptic coordinates of a particle are \, /*, v, and h, k are the

semi-major-axes of the two focal conies. Prove that the vis viva is

(\2-^2)(x2_^2)X2 (^2_x2)(^2_^y (^2
_ X^) (^2 _ ^2) ^2

(\2-/i2)(X2-/c2)
"*" (^2_;j2)(^2_^2) + {p^ - h^) {j,2 _ ^2)

'

We notice that the terms containing the products of X, /X, v are absent. This

result may be deduced from the expression for {ds)'^ in elliptic coordinates given in

Salmon's Solid Geometry, Art. 410. 1882.

366. Problems on the Principle of vis viva. Ex. 1. A circular wire can

turn freely about a vertical diameter as a fixed axis, and a bead can slide freely

along it under the action of gravity. The ichole system being set in rotation about

the vertical axis, find the subsequent motion.

Let M and ni be the masses of the wire and bead, w their common angular

velocity about the vertical. Let a be the radius of the wire, Ml^ its moment of

inertia about the diameter. Let the centre of the wire be the origin, and let

the axis of y be measured vertically downwards. Let d be the angle which the

axis of y makes with the radius drawn from the centre of the wire to the bead.

It is evident, since gravity acts vertically and since all the reactions at the fixed

axis must pass through the axis, that the moment of all the forces about the vertical

diameter is zero. Hence, taking moments about the vertical, we have

Mk'^u + ma^<a sin^ = h.

And by the principle of vis viva,

Mk^u^ +m {
a2^2+ ^2 sin2 0o,^} = g+ 2mga cos d.

These two equations will suffice for the determination of 6 and w. Solving

h^ [ dd\^
them, we get --i^, ^ . ., ^ + ma2 ( -r- ) = C+ Imqa cos 6.^ Mk^ + ma^sm^d \dt J

^

This equation cannot be integrated, and hence d cannot be found in terms of t.

To determine the constants h and G we must recur to the initial conditions of

motion. Supposing that initially d^ir, and ^ = and w=:a, then h= Mk-a and

G= 2mga + Mk^a^. See Art. 352.

Ex. 2. A lamina of any form rolls on a perfectly rough straight line under the

action of no forces
;
prove that the velocity v of the centre of gravity G is given by

y2=:c2 ~—,2 » where r is the distance of G from the point of contact, k the radius

of gyration of the lamina about an axis through G perpendicular to its plane, and

c some constant.

Ex. 3, Two equal beams connected by a hinge at their centres of gravity so as

to form an X are placed symmetrically on two smooth pegs in the same horizontal

line, the distance between which is b. Show that, if the beams be perpendicular to

each other at the commencement of the motion, the velocity v of their centre of

gravity, when in the line joining the pegs, is given by v^{b^ + 4:k^) = b^g, where k

is the radius of gyration of either beam about a line perpendicular to it through

its centre of gravity.

Ex. 4. A uniform rod is moving on a horizontal table about one extremity,

and driving before it a particle of mass equal to its own, which starts from rest

indefinitely near to the fixed extremity ; show that, when the particle has described

a distance r along the rod, its direction of motion makes with the rod an angle

e given by (r2 + k'^) tan2 d= k^. [Christ's CoU.

Ex. 5. A thin uniform smooth tube is balancing horizontally about its middle

point, which is fixed; a uniform rod such as just to fit the base of the tube is placed
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end to end in a line with the tube, and then shot into it with such a horizontal

velocity that its middle point shall only just reach that of the tube ; supposing the

velocity of projection to be known, find the angular velocity of the tube and rod at

the moment of the coincidence of their middle points. [Math. Tripos.

Result. If m be the mass of the rod, m' that of the tube, and 2a, 2a' their

respective lengths, v the velocity of the rod's projection, w the required angular

velocity, then <a^=—k-,—7-/0-
•^

'

ma^+ ma'^

Ex. 6. If an elastic string, whose natural length is that of a uniform rod, be

attached to the rod at both ends and suspended by the middle point, prove by means

of vis viva that the rod will sink until the strings are inclined to the horizon at an
n a

angle d, which satisfies the equation cot^-- cot-- 2/1= 0, where the tension of the

string, when stretched to double its length, is n times the weight. [Math. Tripos.

Ex. 7. One end of a uniform rod moves on a smooth inclined plane whose

inclination is a ; the other end is freely jointed to a small peg which can move in a

smooth horizontal groove situated in a vertical plane perpendicular to the inclined

plane. The rod starts from rest when leaning upwards against the plane at an

angle j8 with the horizon and in the vertical plane through the groove. Show that

it will leave the plane when horizontal if sin j8= cot a (1 + 3 cot^ a), it being assumed

that the plane is sufficiently steep to make the value of j3 given by this equation

positive real and less than a. [Math. Tripos, 1902.

Ex. 8. A smooth solid hemisphere is held with its base on a smooth horizontal

table, and a vertical rod of the same weight, which is constrained by smooth supports

so that it can only move vertically, rests with its lower end against a point on the

surface of the hemisphere where the normal makes an angle a with the vertical ; if

the hemisphere be set free so that motion ensues, show that its final velocity is

f v/(6a<7Cos3a) where a is the radius of the hemisphere. [Coll. Ex. 1904.

Ex. 9. The centre C of a circular wheel is fixed and the rim is constrained to

roll in a uniform manner on a perfectly rough horizontal plane so that the plane of

the wheel makes a constant angle a with the vertical. Bound the circumference

there is a uniform smooth canal of very small section, and a heavy particle which

just fits the canal can slide freely along it under the action of gravity. If m be the

particle, B the point where the wheel touches the plane, and Q-= L BCm, and if n be

the angular rate at which B describes the circular trace on the horizontal plane,

prove that (;t-) =— cosacos^-w^cos^acos^^ + const., where a is the radius of

the wheel. [Aniiales de Gergonne, Tome xix.

Ex.10. A regular homogeneous prism , whose normal section is a regular polygon

of n sides, the radius of the circumscribing circle being a, rolls down a perfectly

rough inclined plane whose inclination to the horizon is a. If w„ be the angular

velocity just before the 71*^ edge becomes the instantaneous axis, then

2ir\-/ ^ 27
2 + 7COS

2 <7sma
—\ / . 8 + cos - \
71 \ / „ a sin a n \

- / \ a sin -5 + 4 cos— /
I / ^ n n /

367. The Principle of Similitude. What are the con-

ditions necessary that two systems of particles which are initially

geometrically similar should also be mechanically similar, i.e. that



ART. 368.] PRINCIPLE OF SIMILITUDE. 295

the relative positions of the particles in one system after a time t

should always be similar to the relative positions in the other
system after another time t', such that t' bears to ^ a constant ratio ?

In other words, a model is made of a machine, and is found to

work satisfactorily, what are the conditions that a machine made
according to the model should work as satisfactorily ?

The principle of similitude was first enunciated by Newton in

Prop. 32, Sec. vii. of the second book of the Principia. But the
demonstration has been very much improved by M. Bertrand in

Cahier xxxii. of the Journal de I'dcole Polytechnique. He derives

the theorem from the principle of virtual work so as to avoid that
necessity of considering the unknown reactions which enters into

some other modes of proof Since all the equations of motion
may be deduced from the general principle of virtual work, that
principle seems to afford the simplest method of investigating any
general theorem in dynamics.

368. Let (x, y, z) be the coordinates of any particle of mass m
in one system referred to any rectangular axes fixed in space, and
let (X, F, Z) be the resolved parts of the impressed forces on that

particle. Let accented letters refer to corresponding quantities in

the other system.

Assuming that the reactions of the system are such as do not
appear in the equations of virtual velocities (Art. 362), that principle

supplies the two following equations

:

SKX -mx)lx +&;c.) = 0,

S{(Z'-m^^')a^' + &c.}=0.

It is evident that one of these equations will be changed into

the other if we put X' = FX, Y' = FY, &c., x' = lx, y' = ly, &c.,

m' = fjum, &c., t' = rt, &c., where F, I, /x, r are all constants, provided

that fil = Ft^. In two geometrically similar systems we have but

one ratio of similarity, viz. that of the linear dimensions, but in two
mechanically similar systems we have three other ratios^ viz. that

of the masses of the particles, that of the forces which act on them,

and that of the times at which the systems are to be compared.
It is clear that, if the relation just established hold between these

four ratios of similitude, the motions of the two systems will be

similar.

Suppose then that the two systems are initially geometrically

similar, that the masses of corresponding particles are proportional

each to each, and that they begin to move in parallel directions

with like motions and in proportional times, then they will continue
to move with like motions and in proportional times provided
the external acting forces in either system are proportional to

mass X linear dimensions ^. ,, , ,
i

•.• t-

7~. TT . Smce the resolved velocities ot any
(time)=^

"^
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(1 T
particle are -wj, &c., it is clear that in two similar systems

the velocities of corresponding points at corresponding times are

, , linear dimensions tp ^^ ^ ^i
proportional to -. . it we eliminate the time
^ ^ time
between these two relations, we may state, briefly, that the

condition of similitude between two systems is that the acting

„ ^ , X- 1 ^ n^^ss X (velocity )-

forces must be proportional to ^. ^ r---.
^ linear dimensions

369. On Models. M. Bertrand remarks that, in comparing
the working of a model with that of a large machine, w^e must
take care that all the forces bear their proper ratios. The weights

of the several parts will vary as their masses. Hence we infer that

the velocity of working the model must be made to be proportional

to the square root of its linear dimensions. The times of describing

corresponding arcs will also be in the same ratio.

When the speeds of working the model and the large machine
are thus related it is convenient to apply to them the terms
" corresponding velocities"

If there be any forces besides gravity which act on the model,

these must bear the same ratio to the corresponding forces in the

machine, if the model is to be similar to the machine. If the

model be made of the same material as the machine, the weights

of the several parts will vary as the cubes of the linear dimensions.

Hence the impressed forces must be made to vary as the cubes
of the linear dimensions. For example, in the case of a model of

a steam-engine, the pressure of the steam on the piston varies as

the product of the area of the piston into the elastic force. Hence,
the elastic force of the steam used must be proportional to the

linear dimensions of the model.

Supposing the impressed forces in the two systems to have,

each to each, the proper ratio, it is easy to see, by forming the

equations of motion, that the mutual reactions between the parts

of the system will, of themselves, assume the same ratio. Thus
the equations obtained by resolution are linear and give the

reactions their proper ratio to the forces. In the equations formed
by taking moments, if the i-eactions, like the impressed forces, act

at definite corresponding points in the two systems, each will be

multiplied by an arm proportional to the linear dimensions of the

system and the product must have the dimensions of mk-d^6/dt\

Thus in all the equations the reactions will have their proper
ratios.

To make this clear, let us examine some simple case of motion,

say that discussed in Art. 162. The equations (1) show that both
the reaction R and the sliding friction fjuli vary as the product of
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the mass by the linear dimensions divided by the square of the

time. We see by Art. 161 that the friction-force F follows the

same law. But by Art. 163 this is not the case with either the

couple of rolling-friction or with the friction-force called into play

by its action. The moment of the friction-couple is frng, where f
is a linear quantity which depends on the materials used but does

not vary with the dimensions of the system. The ratio of this

couple to mk^d varies inversely as the linear dimensions of the

body and is greater in the model than in the machine. The
j magnitude of the friction-couple is so small that it is usually

I

neglected (Art. 153), but, when it is necessary to take account of

\ it, its presence in the equations of motion may prevent some of the

other reactions from obeying the law of similarity.

If the resistance of the air is proportional to the product of the

area exposed and the square of the velocity the resistance will bear

the proper ratio in the model and in the machine.

370. Examples. As an example, let us apply the principle to the case of a

rigid body oscillating about a fixed axis under the action of gravity. That the

motions of two pendulums may be similar thej' must describe equal angles,

1 corresponding times are therefore proportional to the times of oscillation. Since
' the forces vary as the mass into gravity, we see that when a pendulum oscillates

through a given angle, the square of the time of oscillation must vary as the ratio

of the linear dimensions to gravity.

As a second example consider the case of a particle describing an orbit round

a centre of force whose attraction is equal to the product of the inverse square of

the distance and some constant /t. The principle at once shows that the square of

the periodic time must vary as the cube of the distance directly, and as /x inversely.

This is Kepler's third law.

Ex. 3. Experiments are to be made on the deflection of a bridge 50 feet long

and weighing 100 tons, when an engine weighing 20 tons passes with a velocity of

40 miles per hour, by means of a model bridge 5 feet long and weighing 100 oz.

Find the weight of the model engine, and if the model bridge be of such stiffness

that its statical central deflection under the model engine be one-tenth of the statical

central deflection of the bridge due to the engine, show that the velocity of the model

engine must be 18-55 feet per second. [Coll. Exam., 1887.

371. rroude's theorem. In Fronde's experiments to determine the resistance

to ships, small models were used, the method being founded on the following rule.

If the linear dimensions of a ship be n times those of the model, the mean densities

being equal, and if at a speed V the measured resistance to the model be R, then at

the corresponding speed, viz. V^n, the resistance to the ship loill be lln^.

The ship and the model being similar, and of equal mean densities, the linear

dimensions of the portions immersed are in the ratio n : 1. The resistances to

similar bodies in deep water are known to vary nearly as the squares of the velocities

multiplied by the areas of the wetted surfaces, i.e. if the velocity of the ship is n'

times that of the model, the resistances are in the ratio n^n''^ : 1. The resistances

must be in the same ratio as the other corresponding forces, i.e. nhi'^= n^. Art. 369.

Hence n'= ,Jn and the resistances are in the ratio n^ : 1.

This resistance is chiefly spent in making waves which continually travel away
from the ship. Another but lesser cause of resistance is the friction between the
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• ^"* ^^ Marriotte's
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ship and the water. Both effects have here been roughly summed up in using the

experimental law of resistance.

372. Savart's theorem. In the twenty-ninth volume of the Annal.es cle

Chimie (Paris 1825) Savart describes numerous experiments which he made on the

notes sounded by similar vessels containing air. He thence deduced the following

general law. When masses of air are contained in two similar vessels, the number

of vibrations in a given time {i.e. the pitch of the note soundedl is inversely pro-

portional to the linear dimensions of the vessel.

This theorem of Savart's follows at once from the principle of similarity. Divide

the similar vessels into corresponding elements, then the motions of these elements

massx lin. dim.

Jtimef

law the force between two elements varies as the product of the area of contact

into the density. Hence the times of oscillation of corresponding particles of air

must vary as the linear dimensions of the vessel.

The first person who gave a theoretical explanation of Savart's law was Cauchy,

who showed, in a Memoire presented to the Academy of Sciences in 1829, that it

followed from the linearity of the equations of motion. He refers to the general

equations of motion of an elastic body whose particles are but slightly displaced

even though the elasticity is different in different directions. These equations,

which serve to determine the displacements (^, 77, f) of a particle in terms of the

time t and the coordinates [x, y, z) of its undisturbed position, are of two kinds.

One applies to all points of the interior of the elastic body and the other to all

points on its surface. These are to be found in all treatises on elasticity. An
inspection of the equations shows that they will continue to exist if we replace

^> V^ ti ^5 2/' •2;, t by K^, Krj, K^, KX, Kg, kz, Kt, where k is any constant, provided that

we alter the accelerating forces in the ratio «: to 1. Hence if the accelerating forces

are zero, it is sufficient to increase the dimensions of the elastic body and the

initial values of the displacements in the ratio 1 to k, in order that the general

values of ^, 77, ^ and the durations of the vibrations may vary in the same ratio.

Hence we deduce Cauchy 's extension of Savart's law, viz., if ice measure the pitch

of the note given by a body, a plate or an elastic rod, by the number of vibrations

produced in a unit of time, the pitch icill vary inversely as the linear dimensions of

the body, plate, or rod, supposing all its dimensions altered in a given ratio.

373. Theory of Dimensions. These results may be also

deduced from the theory of dimensions. Following the notation

of Art. 332, a force F is measured by md^xjdP. We may then
state the general principle, that all dynamical equations must be

such that the dimensions of the terms added together a7^e the same
in space, time and mass, the dimensions of force being taken to be

mass . space
'
(timey

To show how the principle may be used let us apply it to the

case of a simple pendulum of length I, oscillating through a given

angle a, under the action of gravity. Let m be the mass of the

particle, F the moving force of gravity, then the time r of oscilla-

tion can be a function of F, I, m and a only. Let this function be

expanded in a series of powers of F, I and 7n. Thus

T = ^AFH^m%
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where A, being a function of a only, is a number. Since r is

of no dimensions in space, we have p + q = 0. Also r is of one

dimension in time ; .. -2p = l. Finally t is of no dimensions in

mass ;
.
'. p-{-r = 0. Hence p = — i, q = r = i, and since p, q, r

have each only one value, there is but one term in the series.

We infer that in any simple pendulum r = A \/ -^ where A is

an undetermined number. See also Art. 370.

Ex. 1. A particle moves from rest towards a centre of force, whose attraction

varies as the distance, in a medium resisting as the velocity, show by the theory of

dimensions that the time of reaching the centre of force is independent of the

initial position of the particle.

Ex. 2. A particle moves from rest in vacuo towards a centre of force whose

attraction varies inversely as the n*^ power of the distance, show that the time of

reaching the centre of force varies as the ^ {n + 1)^^ power of the initial distance of

the particle.

374. Imaginary Time. The equations of motion of a system are changed

into those of a similar system by multiplying the forces, lengths, masses and times

by the constants F, I, /n, r, where fd^FT^. The systems however may present only

an analytical similarity, for if F were negative, and /x, I positive, the ratio of the

corresponding times would be imaginary. The change of sign of F is, of course,

equivalent to reversing the directions of all the impressed forces.

Let us suppose that the two similar systems are such that Z = l, /x= l and only

so far differ that the impressed forces X, X' &c. are equal and opposite and in con-

sequence t'lt= ±^/(-l), Art. 368. It follows that the same system can have two

conjugate motions with opposite forces such that in one {x, y, &c.) are the same

functions of t that [x', y', &c.) in the other are of t'. The initial positions are the

same in the two cases, and if v=dxldt, v' = dx'ldt' are any corresponding velocities,

their ratio iflv= T^/( - 1). We also evidently have dx'jdt= dxldt. Hence we arrive

at the following theorem. A system of material points, subject to constraints which

are independent of the time and under the action of forces ivhich depend only on the

position of the several points, being given ; the integrals of the differential equations

remain real ifioe replace t by tsj{-l) and the resolved initial velocities v^,Vy,Vg,

of any particle by -v^sj{-l), -Vy J{-1), -Vg^/{-l), the initial positions being

the same. The equations thus obtained are those of a new movement ivhich the same

material particles would take if acted on by forces equal and opposite to those ivhich

produced the first motion, the initial values of the coordinates and their velocities

being the same in the two cases. Appell, On an interpretation of the imaginary values

of the time] Comptes Rendus, Vol. 87, 1878, page 1074. Painleve, Legons siir Vinte-

gration des equations differentielles de la Mecanique, 1895, page 226.

374 a. These considerations will sometimes enable us to find an interpretation

for an analytical result which gives an imaginary value for the time. This will be

made clear by an elementary example. Let d be the angle a simple pendulum,

suspended from 0, makes with the downward vertical BOA, and let the pendulum
start from rest at an angle 6 — a. Since ddfdt is initially negative the time of

moving from 6= a to 6 = 6 is given by

-duIg _ fo -dd fu

V I
~ ja2v'(8inHa-sinH^)~ jl J{l-U^)^{l-Khl')



300 VIS VIVA. [chap. VII.

where sin^^ = M8in|a, K:= sin|a and all the radicals are positive. Put

dnK- [' ^''
K' - i^''

^(U2 -1)^(1 -K'U2)'

The times of arrival at the lowest and highest points of the circular path (starting

in each case from rest) are found by writing ^ = 0, 6 = Tr, that is u = 0, u^Ijk
respectively. These times are therefore given by

sJ-l=K, h^^-= K'^[-l).

The latter time is imaginary, showing that under the given circumstances the bob

of the pendulum does not reach the highest point. We find an interpretation

of the value of t.2 by reversing the impressed forces. When we have written - g
for g let f^', t^ be the corresponding values of fj, t^, then i/ is now imaginary and
^2' becomes real. Thus the real path of the pendulum in either motion corresponds

to the imaginary path in the conjugate motion.

If the time t is counted from the instant at which the bob passes the lowest

point (gravity acting downwards), the motion is given by m= sn ( tx/% )
• The two

periods of this elliptic function are 4/f and 2A''^(-1), and these respectively

determine the two times i^ and t^ . This example is discussed by both Appell and

Painlev6 but in different ways.

375. Clausius' theory of stationary motion. To determine the mean vis

viva of a system of material points in stationary motion. Clausius, Phil. Mag.,

August, 1870.

By stationary motion is meant any motion in which the points do not continually

move further and further from their original position, and the velocities do not

alter continuously in the same direction, but the points move within a limited

space and the velocities only fluctuate within certain limits. Of this nature are all

periodic motions, such as those of the planets about the sun, and the vibrations of

elastic bodies, and further, such irregular motions as are attributed to the atoms

and molecules of a body in order to explain its heat.

Let X, y, z be the coordinates of any particle in the system and let its mass

be m. Let A', Y, Z be the components of the forces on this particle. Then

m -jY = X- We have by simple differentiation (Arts. 286, 286 b),

{f^ =<W-='dtV'dt) = ''\di)-^'^-d^^

and therefore 7^^ I
= - k^-^+

dxy _ 1 m d^jx'^)

2\dtJ
--2*'"'^

4 df'

Let this equation be integrated with regard to the time from to t and let the

integral be divided by t, we thereby obtain

[^ /dxy-^ 1 ft ^^^ VI rd{x^) fd{x^-)\-\

in which the application of the sutfix zero to any quantity implies that the initial

value of that quantity is to be taken.

The left-hand side of this equation and the first term on the right-hand side are

till fdor\ 1
evidently the mean values of o { w7 )

^°^ ~ ^^ ^^^'^^^ ^^^ *"^e t. For a periodic

motion the duration of a period may be taken for the time t ; but for irregular

motions (and if we please for periodic ones also) we have only to consider that the
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time t, in proportion to the times during which the point moves in the same direc-

tion in respect of any one of the directions of coordinates, is very great, so that in

tlie course of the time t many changes of motion have taken place, and the above

expressions of the mean values have become sufficiently constant. The last term

of the equation, which has its factor included in square brackets, becomes, when

the time is periodic, equal to zero at the end of each period. "When the motion is

not periodic, but irregularly varying, the factor in brackets does not so regularly

become zero, yet its value cannot continually increase with the time, but can only

fluctuate within certain limits ; and the divisor t, by which the term is affected,

must accordingly cause the term to become vanishingly small for very great values

of t. The same reasoning will apply to the motions parallel to the other coordinates.

Hence adding together our results for each particle, we have, if v be the velocity of

the particle m, mean 1 2mv'^= - mean ^'Z{Xx+Yy + Zz).

The mean value of the expressions - ^ S {Xx +Yy + Zz) has been called by Clausius

the virial of the system. His theorem may therefore be stated thus, the mean semi-

vis viva of the system is equal to its virial.

376. To apply this theorem to the kinetic theory of heat we premise that every

body is to be regarded as a system of particles in motion. So far as this proposition

is concerned, the particles may describe paths of any kind, and any particle may

pass as close as we please to another. But, as no account of impacts has here

been considered, we must either suppose the particles to be restrained from actual

contact by strong repulsive forces at close quarters, or (which amounts to the same

thing) suppose the particles to be perfectly elastic, so that the total vis viva is

unaltered by the impacts.

The forces which act on the system consist in general of two parts. In the

first place, the elements of the body exert on each other attractive or repulsive

forces, and, secondly, forces may act on the system from without. The virial will

therefore consist of two parts, which are called the internal and external virials. It

has just been shown that the mean semi-vis viva is equal to the sum of these tico

parts.

If (r) be the law of repulsion between two particles whose masses are m and m',

we have Xx + X'.v' =-<f){r) x-<p{r)—;— x'= <)) (r) '-
. And , since for the

two other coordinates corresponding equations may be formed, we have for the

internal virial - |2 {Xx+ Yy + Zz) = - S^r0 (r), where S implies summation for the

particles taken two and two together.

Let the volume be increased, the system remaining similar to itself. Every r is

now increased so that dr= ^r, where /3 is an infinitely small quantity. If W be the

work of the internal repulsions, we have dW= 20 (r) ^r. If V be the volume of the

dW
body, dF=3|8F. Hence - S^r0 (r) = - fF -t|^ . This supplies another expression

for the internal virial, if we understand W to represent the mean work.

As to the external forces, in the case most frequently to be considered the

body is acted on by a uniform pressure normal to the surface. If p be this pres-

sure, da an element of the surface, I the cosine of the angle the normal makes with

the axis of x, --^Xx=
^

jxplda- =^ I Ixdydz. If F be the volume of the body

this is ^pV, and therefore the whole external virial is fpF.

Let us suppose that a gas is composed of particles (such as those here described)

each in motion, but not acting on each other, and equally distributed throughout

the containing vessel. It follows from this proposition that ^^mv^=^pV. Hence
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the resulting continuous pressure p produced by their impacts on th§ containing

surface, when referred to a unit of area, is equal to one-third of the vis viva of the

particles which occupy any unit of volume.

The reader who is interested in these matters is referred to Applications of

dynamics to physics and chemistry by Prof. J. J. Thomson, 1888.

Ex. Show that the virial of a system of forces is independent of the origin and

the directions of the axes, supposed rectangular.

The first result is clear, since in stationary motion SX=0, &c. The second

follows from the equality Xx +Yy + Zz = Rp, where R is the resultant of X, Y, Z, and

p is the projection of the radius vector on the direction of R.

General Theorems on Impulses.

377. General equation of virtual work. Let (oo, y, z)

be the coordinates of any particle m, and (X, F, Z) the resolved

parts in the directions of the axes of the innpulses which act on
that particle. Let (w, v, w), (it, v , w') be the resolved parts of

the velocity of the particle in the same directions just before and
just after the impulse.

The momenta m (u' — u), m (v' — v), m (w' - w), being reversed

for every particle, will be in equilibrium with the impulsive forces.

Hence by the principle of virtual work we have

Sm [{u - u) hx + {v' -v)hy + {w' - w) hz] = ^{Xhx+ YBy + Z82),

where Bx, 8y, Bz are any small arbitrary displacements of the par-

ticle m consistent with the geometrical conditions of the system.

This is the general equation of virtual work, and it will be

seen further on that the subsequent motion of the system may
be deduced from it. At present we are only concerned with such

general properties of the motion as may be deduced from this

equation by a proper choice of the arbitrary displacement.

378. Carnot^s first theorem. Let us first suppose that

the only impulsive forces are those produced by the actions and
reactions of the bodies forming the system. (For example, two
bodies may impinge on each other, or two points may be suddenly

connected together by an inelastic string.) Then these mutual
actions and reactions are in equilibrium, and the sum of their

virtual works is zero for all displacements which do not

alter the distance apart of the particles acting on each other.

Suppose the bodies impinging to be inelastic, then just after the

impact the points of the two bodies which impinge have no

velocity of separation normal to the common surface of the bodies.

If therefore we take as our arbitrary displacement the actual

displacement of the system during the time dt just after the

impact, the sum of the virtual works of the impulses wall be

zero. Hence, writing Bx = u'Bt, By = v'Bt, Bz = w'Bt, we have

Sm {(u — u) u' + {v' — v)v'-{- {w — w) w'\ = 0.

.'. 2m {u'" + v'^ + w''^) = Xm (uu + vv' 4- ww').
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This may be put into the form

= - ^m {{u' - uf + {v - vf + (i^' - wf).

Therefore in the impact of inelastic bodies vis viva is always lost.

This is the first part of Carnot's general Theorem.

379. Generalization of Carnot's theorem. It should be
noticed that Carnot's demonstration applies, not exclusively to

collisions but, to all impulses which do not appear in the equation
of virtual work as applied to the subsequent displacement. Let
a system he moving in any way, and let us suddenly introduce
some new restraints or geometrical relations by which some of the

particles are compelled to take new courses. The impulses which
produce this change of motion are of the nature of reactions, and
are such that in the subsequent motion their virtual works are
zero. It therefore follows that vis viva is lost and that the amoimt
of vis viva lost is equal to the vis viva of the relative motion. This is

sometimes called Bertrand's Theorem.

380. Carnot's second theorem. Let us next suppose that
an explosion takes place in any body of the system. Then, just

before the impulse, any two particles about to separate are moving
so that the virtual works of their mutual actions are equal and
opposite, but just after the explosion this may not be the case.

Hence we now put hx = uBt, 8y = vSt, Bz = wBt and we have from
the equation of virtual moments

'Zm {{ii — u) u + {v —v)v + {w' — w)w] = 0.

This may be put into the form

Xm (u'^ + v^'^ + w'^) — l^m (u"^ + v^ }- w'^)

= Sm [{u' - uf + iy' - vf + {w' - wf}.

Therefore m cases of explosion vis viva is always gained. This is

the second part of Carnot's Theorem.

Thirdly, let the bodies of the system be perfectly elastic. If

two elastic bodies impinge, the whole action consists of two parts,

a force of compression as if the bodies were inelastic, and a force

of restitution of the nature of an explosion. The circumstances
of these two forces are equal and opposite to each other. Hence
the vis viva lost in compression is exactly balanced by the vis viva

gained in the restitution. This is the last part of Carnot's Theorem.

381. As an example of Carnot's theorem let us solve the problem of the

Ballistic pendulum already considered in Art. 124.

Before the impact, the pendulum is at rest and the ball has a velocity v ; the

vis viva is therefore mv^. After the impact the pendulum and ball move together,

and the vis viva is {Mk'^+ mi^) co^. To find the vis viva of the relative motion we
notice (1) that the velocity of the ball has been changed from v to icj and its

direction has been turned through an angle j3, the vis viva of its relative motion is
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therefore m{i^(a'^ + v^-2iuvcosfi), (2) the angular velocity of the pendulum has

been changed from zero to w, the vis viva of the relative motion is MW^ur^. We
thus have by Carnot's theorem

mv- - {Mk'^ + nii^) w^= m {iW + v- - 2i(av cos /3) + Mk'-^.

This reduces to mvi cos ^= {Mk'^ + mi^) (o and determines the initial motion after

the impact. A simplified form of this application of Carnot's theorem is given

by M. Appell in his Mecanique 1896.

382. Three forms of the equation of virtual work.
Let us now resume the general equation of virtual work for a

system in motion acted on by any impulses. We have already

seen that there are two displacements, either of which we may
with advantage choose as our arbitrary displacement. One of

these coincides with the motion just before, and the other with'

the motion just after, the action of the impulses. These equations

may be written

2m [{a — u) u +(v' —v)v + {w' —w)w}='2 (Xu •{- Yv -^ Zw ),

5)m {{u' — u) XL -\-{v' — v) V + {w' — w)w'] = X (Xu + Yv' + Z^u').

On the left-hand side of these equations {u, v, w), (u', v', w') are the resolved

parts of the velocities of the particle whose mass is vi (Art. 377). On the right-

hand sides they represent the resolved parts of the velocities of the point of

application of the impulse whose components are A', Y, Z.

Besides these there is a great variety of motions which are

geometrically possible. Let {u\ v", lu") be the components of

the velocity of the typical particle m for any one of these possible

motions. Then we may write hx — u"ht, hy = v"ht, hz — w''ht, and
we obtain

2m {{u - u) u" + {v - v) v" + (lu' - w) w"] = 2 {Xu" + Yv" + Zw").

This equation of course includes the two former as special cases.

This possible motion might have been produced from the initial

state by the application of proper impulses. Let these be repre-

sented by X\ Y', Z'. Then with these forces the state (u', v'\ w")
becomes the actual subsequent motion, and our former subsequent

motion becomes a mere variation from this. Thus we may write

down three more equations, obtained from these by interchanging« v\ w) with (zi", v'\ w") and (X, F, Z) with {X\ Y\ Z').

By comparing these equations we may deduce several general

theorems.

383. A convenient Notation. Let 21" be the initial vis viva of the system,

Let IT' be the vis viva after the application of a set of impulses which we shall

designate as the set A, and let the resulting motion be called the motion A. Let

2T" be the vis viva of any possible variation of this motion which we shall call the

motion jB, and let the forces which produce it be called the forces B. We shall

want to use also the vis viva of the relative motion of any two of these. Thus,

taking the two first and expressing the vis viva of the relative motion by 2i2oi, we
have 2i2oi=Sm {

{xi' - uf -f {v' - vf + (\o' - xcf\

= 2T' + 2T-2i:m{uu' + vv' + icw'),

:. ^m{uu' + vv' + ww') = T+T'-R(,-..
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Similarly if we call the vires vivEe of the other relative motions 2Rq^ and 2i?i2, we

have 7:m{uu" + vv" + ww') = T+T"-R(^,
2m {a'u" + v'v" + w'w") = T' + T" - Ey^

.

Thus the accents of the T's on the right-hand side and the suffixes of the JJ's

correspond in all three equations to the accents on the left-hand side.

The three equations deduced from the principle of virtual work in Art. 382

may therefore be written

T' - T- i2oi=:vir. wk. of forces A in initial motion,

T' - T + i?(,i= vir. wk. of forces A in motion A,

T' - T-R^^ + RQ^= y\x. wk. of forces A in motion B,

where the divisor dt on the right-hand side has been dropped for the sake of

brevity. Or we may say that the right-hand sides express the rates at which the

forces A are doing work in the respective motions. Or again, the right-hand sides

express the sums of the products obtained by multiplying each force by the

velocity of its point of application resolved in the direction of the force, for the

particular motion concerned.

384. Change of vis viva due to impulses. If we add

together the two equations of Art. 382, viz.

2m {u —u)u + . . . = "^Xu + . .
.

,

2m {u' —u)u-\-... = XXu' -f . . .

,

we have Sm (u^ —u^) + ... = 2X (u-\-u') +—
Since the left-hand side is the difference between the vis viva

before and that after the application of the impulses, we have the

following theorem. If any impulses act on a system in motion, the

change in the semi-vis viva is equal to the sum of the products

obtained by multiplying each impulse by the mean of the velocities

of its point of application just before and just after the action of the

impulse, both velocities being resolved in the direction of that impulse.

Different proofs of this theorem for the case of a single body have
been given in Arts. 172, 192, 346.

385. Vis viva of the relative motion. If we take the

difference of the two equations of Art. 382, viz.

2m {u! — u)u + . . . = ^Xu + . .
.

,

2m {u' — u)u' -^ . . . = ^Xu! + ...

,

we have 2m {u —u)^ + . . . = 2X {u —ii)-\- ...

,

Hence, if any impidses act on a system in motion, the semi-

vis viva of the relative motion is equal to the sum of the products

obtained by m^ultiplying each impulse by half the excess of the

resolved velocity of its point of application just after over that

just before the impulse, both velocities being resolved in the direction

of that impulse.

386. Two cases of impact present themselves for consideration,

I
(1) we may imagine certain points of the system to be suddenly
seized and made to move with given velocities in some prescribed

R. D. 20
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manner, as in Art. 288, (2) we may suppose that given impulses

act at certain points, as in Art. 306. In the former case the

resulting displacements of the points of application of the impulses

Xy Y, Z are given, the impulses being unknown. In the latter

the impulses X, Y, Z are given, but the displacements of the

points of application are unknown. Or, again, in the first case

the constraints are given, in the second the impulses are given.

Let us consider these in order.

Let the displacement of the point of application of each impulse

he given.

Let us give the system two different virtual displacements

both consistent with the prescribed conditions. Let one of these

be along the actual motion, then

Sm (u —u)u' + ...= 'ZXu' +
Here on the right-hand side u\ v, w are proportional to the

prescribed displacements of the points of application of the

impulses and on the left-hand side u', v', w are proportional to

the actual displacements of the particle m.

Let the second displacement be along any geometrically

possible motion of the system, then

Sm {vi! — u)v!'-\-... = ^Xu + . . .

,

where u'\ v", w" are the resolved velocities of the particle m in

this hypothetical motion.

The multipliers of X, Y, Z on the right-hand side are the

same as before, because the motions of the points of application

are prescribed. We therefore have

Sm {u' — u)u' -\- ... = 2m {u' — u)u"+...
;

.-. 2m {u' -uf -{-... + tm (u''-uy + ... = Im {u" - uf -h ...

.

Each of these summations is the vis viva of a relative motion.

Representing them by 2iioi> ^R\2^ 2i^o2 (Art. 383) we have

•"01 "• -"12 ^^ -^02*

It immediately follows that R^^ is greater than i^oi- Hence, if

any impulsive forces act on a system in motion, the displacements of
the points of application in the time dt being prescribed, the actual

motion is such that the vis viva of the relative motion, before and
after, is less than if the system took any other course.

387. Kelvin's theorem. If the system start from rest,

the velocities represented by u, v, w are zero. We therefore have,

as in the last article,

^mu'^ -f . . . = l^mu'u" + . .
.

;

.-. ^mu''-^-... + Sm {u"-uy+... = l.mu'^ + ...

.

If (as in Art. 383) we represent the vis viva of the actual
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motion after impact by 2T\ that of the hypothetical motion by
2T" and that of the relative motion by 2i2i2, this equation becomes

r + R^, = T".

Let a system he at rest and he set in motion hy jerks or impulses
at given points, so that the motions of these points are prescribed,

then the vis viva of the subsequent motion is less than that of any
other hypothetical motion of the system in which these points have
the prescribed motions. Natural Philosophy by Thomson and
Tait, Art. 312.

388. Let the impulses be given. Consider two geometrically
possible motions of the system. Let one of these be the actual
motion in which ii\ v, w' are the resolved velocities of the particle

m, and let the second be any other motion, such that we can compel
the system to take that motion by introducing the proper friction-

less constraints. For instance each particle may be constrained
to move in any direction (geometrically possible) by attaching it,

like a bead, to a smooth wire. Let u' , v" , w" represent the resolved
velocities of the particle m in this motion.

Supposing the system to have the first motion, let us give it a
virtual displacement along the second, then

Sm {u' - u) u" + ... = %Xu" + ...

.

Supposing the system to have the second motion, and that the
work of the constraining reactions is zero. Art. 362, we have

2m {u" -u)u''-\- ... = lXu"-\- ...;

.'. 2m (u — u)u''+ ... = 2m (it'— u)u'' + ...
;

.-. 2m(w' - uy + ... + Xmu"'+ ... = Xmu'^ + ...

.

Representing the vis viva of the actual motion after impact by
2T', that of the hypothetical motion by 2T" and that of the

relative motion by 211^2, this equation gives

It follows that T' is greater than T". Suppose a system in

motion to he acted on hy any impulses, the vis viva of the subsequent

motion is greater than if the system were subjected to any additional

constraints and acted on by the same impulses. We thus arrive at

a theorem of Lagrange generalized first by Delaunay in Liouville's

Journal, Vol. v., and afterwards by Bertrand in his notes to the

Mecanique Analytique. See Art. 379.

Comparing Kelvin's and Bertrand's theorems we perceive that,

when the motions of the points of application of the impulses are

t
given, the subsequent motion may be found by making the vis viva

a minimum, but, when the impulses are given, the subsequent

motion may be found by introducing some constraints and making
the vis viva a maooimum.

20—2
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388 a. Sxamples. To understand these two principles properly we should

examine their application to some simple cases of motion.

Ex. 1. A body at rest having one point fixed is struck by a given impulse,

find the resulting motion. See Art. 308 and Art. 310.

Let L, M, N be the given components of the impulse about the principal axes

at 0. Then, if the body begin to turn about an axis fixed in space whose direction

cosines are {I, m, n), the angular velocity w is found by Art. 89 from

(A Z2 + £m2 + Cn^) (a=Ll +Mm+ Nn.
To find the axis about which the body begins to turn when free, we must by

Lagrange's Theorem make the vis viva a maximum. That is, we have

{AV^ + Bm^ + Cn^) w^= maximum.
We have also the condition l- + m^+ n^=l.

Treating these three equations in the usual manner indicated in the differential

, ,
„ - At Bm Cn

calculus, we find
, -v = -rr = -^ •

L M N
These equations determine the direction cosines of the axis about which the body

begins to turn.

Ex. 2. Four equal rods at rest are joined together by smooth hinges so as to

form a rhombus ABCD, the angle at A being 60°. Apply Kelvin's theorem to

show that if the corner A is suddenly moved with velocity V along the diagonal

CA, the initial angular velocity of any rod is 3F/7a where 2a is the length of

any rod.

If the angle at ^ is 2^, and w the angular velocity of any rod, the vis viva is

F2 + 8Vau} sin + lOa^oj^ sin2^ + 2a^-u)^ cos^^ + 2kW.

Equating to zero the differential coefficient with regard to w, we obtain the initial

value of w, which reduces to the given result when 20= 60°.

Ex. 3. A body is in motion with a point fixed in space. Suddenly a straight

line OG fixed in the body is made to move round in a given manner ; find the

motion, Art. 293.

Let the instantaneous position of OG be the axis of z. Let the previous motion

of the body be given by the angular velocities Wj , w^, W3 and the prescribed motion

of OG by the angular velocities 0, 0, about the axes of x and y. Let Q be the

required angular velocity of the body about Oz. The vis viva of the relative

motion, before and after, is

A{0- (a^f+B (0 - W2)^+ C (fi - ^3)2 - 2D (0 - Wg) (O - w^) -2E{0- w^) (O - Wg)

-2i^(<9-wi){0-wo).

This is to be made a minimum by Art. 386. Differentiating with regard to fi,

(ft - wg) - D (0 - W2) -E{0- wi) = 0.

This equation expresses the fact that the angular momentum about OG is unaltered.

Ex. 4. A rod AB at rest is acted on by an impulse F perpendicularly to its length

at the extremity A, and that extremity begins to move with a velocity/. Find the

point in AB about which the rod will begin to turn (1) when F is given and

(2) when / is given. If AO= x, show that both Kelvin's theorem and Bertrand's

theorem require the same function of x to be made a minimum.

Ex. 5. A system is moving in any manner. A blow is given at any point per-

pendicular to the direction of motion of that point. Prove that the vis viva is

increased.

A
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This follows from the first of the equations in Art. 383 ; for the virtual work of

this force (there called A) vanishes in the initial motion. Hence T'=T + Rq^.

Ex. 6. A system at rest, if acted on by two different sets of impulses called

A and B, will take two different motions. Prove that the sum of the virtual

works of the forces A for displacements represented by the velocities in the

motion B is equal to the sum of virtual works of the forces B for displacements

represented by the velocities in the motion A . See Art. 383.

Ex. 7. Two equal uniform rods AB, BC, smoothly jointed at B, and each

of mass m, lie making an angle a with one another on a horizontal table, and pass

at their middle points through smooth fixed rings. To the free end A is given

a velocity ?; in a direction towards and perpendicular to BC. Prove that the

kinetic energy of the motion is ^mv^ (2 - cos a cos 3a) and that it is greater by

-^viv^ cos2 2a than it would be if there were no ring on BC. [Use Kelvin's theorem.]

[Math. Tripos, 1904.

389. Imperfectly elastic and rough bodies. When two bodies of an

imperfectly elastic and rough system impinge on each other, we may deduce from

the equations of Art. 382 some extensions of Carnot's theorems.

Let (uvw) {u'v'w') {u"v"w") be the resolved velocities of a particle m just before

the impact begins, at the moment of greatest compression, and just after the con-

clusion of the impact. Let the vis viva of the system at these epochs be represented

by the symbols 2T, IT', 2T'\ Let the vis viva of the relative motion at any two of

these epochs be represented by 2Rq^, 2jRi2, 2iJo2.

If the bodies impinging are perfectly smooth we have by the same reasoning as in

Arts. 378 and 380 Swi{K -w)m' + &c.}=0 (1),

Sm{(tt"-'u)w' + &c.} = (2).

Since the whole impulse between the two bodies bears to the impulse up, to the

moment of greatest compression the ratio 1 + e : 1 we may deduce from Art. 382 the

two following equations

i:m{{u" -u)u + &G.\ = {l + e)'Zm{{u'-u)u + &c.} (3),

I,m{{u" -u) u" + &c.} = {l + e) Sm {{u'-u) u" + &g.} (4).

The left-hand side of either of these equations, after multiplication by dt, is equal

to the virtual work of the whole impulse, and the summation on the right-hand

side, after multiplication by dt, is equal to the virtual work of the impulse

of compression. These are taken for the same displacement and are therefore in

the ratio 1-f-e : 1. In the first equation the displacement chosen is the actual

displacement just before impact. In the second equation the displacement chosen

is that just after impact. These are both consistent with the geometrical conditions.

The above four equations may be conveniently expressed in the forms

T'-T=-R,, (5),

T"-T'=R^^ (6),

T" -r {l-\-e)-veT=R^-{l + e)B^^ (7),

T"-T'{l^e)^eT=eR^-{l + e)R^^ (8).

If we eliminate the E's from these equations, we find

T"-T'=-e^{T'-T) (9),

thus the gain of vis viva due to restitution or explosion is ^ into the loss of vis viva

due to compression.

If we eliminate the T's, we find ^oi=7rT^!\2= 2 (^O)-

1-e
If we eliminate T',',J?oi, i?i2, we find r"-T=-r Rq^ (11),

which may be regarded as an extension of Carnot's third theorem in Art. 380.
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Suppose next that the bodies impinging are rough, and slide on each other during

the whole impact, the friction acting always in the same direction. The friction

now bears a constant ratio to the normal pressure throughout the impact. The
equations (.3) and (4) hold as before. The separate equations (1) and (2) no longer

hold, but instead we may form the single equation

Sw {{u" -u)u' + &c.} = {l + e) 2m {{u' - ti) u' + &c.} (12),

by the same reasoning as in equations (3) and (4). The equation (12) may be

expressed in the form T" - T' {l + e) + eT=R-^^ + eB^-^ (13).

Joining (13) to (7) and (8) we have three equations connecting the six quantities

T, T', T", i?oi, JRo2» -^12- We easily find

Rq^_R^_T"-T' {l-\-e) + eT
(H-e)2~^~ e(l + e)

We may deduce from these equations the following theorem. When one body of

a system impinges on another^ the three states of motion {viz. that just before, that

just after, and that at the moment of greatest comprest^ion) are so related that the

vis viva of the relative motion of any tivo bears to the vis viva of the relative motion

of any other two a ratio which depends only on the coefficient of elasticity.

Let us suppose a system to be acted on by an impulsive force whose direction

in space remains unchanged during its time of action. A theorem similar to that

just enunciated applies to any three epochs in the time of action of this impulse,

provided these epochs are such that the whole impulse exerted in the interval from

the first epoch to the second bears a known ratio (say 1 : e) to the whole impulse

exerted in the interval from the second to the third.

Eepresenting the vires vivae of the system at the three epochs by 2T, 2T', 2T" as

before, and the vires vivae of the relative motions by 27^0^, 2Rq2, 272^2 > we notice

that the equations (3), (4) and (12) apply to the motions of the system at the three

epochs. The equation (14) will therefore give the same relations as before between

the six quantities T, T', T", R^^, R^^, R^^.

We may obtain an easy proof of this theorem by combining the results of Arts.

385, 386 with Art. 313. Let X be an impulse, and let the axis of x be taken

parallel to its direction. By Art. 385 the vis viva of the relative motion before and

after the impulse is proportional to X{u' -u). But, by Art. 313, u' -u is a linear

function of X, and vanishes with X. It is therefore proportional to X. The vis

viva of the relative motion is therefore proportional to X^. It immediately follows

that iJoi, -Ro2' ^12 ^^^ proportional to 1, (1 + e)^ e^.

The remaining part of the theorem follows from Art. 386. Letting X now

represent the impulse from the first to the second epoch, we have

T'-T= lX{u' + u), T"-T'= iXe{u" + u').

It easily follows that T" -T' -e{T' -T) = ^Xe {u" - u).

Since the right-hand side of this equation is RQ^el{l-\-e), by Art. 385, the

remaining part of equation (14) has been proved.

When two elastic systems impinge on each other, the theorems contained in

equation (14) are true for the impulse on each system. They therefore follow by

simple addition for the two impinging systems regarded as one.

390. Oauss' measure of the " constraint." The expression, called 2R in

the previous articles, which represents the vis viva of the relative motion, has

been interpreted by Gauss in another manner. Let the particles m^, 7»2, &c. of

a system just before the action of any impulses occupy positions which we shall

call Pi , 2^2 . &c. Let us suppose that the particles if free would under the action

of these impulses and their previous momenta acquire such velocities that in the
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time dt subsequent to the impulses they would describe the small spaces PiQi, p^q.^^
&c. But if the particles were constrained in any manner consistent with the
geometrical conditions which hold just before the action of the impulses, let us
suppose that they would under the same impulses and their previous momenta
describe in the time dt subsequent to the impulses the small spaces Pxr^, p^r.^, &c.

Then the spaces q^^r^^, q^r^, &c. may be called the deviations from free motion due

to the constraints. The sum Sm (qr)^ is called the " constraint."

391. We may also measure the constraint by the ratio of this sum to {dt)^.

We then take Piqi, &c. Pir^^, &c. to represent, not the displacements in the time dt,

but the velocities of the particles just after the action of the forces in the two cases

in which the particles are free or constrained. Referring to D'Alembert's principle

in Art. 67, we see that pq represents the resultant of the previous velocity and of

the velocity generated by the impressed force on the typical particle m, while qr

represents the velocity generated by the molecular forces*.

If we suppose that the lengths pq, qr, &c. represent velocities and not displace-

ments, let (u, V, xo) be the components of pq in any motion, and (w', v', w') the

components of pr in any other motion ; then

Sm {qrY='Lm {{u' - uf+{v' - vf + («?' - xof]

measures the " constraint" from one motion to the other. This is precisely what
we have represented by the symbol 2E, with suffixes to define the two motions

compared.

392. Gauss' principle of least constraint. Suppose a system of particles in

motion and constrained in any given manner to be acted on by any given set of

impulses. Let 2T" be the vis viva of the subsequent motion. This is the actual

motion taken by the system. Let us now suppose that the particles were forced

to take some hypothetical motion consistent with the geometrical conditions by
introducing some further constraints. Let 2T" be the subsequent vis viva in this

hypothetical motion. Thirdly, let us suppose that all constraints were removed so

that the particles were acted on solely by the given set of impulses. Let 22"" be

the subsequent vis viva in this free motion. Let 2T be the initial vis viva common
to all the motions. Let 222^2 > ^iJjg, 2^23 be the vires vivae of the relative motions

of the first, second and third subsequent motions as denoted by the suffixes.

By Bertrand's theorem, since the hypothetical motion is more constrained than

the actual motion, we have T'= T" + R^^ •

* Gauss' proof of the principle is nearly as follows. By D'Alembert's principle

the particles m^, m.^, &c., if placed in the positions r^, rg, &c., would be in equilibrium

under the action of these molecular forces alone. Let us apply the principle of

virtual work, and displace the system so that the typical particle m describes

a space rp, making an angle with the direction rq of the molecular force on m.

Then since the product m [rq] measures the molecular force on m, we have

2wi {rq) {rp cos 0)= 0.

But qp^= qr^+ rp^-2qr .rp cos
<f>.

Hence we easily find Sm {qp}^=Sm {qr)^+ Sm (?-p)2.

In the actual motion the particles move from p^, &c. to r^, &c. and the "con-

straint " is Sm {qr)^. If the particles had been forced to take any other hypothetical

courses, by which they were brought into the positions p^, &c., the "constraint"

would be 2wt {qp)"^. Gauss' Principle asserts that the former is always less than

the latter.
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Also, since each of these is more constrained than the free motion,

Hence we have R^s= iJjg + -R12 •

Therefore JR23 is always greater than Ry^. It follows that the motion which the

system actually takes when subject to any impulses is such that the "constraint"

from the free motion is less than if the system took any other motion consistent

with the geometrical conditions. This result is true whichever way the '

' constraint

"

is measured.

393. If we suppose the system to be acted on by a series of indefinitely small

impulses, these impulses may be regarded as finite forces. We therefore infer the

following theorem, which is usually called Gauss'' principle of least constraint.

The motion of a system of material points connected by any geometrical relations

is always as nearly as possible in accordance with free motion; i.e. if the constraint

during any time dt is measured by the sum of the products of the mass of each

particle into the square of its distance at the end of that time from the position it

would have taken if it had been free, then the actual motion during the time dt is

such that the constraint is less than if the particles had taken any other position.

Gauss remarks that the free motions of the particles when they are incom-

patible with the geometrical conditions of the system are modified in exactly the

same way. as geometers modify results which have been obtained by observation,

i.e. by applying the method of Least Squares so as to render them compatible with

the geometrical conditions of the question.

394. Ex. Any number of particles m^, m^, dx. are acted on by any forces

whose components are m^X^, %J^ij %-2'i, d;c. Their coordinates x^, y^, z-^;

X2, 2/2* ^2> ^^' ^^^ connected together by some relation such as (t>{x-^, c^-c.) = 0.

{For instance the particles may be beads slung on a string of given length ichose

extremities are tied together.) It is required to form the equations of motion.

Let V, V, W be the resolved velocities of the typical particle r;t at the time t
;

w, V, w its resolved velocities just after the action of the impulse whose resolved

parts are mXdt, mYdt, mZdt, on the supposition that the particle is perfectly free.

But as the typical particle is not perfectly free, let u\ v', w' be its actual resolved

velocities at the same instant. Then to find u', v\ lo' we make

2Ry^='2.m{_{u' -uf+{v' -vf + {w' -wY^= m\mm\xm (1),

where the S implies summation for all the particles. This quantity is to be a

minimum for all variations of u', v', 10' subject to the condition

2 {<p^u' + <t>yv' + (l>,w') = (2),

where the S here also implies summation for all suffixes.

To make R^^ a minimum we take the total differential of each of these quantities

with regard to all the accented letters, multiply the second by some indeterminate

multiplier \, and add the results together. Equating to zeto the coefficients of

du' &c. we obtain the three typical equations

m{u' -u)+\(f>y.=0, m{v' -v) + \(py=0, m{w'-iv) + \<p^= (3).

Putting suffixes we have equations sufficient to find X and the (u', v\ w') of every

particle.

394 a. We may write these equations in another form. Since U and u' are two

successive values at an interval dt of the same quantity in the continuous motion

which we are considering, we write w' - U=— dt. Since u is the resolved velocity



ART. 394 a.] gauss' principle of least constraint. 318

after the impulse when the particle is free, we have u-U=Xdt. The equations

therefore become ^
( 7/7

~ ^ j
"^ ^^»^~ ^' ^^'

'

where fjidt has been written for \.

The equations in this form might have been derived directly from the principle

of virtual work. By that principle we have

with the condition S {<p^ 5.t + &c.]= 0.

Multiplying the second by an indeterminate multiplier /a, adding the results together,

and equating to zero the coefficients of bx, &c. we obtain the same results as before.

If we write the accelerations dUjdt^x", dVldt= y", dWldt= z" as usual it follows

at once that the equation (1) takes the form

2Ei3= Sm{(cc"-X)2+(i/"+F)2 + (/'-^)2}.

Gauss' principle asserts that the accelerations assumed by the system are such

that i?i3 is a minimum subject to the geometrical conditions of the problem.

A translation of this expression into generalized coordinates may be found in

Art. 430 e of the next chapter.

EXAMPLES*.

1. A screw of Archimedes is capable of turning freely about its axis, which is

fixed in a vertical position : a heavy particle is placed at the top of the tube and

runs down through it. Let n be the ratio of the mass of the screw to that of the

particle, a the angle which the tangent to the screw makes with the horizon, li the

height descended by the particle, a the radius. Prove that the whole angular

velocity w communicated to the screw is given by ura^[n + l) {n + s,vD^a) = 2ghco^^a.

2. A fine circular tube, carrying within it a heavy particle, is set revolving

about a vertical diameter. Show that the difference of the squares of the absolute

velocities of the particle at any two given points of the tube equidistant from the

axis is the same for all initial velocities of the particle and tube.

3. A circular wire ring, carrying a small bead, lies on a smooth horizontal

table ; an elastic thread, the natural length of which is less than the diameter of

the ring, has one end attached to the bead and the other to a point in the wire ; the

bead is placed initially so that the thread coincides very nearly with a diameter of

the ring ; find the vis viva of the system when the string has contracted to its

original length. Art. 343.

4. A straight tube of given length is capable of turning freely in a horizontal

plane about one extremity, two equal particles are placed at different points

within it at rest ; an angular velocity being given to the system, determine the

velocity of each particle on leaving the tube.

5. A smooth circular tube of mass M has placed within it two equal particles

of mass m, which are connected by an elastic string whose natural length is § of

the circumference. The string is stretched until the particles are in contact, when
the tube is placed flat on a smooth horizontal table and left to itself. Show that,

when the string arrives at its natural length, the actual energy of the two particles

is to the work done in stretching the string as 2 (M^ + il/w + JJi^) : (M+2//i) (2M+ m).

* These examples, except the last two, are taken from the Examination Papers

which have been set in the University and in the Colleges.
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6. An endless flexible and inextensible chain, in which the mass per unit of

length is ix through one continuous half, and /x' through the other half, is stretched

over two equal perfectly rough uniform circular discs (radius a, mass M) which can

turn freely about their centres at a distance b in the same vertical line. Prove that

the time T of a small oscillation of the chain under the action of gravity is given by

(/.-ya').9T2 = 27r2{M+(7ra + 6) (/. + /)}.

7. Two particles of masses w, m' are connected by an inelastic string of length a.

The former is placed in a smooth straight groove, and the latter is projected in a

direction perpendicular to the groove with a velocity V. Prove that the particle m

will oscillate through a space ^, and that, if m be large compared with m', the

time of oscillation is nearly -^ ( 1 - 2~
)

8. A rough plane rotates with uniform angular velocity n about a horizontal

axis which is parallel to it but not in it. A heavy sphere of radius a, being placed

on the plane when in a horizontal position, rolls down it under the action of

gravity. If the centre of the sphere be originally in the plane containing the

moving axis and perpendicular to the moving plane, and if x be its distance from

this plane at a subsequent time t, before the sphere leaves the plane, then

24 \/35 \ w- y
' '12 n^

c being the distance from the axis to the plane measured upwards.

9. The extremities of a uniform heavy beam of length 2a slide on a smooth

wire in the form of the curve whose equation is r= a (l-cos d), the prime radius

being vertical and the vertex of the curve downwards. Prove that, if the beam
be placed in a vertical position and displaced with a velocity just sufficient to

bring it into a horizontal position, tan 6= ^{e'^ - e"" ), where d is the angle through

which the rod has turned during a time t, and Sg = 2a/c-.

10. A rigid body, whose radius of gyration about G the centre of gravity is k, is

attached to a fixed point C by a string fastened to a point A on its surface. CA ( = b)

and AG{= a) are initially in one line, and to G is given a velocity V at right angles

to that line. No impressed forces are supposed to act, and the string is attached

so as always to remain in one right line. If 6 be the angle between AG and AC

at time t, show that v^ = ttt ,.,

—

., . .,^ , and if the amplitude of 6, i.e.
' \dtj 6- k^ + a^sm^d '

2 sin~^ -^
, be very small, find the period.

2 Jab
11. A fine weightless string having a particle at one extremity is partially

coiled round a hoop, which is placed on a smooth horizontal plane, and is capable

of motion about a fixed vertical axis through its centre. If the hoop be initially at

rest and the particle be projected in a direction perpendicular to the length of the

string, and if s be the portion of the string unwound at any time t, b the initial

value of s, then s^~b'^= VH^ + 2Vat, where m and a are the masses of them + fx

hoop and particle, a the radius of the hoop and V the velocity of projection.

12. A square, formed of four similar uniform rods jointed freely at their ex-

tremities, is laid upon a smooth horizontal table, one of its angular points being

fixed : if angular velocities w, w' in the plane of the table be communicated to the

two sides containing this angle, show that the greatest value of the angle (2a)

5 (w-w')^
between them is given by the equation cos 2a = -77 ^ 4 •
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13. Two particles of masses m, m' lying on a smooth horizontal table are con-

nected by an inelastic string extended to its full length and passing through a small

ring on the table. The particles are at distances a, a' from the ring and are pro-

jected with velocities v, v' at right angles to the string. Prove that, if mv^a?= m'u'V-^,

their second apsidal distances from the ring will be a', a respectively.

14. If a uniform thin rod PQ move, in consequence of a primitive impulse,

between two smooth curves in the same plane, prove that the square of the angular

velocity varies inversely as the difference between the sum of the squares of the

normals OP, OQ to the curves at the extremities of the rod and one-third of the

square of the whole length of the rod.

15. Assuming that the muscular power or moving force of an animal varies as

the sectional area of its limbs, and that its weight varies as its volume, prove that

two animals of similar forms, but of different dimensions, can make jumps of exactly

the same height, the height being measured by the vertical distance described by the

centre of gravity after the animal has left the ground.

16. The extremities of a uniform beam of length 2a, slide on two slender rods

without inertia, the plane of the rods being vertical, their point of intersection

fixed, and the rods inclined at angles ^tt and - ^tt to the horizon. The system is

set rotating about the vertical line through the point of intersection of the rods with

an angular velocity w, prove that if 6 be the inclination of the beam to the vertical

at the time t and a the initial value of 6,

. rdeY (3cos2a + sin2a)2 ^ ,^ ., •
., ^ <, B^r , . . ^,

'i(:77 + Q „^--.-2„- w2= 3cos^a + sm^a w2+-^ sma-sm^).
\dtj 3cos2^ + sm2^ a ' '

17. A perfectly rough sphere of radius a is placed close to the intersection of

the highest generating lines of two fixed equal horizontal cylinders of radius c, the

axes being inclined at an angle 2a to each other, and is allowed to roll down be-

tween them. Prove that the vertical velocity of its centre in any position will be

sin a cos <6 <

—

^-^ '-^ s-^ > , where <b is the inclination to the horizon of the
^

I
7-5 cos^^cos^a

)

radius to either point of contact.

d^x dT
18. Let a complete integral of the equation -^-^ = -5-

, in which T is a function

of x,be x= X, X being a known function of a and b, two arbitrary constants, and t.

Then the solution of -7-s = 1—1- -3— , -R being a function of x, may also be repre-
dt^ dx dx

sented hy x —X provided that a and 6 are variable quantities determined by the

equations -^ ='k — , —-= -h-^r- ^ where /c is a function of a and h which does not^
dt db dt da

contain the time explicitly.

19. A satellite, considered as a particle, revolves about its primary with an

angular velocity fi, and the primary rotates about an axis which is perpendicular to

the plane of the satellite's orbit with an angular velocity n. Show that the angular

momentum h of the system about its centre of gravity and the energy E are given

by h=Gn + Dir^, 2E = Gn^ - BQ^, where G is the moment of inertia of the primary

about the axis of rotation and D is a quantity depending on the masses of the

bodies.

Trace the curves whose ordinates are h and E and abscissa is x= D^~^. Show

that the latter curve belongs to one or other of two species according as a

maximum and a minimum ordinate do or do not exist, i.e. according as the
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biquadratic h = x + CD'^x~^ has two real roots or none. Show also that the real

roots correspond to the case in which the primary always turns the same face to

the satellite.

20. Assuming the results of the last example, determine the effect on the

motion of a continual loss of energy (due to tidal friction or any other cause), the

angular momentum h being constant. Show that, when the circumstances of the

system are such that the energy curve is of the second species, the satellite must

ultimately fall into the planet. If the energy curve is of the first species, show

that, according to the initial value of Q, the satellite will either fall into the planet

or will approach the planet until it reaches a certain distance, when the two will

revolve as a rigid body.

To obtain these results imagine two points to be placed with the same abscissa,

one on the momentum line and the other on the energy curve, and suppose the one

on the energy curve to guide that on the momentum line. Since the energy

decreases, it is clear that, however the two points are set initially, the point on the

energy curve must always slide down a slope, carrying with it the other point. The

final positions of the points will thus depend on the existence or absence of a mini-

mum ordinate in the energy curve. See a paper by G. H. Darwin on the secular

effects of tidal friction in the Proceedings of the Royal Society, June 1879, or

Thomson and Tait's Treatise on Natural Philosophy, Vol. i. Part ii. App. Gb.



CHAPTEE VIII.

LAGRANGE'S EQUATIONS.

395. Two advantages of Lagrange's equations. Our
object in this section is to form the general equations of motion

of a dynamical system freed from all the unknown reactions and

expressed, so far as is possible, in terms of any hind of coordinates

which may he convenient in the problem under consideration.

In order to eliminate the reactions we shall use the principle

of virtual work. This principle has already been applied to

obtain the equation of vis viva, by giving the system that par-

ticular displacement which it would have taken if it had been left

to itself. But since every dynamical problem can, by D'Alembert's

principle, be reduced to one in statics, it is clear that, by giving

the system proper displacements, we must be able to deduce, as in

Art. 357, not the vis viva equation only, but all the equations of

motion.

396. Let the coordinates of any particle m of the system

referred to any fixed rectangular axes be {x, y, z). These are not

independent of each other, being connected by the geometrical

relations of the system. But they may be expressed in terms

of a certain number of independent variables whose values will

determine the position of the system at any time. Extending the

definition given in Art. 73, we shall call these the coordinates

of the system. Let them be called 6,
(f),

i/r, &c. Then oo, y, z, &c.

are functions of 6, (j), &c. Let

w=f(t,e,ct>,&Lc.) .....(1),

with similar equations for y and z. It should be noticed that

these equations are not to contain dd/dt, d(f)/dt, &c. The independent

variables in terms of which the motion is to be found may be any

we please, with this restriction, that the coordinates of every particle

of the body can, if required, be expressed in terms of them by

means of equations which do not contain any differential coefficients

with regard to the time. When the system admits of such a

choice of independent coordinates, it is said to be holonomous.

This name is due to Hertz, Die Principien der Mechanik* , 1894.

* The following is taken from the translation by Jones and Wallay, 1896.

A material system between whose possible positions all conceivable continuous

motions are also possible motions is called a holonomous system.

The term means that such a system obeys integral laws whereas material systems

in general obey only differential conditions.
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The number of independent coordinates to which the position

of a system is reduced by its geometrical relations is sometimes
spoken of as the number of degrees of freedom of that system.

Sometimes it is referred to as being the iiiimher of independent
motions of which the system admits.

In this chapter total differential coefficients with regard to t

will in general be denoted by accents. Occasionally dots will be
used as before, and sometimes the differential coefficients will be

dec d'^x
written at length. Thus -r- and -r- will in general be written

x' and x".

If 2T be the vis viva of the system, we have

2T=tm{x'^ + y'^ + z'^) (2);

also since the geometrical equations do not contain 0\ </>', &c.,

^'=1-1^'-^^*'-^^^ («)

with similar equations for y' and z. In these the differential

coefficients of/ &c. are partial. Substituting in the expression (2)
we see that 2T takes the form

^T:=A,,e'^' + 2A,,d'4>'-\-...+B,e'-\-B,<f>'+...+C ...(4),

where the coefficients A^^, &c., ^i, &c., and C are functions of

t, 6, (/), &c. The quadratic terms, i.e. those containing the squares

and products of 6\ (f/, &c., come from the substitution of all the

terms of x\ except dfjdt and those in y', z corresponding to it.

If the geometrical equations do not contain the time explicitly,

t is absent from the equations (1), the term df\dt is also absent in

(3), and the expression for 2T is reduced to the quadratic terms
alone. We may briefly write (4) in the form

^T = F{t, e,
<t>,

&c., d\
(i>\

&c.) (5).

When the system of bodies is given, the form of F is known.
It will appear presently that it is only through the form of
F that the effective forces depend on the nature of the bodies

considered ; so that two dynamical systems which have the same
F are dynamically equivalent.

It should be noticed that no powers of 6', (j>\ &c. above the second

enter into this function, and that, when the geonietmcal equations do

not contain the time explicitly, it is a homogeneous function of
6', <^', <^c. of the second order.

397. Virtual work of the eflfective forces. To find the

virtual moment of the momenta of a system, and also that of the

effective forces, corresponding to a displacement produced by varying

one coordinate only.
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Let this coordinate be 6, and let us follow the notation already

explained. Let all differential coefficients be partial, unless it

be otherwise stated, excepting those denoted by accents. Since

X, y\ z' are the components of the velocity, the virtual moment of

the momenta is Sm {x'hx + y'hy + z'hz), where hx, hy, hz are the

small changes produced in the coordinates of the particle m by
a variation hO of 6. This is the same as

H'%-y'%^''>-
If 2r be the vis viva given by (2) of the last article

dT ^ f ,dxdT ^ (
,dx \

But, differentiating (3) partially with regard to 6', we see

dx' dx dT
thafc TTT, =-T7i- Hence ttv ^^ is equal to the virtual moment of

dd dd dd ^

the momenta.

398. The virtual work of the effective forces is

Omitting the factor hO, this may be written in the form

where the -77 represents a total differential coefficient with regard

to t. We have already proved that the first of these terms is
7 irp

-J-
-^ . It remains to express the second term also as a differ-

ential coefficient of T. Differentiating the expression for 2T
partially wdth regard to 6,

dT ^ ( ,dx'
,

.

But, differentiating the expression for x^ with regard to 6,

ax ax ax ^^ ax §/
,

dS^dddt'^W^ '^dM4>'^^ '

d dx
and this is the same as ^7- -y^ . Hence the second term may be

dT dtdd'
written -v^ , and the virtual work of the effective forces is

du

therefore I ^ 7^,—tt^ 1 hd,
[dtdd' dd)
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The following explanation will make the argument clearer. The virtual

work of the effective forces is clearly the ratio to dt of the difference between

the virtual moments of the momenta of the particles of the system at the times

t + dt and t, the displacements being the same at each time. The virtual moment

of the momenta at the time t is first shown to be -—, dd. Hence i ^n:, + -r -ttt, dt ] 80
dd \dd dtdd J

is the virtual moment of the momenta at the time t + dt corresponding to a dis-

placement 5^ consistent with the positions of the particles at that time. To make
the displacements the same, we must subtract from this the virtual moment of the

momenta for a displacement which is the difference between the two displacements

dx
at the times t and t + dt. Since bx= -rrbd, this difference for the variable x is

ciu

— i ^ni\ dtdd. We therefore subtract on the whole Sm \x' — { ^ ) dt + &c.[ 86, and
dt\ddj { dt\ddj

\

dT
this is shown to be -j^ dt86.

ciu

399. Lagrange^s equations for finite forces. To deduce

the general equations of motion referred to any coordinates.

Let U be the force-function, then t/" is a function of 6, cf), &c.

and t. The virtual work of the impressed forces corresponding

to a displacement produced by varying 6 only is -^ SO. But by

D'Alembert's principle this must be the same as the virtual

work of the effective forces. Hence

ddT_dT_dU
dt dd' dd ~ dd'

^. ., , , d dT dT dU . .

Similarly we have -^, -ytt—tt = t , , &c. = &c.^
dt d<^ d^ d(^

It may be remarked that if Y be the potential energy we
must write — Y for JJ. We then have

d^d^_dT dV_
dt dd' dd'^ dd~ '

with similar equations for c^, >/r, &c.

In using these equations, it should be remembered that all the
differential coefficients are partial except that with regard to t.

Let us write L = T + U, so that L is the difference of the

kinetic and potential energies. Then, since U is not a function

of d', </)', &c., the Lagrangian equations may be written in the

typical form d dL dL _
dtdd'~dd~

Thus it appears that, when the one function L is known, all

the differential equations of motion may be deduced by simple
partial differentiations. The function L is called the Lagrangian
function. It has also been called by Helmholtz The Kinetic
Potential, Grelles Journal, 100, 1886.

I
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These are called Lagrange's general equations of motion. Lagrange only

considers the case in which the geometrical equations do not contain the time

explicitly, but it has been shown by Vieille, in Liouville's Journal, 1849, that the

equations are still true when this restriction is removed. In the proof given above

we have included Vieille's extension, and adopted in part Sir W. Hamilton's mode
of proof, Phil. Trans. , 1834. It differs from Lagrange's in two respects ; firstly, he

makes the arbitrary displacement such that only one coordinate varies at a time,

and secondly, he operates directly on T instead of 2,mx''^,

399 a. Ex. 1. If we change the coordinates in Lagrange's equation from

6, 0, &c. to any others x, y, which are connected with 6, <p, &c. by equations which

do not contain differential coefficients with regard to the time, show by an analytical

transformation that the form of Lagrange's equations is not altered, i.e. that the

transformed equations are the same as the original ones with x, y, &c. written

for 6, (p, &c. This is of course evident by dynamics.

By differentiating L we see that

dL _ ddL _ /dL _d^dL\dd /dL _ ddL\d^
dx dtdx'~\dd dtdd'Jdx \d(f) dtd^'Jdx

If then every term on the right-hand side is zero, the term on the left must also

vanish.

See a note near the end of this volume on the proof of Lagrange's equations.

Another demonstration founded on the Calculus of Variations is given in Art. 460,

Vol. II. of this treatise. An extension of the theorem to the case in which L is

a function of 6", 6'", &c.
; 0", 0'", &c. as well as of 6, 6'

; 0, 0' ; &c. may then

be made. Let the operator

d d d d^ d
J _ ^Q

dd dtdd' df^dd"

be represented by the symbol A^. Then when the variables are changed to

X, y, &c. we have

Ex. 2. If two sides &, c and the included angle A of any triangle be taken as the

coordinates d, 0, \p, prove that the Lagrangian equations are satisfied by L= B'.

This easily follows from the last example by a change of coordinates.

Ex. 3. Show that the Lagrangian equations are independent so that no one

can be deduced from the others.

Referring to Art. 396 we see that 2T has the general form given in (4) which

we may briefly write T=T2+Tj^ + Tq where T^ is a homogeneous function of

6', 0', &c. of n dimensions. The Lagrangian equations take the form

where W^, W^, &c. are certain functions of d, 0, &c., d', 0', &c. If any one of

these equations could be deduced from the others, we could, by using the same

multipliers, deduce one of the equations

^ii^' + -4io0'+...=O, A-^2d' + A^<p'+...=0, &c. =

from the others. All these latter equations could then be satisfied by giving

9', 0', &c. values other than zero. Since these are dTJdd', dTofdcf)', &c., it follows

from Euler's theorem on homogeneous functions that T^ must be zero for the same

values of the velocities e', 0', &c. But T^, being obtained by substituting in (2) of

Art. 396 certain terms of x\ y', z' (which are not all zero), is essentially a positive

function and cannot be zero.

R. D. 21
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It follows from this reasoning that the determinant of elimination of the abov(

equations, that is the discriminant of T^ cannot be zero. We may also prove tha

the discriminant is positive ; for giving the coordinates d, 0, . . . their instantaneoui

values, the velocities 6', <p', .. are arbitrary. Thus T^ is a quadric function o

6', 0'... which is essentially positive. It follows from the theory of quadrics tha

the discriminant is positive. See also Vol. ii. note to Art. 60.

400. Indeterminate Multipliers. In order to use these

equations it is necessary to express the Lagrangian function L ir

terms of the independent coordinates of the system. If the geo-

metrical conditions are somewhat complex it may be very trouble-

some to do this. It is sometimes convenient to express L as e

function of more than the necessary number of coordinates and tc

have geometrical relations connecting them. Suppose that we have

L expressed as a function of the coordinates 0, cf>, i^, &c., 6\
<f>',

-^jr', &c.

and that there are two geometrical equations connecting these co-

ordinates, viz.

f(d, (f),
&c.) = 0, F(e,

(f),
&c.)=0 (1).

To simplify the explanation, we suppose that there are only twc

such geometrical equations, but it will be seen that the process

is quite general and will apply to any number of conditions.

By the principle of virtual work we have

d dL dL\ ^^ fd dL dL\^^

Also %^^'^%^'^^^'^-^^ (^)^

and ^^^ + ^f ^*+^^'=^^ (^)-

Since the coordinates 6, <j), &c. are connected by two geometrical

equations, two of them are dependent variables ; let these be

6,
(f).

Following the argument explained in the differential

calculus, we multiply (3) and (4) by two arbitrary quantities

X and fjL, and add the products to (2). We now choose X and /i

so that the coefficients of BO, Bcj) may be zero. The remaining

coordinates a/t, &c., being independent, the coefficients of S^/r, &c.,

must also vanish. We thus have

ddL_dL df dF_r.
dtdd' dd'^^dO'^^ de~^
d^dL_dL df dF_

\
(5).

dtdct>' d(l>'^ d^'^^dcp' i M
&c. = j

'
There are here as many equations as coordinates. Joining these

to the equations (1) we have sufficient equations to find all the

coordinates and the two multipliers X and /j,.
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These equations may be put into a simpler form. We notice

that the geometrical functions f and F do not contain Q', </>', &c.
(see also Art. 396). Let us then write

L^^L + \f+,jLF (6),

and treat Zj as if it were the Lagrangian function. If we substitute

this value of L^ in the typical equation

dt dO' de ^ ^'

where 6 stands for any one of the coordinates, and simplify the

results by remembering that/= 0, i^= 0, we obtain in turn all the

equations (5). The same process will also supply the geometrical

equations (1), if we include \ and /^ among the coordinates.

Thus, since Zj contains no \', we have dL^jdX' = ; hence, writing

X for 6, the equation (7) gives /= 0.

If the geometrical equations (1) contain t, the argument and
the result are the same, for the arbitrary variations hd, h^, must
(as in Art. 351) be consistent with the geometrical equations which
hold at the time t.

Ex. A particle under the action of no impressed forces is constrained to remain

on the curve x^ + y'^=1axt. Show that

x= at\l + coBiB +—\\ , y = atQm(B + — \.

401. Lag^range's equations for impulsive forces. Let

the system, defined by the arbitrary coordinates 6, <j>, t^c, be subjected

at the time t to impulsive forces which act at definite points. It is

required to deduce the changes produced in the motion.

Let hU \>Q the virtual moment of the impulsive forces pro-

duced by a general displacement of the system. Then from the

geometry of the system, we can express d>U in the form

BU = PSe + QScj, + (1).

The virtual moment of the momenta given to the particles is

Sm [{oc/ - Xo) Bx + (y/ - yo) By + (z,' - z^) Bz] (2),

where {x^, y^, z^'), (d?/, 3//, z-^) are the values of {x', y\ z') just

! before and just after the action of the impulsive forces.

Let us suppose that every possible motion of the point {x, y, z)

is given by
x' = a^6' + a^(\>' + ,..+a (3),

iwith similar expressions for y and z when 61, b^, &c.; Ci, c^, &;c. are

written for a^, a^, &c. Here ai, aa, &c. are known functions of

the coordinates 6, (j>, (Sec. and t. They would be df/dd, df/dcf), &c.

las given by equations (3) of Art. 396 if the system were holono-

Jmous, but this restriction is not necessary* for our present purpose.

* See a memoir by MM. Beghin and Rousseau in the Journal de Mathematiques^

Liouville, Tome ix. 1903.

m 21—2
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Since the virtual displacement must be consistent with the

geometrical conditions which hold at any instant, we have, when
only the coordinate 6 is varied (as in Art. 397),

hx = a-^hOy hy — bi80, Bz = CiBO.

. •. 2m (x'Bx + y'hy + z'hz) — Xm {a-^x' + 61/ + Ci/) W.

But since 2T = 2m {x"^ + y'^ + z"^) and the partial differential

coefficients dxjdO'^a^, dy/dd' = biy dz'/dd' = Ci by equations (3),

., ^ f ,dx' ,dy' ,dz\^^ dT ^^these are = 2m
j
^ ^, + y j^ + ^ ^,j

8^ =_ 8ft

Let Of!, (fid, &c., ^/, ^i', &c. be the values of 6',
<f>,

&c. just

before and just after the impulses, and let To, 7\ be the values of

T when these are substituted for 6', </>', &c. The virtual moment
(dT^ dT\

of the momenta is then f j^\ — -^,
J

hO. The Lagrangian equa-

tions of impulses may therefore be written

dT,_dT,^
do; ddd

'

with similar equations for <^, a/t, &c. These equations are some-
times written in the convenient forms

©:-• ©>*-•
where the brackets enclosing any quantity imply that that quantity

is to be taken between the limits mentioned. Sometimes when no
mistake can arise as to the particular limits meant, these are

omitted, and only the brackets, with perhaps some distinguishing

marks, retained.

When the quantity in brackets (as in our case) is a linear

function of the variables 6\ </>', &c. of the first order, another

meaning can be given to the expressions. The brackets may then

he said to indicate that 6^ — 6^, </)/ — (J>q,
&c. are to be written for

6\ <f>,
(Ssc. after all other operations indicated within the brackets

have been performed.
I

402. If we interpret our equations by the general principles'

of Art. 283, viz., that the momenta of the particles just after an
impulse compounded with the reversed momenta just before are

equivalent to the impulse, we see that it will be convenient to

dT
call -Tw, the generalized component of the momenta with regard

to 6, a name suggested in Thomson and Tait's Natural Philosophy.

More briefly we may say that this is the ^-component of the mo-
mentum. In the same way we may define the ^-component of the

effective forces to be t; -ta,
—

tt, , when the system is holonomous.
dt dO dd -^
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Suppose for example that a variation 80 of any coordinate
has the effect of turning the system as a whole about some
straight line through an angle 86, then dT/dd' is equal to the angular
momentum about that straight line. But, if the variation 80
move the system as a whole parallel to some straight line through
a space 80, then dTjdO' is the linear momentum parallel to that
straight line. These results also follow immediately from the general ex-

pression

dT ^ ( ,U ,5y ,8zf ,8x ,hy ,8z\

dd'

given above. Let the given straight line be the axis of z. In the first case 5x= - ydd,

8ij = x5e, 8z= 0, hence the expression reduces to 2m (- x'y + y'x), which is the angular

momentum. In the second case 8x= 0, 8y = 0, 8z = Sd, hence the expression becomes

2wj2;', which is the linear momentum.

The equations for impulsive forces were not given by Lagrange. They seem to

have been first deduced by Prof. C. Niven from the Lagrangian equation

d dT_dT _dU
dtdd' 'dd~'dd'

We may regard an impulse as the limit of a very large force acting for a very

short time. Let t^, t-^ be the times at which the force begins and ceases to act. Let

us integrate this equation between the limits 1= 1^ and t = t-^. The integral of the first

v~dT~\ti dT
term is ^j-r which is the difference between the initial and final values of —r:

.

Ldd'X dd'

The integral of the second term is zero. For dTjdd is a function of 6, <f>,
&c., d', (}>', &c.

which, though variable, remains finite during the time t^-t^. li A be its greatest

value during this time, the integral is less than A [t-^ - t^, which ultimately vanishes.

Hence the Lagrangian equation becomes -j^,
' = —- . See a paper in the

\_dd Jta dd

Mathematical Messenger for May, 1867, Vol. iv. page 82.

403. Obligatory Motions and Sudden Fixtures. A system of bodies is

moving in a given manner. Suddenly certain points are seized and constrained to

move under neio conditions. Find the subsequent motion.

To simplify matters let the system have four coordinates 6, 0, \p, x» ^^^ 1®^ *wo

points A, Bhe suddenly constrained to remain on two planes which move parallel

to themselves with given velocities a, j8, the motions of the points along the planes

being perfectly free and unrestricted. If, for example, A and B coincide and the

motion is in two dimensions, this is equivalent to saying that the point A is suddenly

made to move in a given direction with a given velocity. Art. 171.

Let p, q be the distances (or any convenient functions of the distances) of A
and B from two fixed planes parallel to the moving planes ; then p, q are known
functions of 6, 0, xp, x> and two geometrical equations of the form

P=f{e, 0, i^, x) = a + <^t, q= F{d, 0, ^, x) = b + ^t (1).

have been introduced into the system. By the introduction of these constraints

the variables p, q have become determined, and the system has then only two

degrees of freedom. We shall however still consider the system to have four

degrees of freedom and to be acted on by two impulses such that the subsequent

motion satisfies the equations (1).

The solution would be much simplified if the coordinates were originally so

chosen that p, q are two of them, the other two (say 6, 0) being any independent
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quantities. If this choice has not been made we can analytically effect the change

of coordinates from 6, <p, \}/, x to ^. 0. V^ 3 by substituting for \p, x their values

given by (1) in terms of 6, <p, p, q in all the equations connected with the problem.

We may call 9, <t>
the coordinates of the relative motion because their arbitrary

variations {p, q having the values given by (1) in terms of t) move the system

into all positions consistent with the constraints, while p, q may be called the

coordinates of the constraint because their arbitrary variations would contradict

the conditions of the constraint. This choice of coordinates is exactly the same as

that made in Art. 293.

Since the impulses act normally to the moving planes we have dU=Pdp+Qdq,
where P and Q may be taken as measures of the impulses. The Lagrangian

equations therefore become

(i)>o. (^.);-. m>- m>
The two first only are required to find the change of motion and these may be

summed up in the following rule ; the generalized components of momenta with

regard to the coordinates of the relative motion are unchanged by the impulses.

This is really the generalized form of the rule already given in Art. 288. We see

also that when the subsequent motion only is required it is unnecessary to calculate

the force function U, it is sufficient to know the form of T.

When it is important to use coordinates 6,
(f>, \p, x which are not those of the

constraints and relative motion we slightly alter the arrangement. We now write

8U=P{fQ5e+f^54>-V&c.) + Q{FQ5d + F^5<j> + &c.),

where as usual sufl&xes denote partial differential coefficients. The Lagrangian

equations then become

Joining these four to the given relations (1) we have sufficient equations to find the

subsequent values of d', 0', f, x ^^^y i^ required, the two quantities P, Q.

Ex. A point in a moving disc is suddenly made to move with given com-

ponent velocities a, /3 parallel to the axes. Find the subsequent motion. This is

the problem already solved in Art. 171.

Let p, q be the distances of O from the axes ; the equations of constraint are

p = at, q = pt. Let 6 be the angle OG makes with the axis of x, OG = r. Then

2T = (p' - r B'm 66')'^+ {q' + r coa eey + k^d"^.

Here the relative motion has only one coordinate, viz. d,

dTz±= -(p'-r sin dd') r sin d + {q' + r cos 60') rcosd + k'^d'.

dd

If (as in Art. 171) u, v are the resolved velocities of G before impact, w the

angular velocity, we see that p/= m + r sin ^w,
g-o'
= y - r cos ^w, 6^' = ^, just before

the impact, while just after Pi=a, qi=p. Substituting these values in the

expression for dTjdd' and equating the results we find the value of 6' just after

impact. This value agrees with that given for w' in Art. 171.

404. When two smooth elastic systems impinge on each other at one point we

divide the duration of the impact into the two periods of compression and restitu-

tion, Arts. 179, 185, &c. Let d^;, <I>q',
&c.; d^;, &c.; 6^', &c.; be the values of the

velocities of the coordinates just before impact begins, at the moment of greatest

compression and at the moment of separation respectively. Let U-^ be the work of

the blow of compression, then Z/j has the measure of that blow as one factor, the
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other factors being known from the geometry of the figure. It follows that U^e is

the work function of the blow of restitution. We thus have two sets of equations

with similar equations for <p, \}/, Sec. Joining the first set of equations to the

geometrical condition which expresses the fact that the normal velocities of the

points of contact are equal, Art. 183, we have sufficient equations to find ^/, &c.

and the blow of compression. Substituting this value of the blow in the second set

we have as many equations as there are coordinates to find dc^, (p^, &q.

Since both sets of equations are linear and have the same coefficients on their

left-hand sides, the values of 0^ - Oq, &c. found from the first must be proportional

to the values of 6^ - 6q, &c. found from the second, i.e.

{d,' - e,') = {l + e) {d^' - 0,'), {0/ - 0o') ={l + e) {<h'
-

0o'), &c.

Thus, when the solution is known on the supposition that the system is inelastic, the

motion when elastic can at once be deduced.

We may obtain this result without using Lagrange's equations. Suppose a system

of bodies (like the rods in Art. 176) to be hinged together and to impinge at some
point ^ on a smooth obstacle and let the motion be in two dimensions. Let R be

the blow at A measured from the beginning of the impact up to any time t less

than the duration of the impact and let its direction be unaltered throughout the

impact. Let Uq, Vq, u, v be the resolved velocities of the centre of gravity of any
one body, and u^, w, the angular velocities at the beginning of the impact and at

the time t respectively. The dynamical equations connecting the effective forces

m (u - Uq), m {v - Vq) and the couples mk'^ (w - w^) taken throughout the system with

the blow R are known to be linear ; Art. 169. Also the equations which express

the identity of the velocities of the points hinged together are linear functions

of the velocities «, v, w. Assuming that no hinge is broken by the impact these

equations also hold for the differences u-Mq, u-Vq, u-Uq. We have therefore

only linear equations to solve, hence, for each body, u-UQ= aR, v-VQ= bR, &c.

where a, b, &c. depend on the geometrical relations of the system. Hence if

Mq, Ui, u^, are the values of any component of motion at the beginning of the

impact, the moment of greatest compression and at the termination of the impact,

we have u.^ - n^= {u^ - u^) {l + e).

405. Examples of Ziagrange's equations. A body, two of whose principal

moments at the centre of gravity are equal, turns under the action of gravity about

a fixed point O, situated in the axis of unequal momefit. To determine the con-

ditions that there may be a simple equivalent pendulum.

Def. If a body be suspended from a fixed point O under the action of gravity,

and if the angular motion of the straight line joining O to the centre of gravity be

the same as that of a string of length I to the extremity of which a heavy particle

is attached, then I is called the length of the simple equivalent pendulum. This is

an extension of the definition in Art. 92.

Let OC be the axis of unequal moment, A, A, C the principal moments at the

fixed point, and let the rest of the notation be the same as in Art. 365, Ex. 1. Then

2T=A (^'2 + sin2 drp"^) + C (0' + f cos Bf,

U=Mgh cos e + constant,

where h is the distance of the centre of gravity from the fixed point, and gravity

is supposed to act in the positive direction of the axis of z. Lagrange's equations

will be found to become
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>.>tft» of eqaatioiui are iJentk*! if Mhl=A, TM» ki Hie iwne fonmila.

_. ,„_- .„.;i44 in Art. 92.

Ex. Two eqioal !!«»/ imiiiarm rods, C^ <7J?, ItmIj hingiBd «4 C, «re moirfiif in

any manner under the aetion of graTitj. Eiq^#M Uie laa^tU eaergj of ibe ijflem

in terms of tlie coordinates of C and tiie dsreetion eosisies (f, ot, «) (V A** ^) <f C^l,

C'B referred to any fixed rectangular axes ; and prore fliat if dashes aw used to

denote diflerentiataons with regard to the time,

determinate Multipliers, Art. 400.] [CML Ex. ld»$.

406. Ex. L i9Aov Aow <o deduce BvUr'$ equatiom. Art, 2^, >>vsk Lagrange**

^uatiatu. Taking as axes of referenes the prindpal axes at thie fixed point.

We cannot talEC (<^, m,, m'^ as tiie indepeadeiU ratialiles, beeanse the eoordinales of

ererjpartide of the bo^ cannot be caressed in terms of them withont liifoiodtieing

difSetential coeflieients into the geometrical eqpiatioiM. (See Art. 996.) Let as

therefore express <^, m,, <^ in terms of ^, ^, ^. By Art. 2$6, we hare

<tfi=^sin^-^nntfcos^, M,=;^cos<^+^nn^nn^, M^^^+f^eos^.

As it is onltf necessary to estaUish one of Eoler's equations, the others fbHoW'

ing by symmetry, we need only use that one of Lagraays eqnalaons whidb gtrea
' ': amplest result. Since ^ does not enter into the oxpngatioas lor «i|, «^, it is

'_. * ^ ^' d dT dT dU
at aq( a^ a^

^<^ zi^=^*^D=^-i. «^ :d=^^^+^««^=^«*-^««*^; - -^dr_dM,^
J.
dT . di0i

^ „ d40g

seen by difEerentiating the cxpiipssions fior tf|, c^. Also, hy Art. 340, If Jf be

moment of the forees about the axis of C, dUfd^^N. Substttntoig we haw
d {Ctt^ldt-{A-B) <#|<^,=:3^ whieh is a typieal form of Eulei's eqnationsi

Ex. 2. A body turns about a fixed point and its vis Thra is gives by

2T=At^-^ Btt^-^ Ct0^ - 2IVt«^- 2E«^<#t'2F<^M,.
Show that, if the axes are fixed in the body, but are not BereamrTly prindpal

jh, EaUe^B equations of motaoo may be written in the torm

ddTdT dT _
dtd40i d»$^***^ dm^^^^^

h two similar equatioosL This result is giiren by

407. Ex. 1« Dedmee ihe eqmHiom. of energif from Lm§nm§^$ eqtuOicm, We
&«simie that the geometdcal equations do not contain the time eqlicxtty (Art. 350),

thai r is a homogeneous fanetitm oi tr^ ^T, ot ihe

oft(Art,m). Itatolal

d,T dT dT

eie the Aeuindudes the CDnespoDding terms for ^,f,Ae, Substitiile lor ^4l#
Liom Lagraage^s equations (Art. 909), we find

d,T .^(^T\^dr^_dV^^{ll^0± /dT\
dt di\dtr)^ dfT' d§

d (^dT\ dU^ ^
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where the &c. includes similar terms for 0, \f/,
&c. But

dd' ' dd dt
'

dt dt dt

Ex. 2. Find the equation corresponding to that of vis viva when T and U are

any functions of the variables d, <p, &c. which satisfy Lagrange's equations, T being

also a function of 6', <p', &c. but not restricted to be of the second degree and not

necessarily homogeneous.

Writing T=r„+ r„_i+... + ro where T^ is a homogeneous function of m
dimensions in 6', <p', &e. we find by a similar process

{n-l)T^ + {n-2)T^_,+ ... + T^-T,= U+C,

where we notice that the term Tj has disappeared ; see Vol. ii. Art. 44.

If T and V are explicit functions of the time t also, we must add to the left-hand

fdT
side j-j-dt where L= T+U, the differential coefficient being partial and the

integral total.

Ex. 3. Solve Lagrange^s equations when

T= lf^{d)e'^ + \f^{4>)4>"' + &c., U=F^{e) + F.,{^) + &c.

The Lagrangian equation to find d is

Integrate this by inspection If^id) e'^=Fi{e)+a (1).

Similarly 1/3 (0) <t>'^=F^ (0) + i3
and so on.

These results may also he obtained by a change of variables. Put

The Lagrangian equations are

#x'=%i^\ ^y'=^, &c.;
dt dx dt^ dy

^
j dx J dd dx

.: if,{e)e'-^= F^{d) + a;

and the other integrals follow by symmetry.

Another solution. The following solution is instructive. It is evident that,

with these forms of T and U, the several Lagrangian equations are really inde-

pendent, the 6 equation contains only 6, the equation only and so on. Each
equation taken alone represents a possible motion in which one coordinate only

varies. For each there will be a separate equation of energy, and these are the first

integrals just found.

Ex. 4. Iiiouville's Integrals. Let a dynamical system be such that

T=^M{A^r^ + A2<f>'^ + &c.} (1),

U+C={F^{d}+F^{<p) + &c.}IM .(2),
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,
where A^ is a function of d only, A^ of <p only and so on, while M may be a

function of all the coordinates. Prove that the first integrals of the Lagrangian
<j(luations are

iM-'A^d'^= F,{e) + a, iM^A,r'==F^{<P)+^, &c (3),

^vhere a + /3+&c. =0. The variables may now be separated by division, we there-

fore know the differential equations of the paths, and thence the value of dtjdd in

terms of 6.

To obtain these integrals we change the coordinates by writing

A^d'^ = x'^, A^^<f>'^=i/% &c.

"We then have by the principle of vis viva

^M{x''- + y"' + &c.)=U+C (4).

The X Lagrange's equation is

d ,_^ ,. , d3I
, ,„ ,^ . . dU

Substitute from (4), and we find

I i,^ , d ,-r ,, rdM ,^^ _,. ^^dU~] dx

I ^^di<«^>=U(^+'^)+*srJd« <«>•

Now ~ {M {TJ+ C)] =—~~ and ^ is a function of x only, hence by integrating (5)

we obtain the first of the integrals (3). The final integrals are given in Liouville^s

Journal, 1846, Vols, xi., xii., 1849, Vol. xiv., p. 291.

It will be proved in Art. 431 that this process is equivalent to a change of the

independent variable from t to t, where dt = MdT.

Ex. 5. A dynamical system is such that

T=M {iA^^e'^ + A^^e'<f>' + iA^^(t>'^, U+C= BjM,

where M is a function of 6 and 0, but A^^, A-^^, A.^2 ^^^ ^ ^^^ functions of
(f>

only.

Prove that a first integral of Lagrange's equations is

M{A,^d' + A,2cp'}=a,

where a is an arbitrary constant.

To prove this we combine the 6 Lagrangian equation with the equation of

energy. It may also be deduced by inspection, if the independent variable is

• changed as explained in Art. 431.

Ex. 6. The elliptic coordinates of a particle are \, /x, v, and the particle is

constrained to move on a fixed ellipsoid X. The force function U being given by

, and the kinetic energy by Art. 365, Ex. 4, deduce from Liouville's integrals that

(
' (»2 _ ^2\2 U^ _ ^2) „'2 /„2 _ ^2\2 /^2 _ ^2) ^'2

' where h, k are the semi-axes of the focal conies. By division the discovery of the

path is reduced to integration.

This solution applies in the following cases or any combinations of them.

(1) When the force tends from the centre and varies as the distance, we have

2U=r^= \'^ + fx^ + p'^-h^-k\ .: U{iJ?-v^=F^{ii) + F^{v).

(2) When the force acts perpendicularly to the plane of yz and varies inversely as

the cube of the distance from that plane, we have \ixv= ±hkx, hence U=AlfjPv^

and {/jfi - j/2) U has the required form. (3) When the force is central and such that

U=AI{p^-m?)i where p is the distance of the particle from either of the fixed
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points x=±hkl\, y = 0, z = and m'^\^= {X^ -h'^){\'^-k'^). We notice that m =
when \=h or k, that is when the ellipsoid becomes a plane.

Solutions of this and other problems of the same kind are given in the author's

treatise on Dynamics of a Particle under the heading Motion on an ellipsoid,

Chap. VII.

408. Examples on, impulses. Ex.1. A rhomhus, formed offour jointed rods,

falling from rest tcith a diagonal vertical impinges with velocity V on a fixed horizon-

tal inelastic plane at the corner A. Find the suhsequent initial motion. This is the

problem solved in Art. 176 ; for the sake of comparison we shall here give two

solutions both founded on the Lagrangian equations.

Let the mass of each rod be unity. Let x be the altitude of the centre of

gravity of the rhombus, 6 the inclination of any rod to the vertical. If we take

X and 6 as the coordinates of the system, we have T= 2 {a;'2+ (it^ + a^) 6'^].

If P be the impulse at ^, we have

W=Pb{x-2acoQd) = P5x + 2aP&Yn.eZd.

The Lagrangian equations are by Art. 401

4 {x^ - Xq') = P, 4 (/c2 + a2) (0/ - do') = 2aP sin d.

The initial and final values of x' are Xq = -V, x^= - 2aw sin 6 ; those of d' are

e' = 0, dy = w. Hence putting k'^= la^ and eliminatingP we have w= s -
t , o • 2^3

'

" ^ ci J. + o sm^ u

which is the same result as in Art. 176.

Remark on the choice of coordinates. The objection to the solution given above

is that we have to use all the Lagrangian equations though the impulse is not

required. If loe wish to avoid introducing the impulse into the equations, tee must

use such coordinates that the variation of one alone while the other is constant does

not alter the point of application of the hloxo. When the coordinates chosen are

X and e a variation of either alone alters the position of A. But if we take as

coordinates 6 and the ordinate y of the point A which strikes the plane, a varia-

tion of 6 alone does not alter the position of ^, so that the virtual moment of

any force acting at A does not enter into the equation thus formed. In the same

way if the magnitude of the blow at A were wanted we should use an equation

formed by the variation of some coordinate, such as y, which does alter the

position in space of A. The coordinates y and d have been called in Art. 403 the

coordinates of the constraint and of the relative motion respectively. Taking as

coordinates y and 6, we find

r=2 {?/'2 - ^ay'e' sin d + {k'^ + a^ + 4.a^ sin^ 6) d'^].

The single equation now required is
(
;t77 ) =0, so that it is unnecessary to

calculate U. The limits of y' are y^'^ -V, y^'= 0; those of 6' are ^0' — ^' ^1=^-
The value of w follows without difficulty.

If the ground is elastic we follow the rule given in Art. 404. Since ^0'= ^ ^^®

angular velocity of each rod after the rebound is found by multiplying the value of

w given above when the ground is inelastic by (1 + e).

Ex. 2. Six equal uniform rods form a regular hexagon loosely jointed at the

angular points ; a blow is given perpendicularly to one of them at its middle point,

show that the opposite rod begins to move with one-tenth of the velocity of the rod

struck. [Math. Tripos, 1882.

We take as one coordinate the distance of the point of application of the blow

from the axis of x (supposed to be parallel to the rod struck) and as the other

coordinate the angle 6 which either of the adjacent rods makes with the axis of x.
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This choice is made because a change of d alone does not alter the point of

application of the blow. Since cos^= ^ we have

1T= 6y'2 + llay'd' + 4 (Sa^ + r-) 6'^-,

where 2a is the length of any rod. The single Lagrangian equation required is

that dTjdd' is unaltered and therefore is equal to zero. Since the velocities of the

two rods to be compared are y' and y' + 2ad' the result follows at once.

Ex. 3. A beam, placed on a smooth horizontal plane, has one extremity fixed;

and a ball A of mass m is placed in contact with it at a given distance a from the

fixed extremity. Determine at what distance b another ball B of mass /x must

impinge directly on the beam that the greatest possible velocity may be communi-

cated to the ball A by the impact. The beam and balls are inelastic.

[Math. Tripos, 1844.

Let 6' be the angular velocity of the beam, y' the velocity of the ball B, the

relative velocity of approach of the ball and beam is then z'= y'-hd' and

dU= -Pdz. If we take d and z as coordinates the one Lagrangian fact required

is that dTjdd' is unaltered by the impact. We have

2T= {ma^ + Mk^) d"" + ix{z' + hd')\

since the limits are 6^=0, ^/= w, Zq'=V, 2i'
= 0, we find

{ma' +M A;2 + fxb'') o} = fxbV, .: fxb^= ma^ + Mk^

when w is a maximum.

409. Sir W. R. Hamilton has put the general equations of

motion into another form, which is sometimes more convenient for

investigating the general properties of a dynamical system. This

transformation may be made to depend on the lemma given in the

following article.

In what follows we confine ourselves to the elementary properties of re-

ciprocation. The subject will be resumed and treated more fully in the second

volume. Sir W. Hamilton's demonstration of his equations requires that T should

be a homogeneous quadratic function of the velocities, and this is generally true in

dynamics. The extension to the case in which the geometrical equations contain

the time explicitly is due to Donkin, Fhil. Trans. 1854.

410. The Reciprocal Function*. Let T^ he a function

* We may deduce from this lemma the method of solving partial differential

equations by reciprocation, sometimes called Legendre's method and sometimes

De Morgan's method. Let the partial differential equation be {x, y, z-^,p, q) — Q,

where p and q are the partial differential coefficients of z-^ with regard to x and y.

If we write z^:= - z-^+px -\- qy , we have by the lemma x^dz^jdp, y= dzjdq. Hence

this rule ; substitute for x, y, z-^ from the auxiliary equations

dz^ dz,) dz» dz^

dp ^ dq^ ^ ^ ^ dp ^ dq

and treat p, q as the independent variables. Thus we have a new differential

equation which may be more easily solved than the former. Let the solution

be z^=f{p, q), then, by the auxiliary equations, x, y and z^ have all been found in

terms of two auxiliary quantities p and q, and further these quantities have a

geometrical meaning. This method may be extended to any number of variables

and orders. Also as in Art. 418 we may if we please modify the equation for some

only of these variables.

Ex. If the equation be xp^ + yq^= z^, show that z.2 =^^F
( ^(i_ \ )'

whence

X, y, z can be found in terms of the auxiliary quantities by differentiation.
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of any quantities ivhich it luill he presently found convenient to

call e\ ^', &c. Let dT^ _ dT^ _

then 6', (j)', &c. may he found in terms of u, v, (&c., from these equa-

tions. Let T^=-T^ + ud' + v<i>' + &c.,

and let T^ he expressed in terms of u, v, <&c., the quantities 6\ <ft\ &c.

heinq eliminated. Then will dT^ ^, dTo ,, .

It may he that T^ is a function of some other quantities, which
it will presently he found convenient to designate hy the unaccented

letters 6, <^, &c. Then T^ will also he a function of these, and we

shall have dT,^_dT\ dT,__dJ\
dd dd ' d<\>~ defy'

'^^'

To prove this, let as take the total differential of T^, we have

dT,= -^dd-h(-^ + v}jde'+e'du + 8zc.

By the conditions of the lemma the quantity in brackets

vanishes. Now if T^ be expressed as a function of 6, u,
<f>,

v, &c,

only, and not 6', </>', &c., we have

•''>*'i-dT, = ^de-{-^du + Szc.

Comparing these two expressions for dl\ we have

dT^ dTi , dT^ ^,

Thus we have a reciprocal relation between the functions T^

and T^. We find T^ from T^ by eliminating 0', cf)', &c. by the help

of certain equations, we now see that we could deduce Ti from Tz

by eliminating u, v, &c. by the help of similar equations. We
shall therefore call T^ the reciprocal function of Ti with regard to

the accented letters 6', (/>', &c.

411. It should be noticed that, if T^ be a homogeneous quadratic

function of the accented letters 6',
<f>,

&c., then u6' -\-v4) + &>c.= '2.Ti,

and therefore T2 = T^, but is differently expressed. Thus Tj is a

function of 6', ^\ &c. and not of u, v, &c., while T^ is a function

of u, v, &c. and not of 6',
cf)', &c. We notice that in this case T^

is a homogeneous quadratic function of u, v, &c.

412. If Ti be the semi-vis viva of a dynamical system, this

process is really equivalent to changing from the use of component

velocities to the use of the corresponding component momenta.

Either may be used to determine the motion of the system, some-

times the one set being the more convenient and sometimes the

other.
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413. Examples on the Reciprocal Function. Ex. 1. The position in space

of a body of mass M is given by x, y, z, the rectangular coordinates of its centre of

gravity, and d,
<f>, \f/

the angular coordinates of its principal axes at the centre of

gravity, as used in Chap. v. Art. 256. If two of the principal moments of inertia

are equal, and if ^, 77, ^, u, v, w, be the components of momentum corresponding

respectively to x, y, z, 6, (p, \p, the vis viva 2Ti is given in Art. 365, Ex. 1. Show
that the reciprocal function is

2ro
|2 + ^2+^2 y;.2 ^2 (10

+ -7; +
r C0S^)2

M -AC' Asin'd

As a useful case we notice that the reciprocal function of

where the terms containing the products are absent, is

T -^ — 1 v^

2 A-^i 2 A22

We observe that if Tj is a one-signed positive function, T^ must also be a one-

signed positive function.

If the vis viva 2T^ be given by the general homogeneous expressionEx. 2.

2T^= A^^d'^ + 2A^^d'(p' +

show that the reciprocal function of 1\ may be written in the form

To=-
2A

u

-^12

V

A12

Ann

where A is the discriminant of Tj. Thus the coefficients of u^, v^, 2uv, dc. in T^

are the minors after division by 2A of A^^, An^, ^12 » ^c. See also Chap. i. Art. 28,

Ex. 3.

Ex. 3. If ^, T], &c. be partial differential coefficients of a function P of x, y, &c.

with regard to those variables respectively, prove that x, y, &c. are also partial

differential coefficients of a function Q of ^, 77, &c. with regard to these variables

respectively. If P be homogeneous and of n dimensions prove also that Q={n-1) P,

For instance P may be the potential function in Attractions, or the velocity potential

in Hydrodynamics.

Ex. 4. Regarding Tj as a function of d', <p', &c., let A be the Hessian of T^,

i.e. the Jacobian of its first differential coefficients with regard to 6', 0', &c. Then

will
d'^To d'^T^—-^ , -—^ , &c. be equal to the minors of the corresponding constituents of
du^ dudv

the determinant A, each minor having its proper sign and being divided by A.

To prove this, we take the total differential of the two sets of equations,

u=dTJdd', &c., d'= dT^jdu, &c. From the first set we find de\ d<t>', &c. in terms

of du, dv, &c. Substituting in the second set the theorem follows at once.

413 a. We notice that for any given position of the system, the coordinates, if

independent, may have any given velocities; so that 0, 0, &c. being given, 6', <p' , &c.

are arbitrary. Whatever values are given to these the kinetic energy Tj is neces-

sarily a positive one-signed function.

In the same way, when Tj is a homogeneous function of 6', <p', &c., Art. 411,

Tg is a quadratic function of the momenta u, v, &g. Since in this case T^= T-^

though differently expressed it follows that T^ also is a one-signed positive quadratic

function.
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If we write

2X2= ^11 u^ + 2-B12MV + . .

.

it follows that B^^, B^^, &c. are all positive. Also B^^<B^^ . B^, for if not we could

make T^ equal to a negative quantity with a real value of vju, all the other variables

being made zero. Other inequalities follow from the known conditions that a

quadratic function is a positive one-signed function.

414. The Hamiltonian Transformation. Let us put
L = T-{-U, so that L is the difference between the kinetic and the

potential energies. Then, as explained in Art. 399, L is called

the Lagrangian function and the Lagrangian equations may be
written in the typical form

d dL _ dL
dtW~de'

there being corresponding equations for all the coordinates.

Let H be the reciprocal function of L, then H is called the

Hamiltonian function. The equations of transformation are

_dL _dT^
'^~dd'~de"

with similar equations for all the coordinates. We have by the
JZT

reciprocal property 6' = —^ ; and by Lagrange's equation we have

^*' = -^ = — -j^ , with similar equations for all the coordinates.

Thus the single typical Lagrangian equation written down above
is transformed into the two Hamiltonian equations

dH dH
^ ~ du' """W

There are of course similar equations for all the coordinates.

When the geometrical equations do not contain the time'

explicitly, T is a homogeneous quadratic function of (d\
<f>',

&c.),

and therefore u6^ + V(j>^ + &c. = 2T. Hence
H= - L + ud' + v(l>' + &c. = T -U.

Thus H is the sum of the kinetic and potential energies, and
is therefore the whole energy of the system.

415. To express the Lagrangian equations of impulses in the

Hamiltonian form.

Referring to Art. 401, we see that the Lagrangian equations of

motion may be written in the typical form

dO'l,
^•

Let H be the reciprocal function of T, and let us replace u, v, &c.

by P, Q, &c. Then these equations take the typical form

^ , ^ , dH
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Thus the changes in the velocities of the generalized coordi-

nates are immediately determined by simple differentiation when
the reciprocal function of T has been written down.

416. Examples on tlie Hamiltonian Equations. Ex. 1. To deduce the

equation of Vis Viva from the Hamiltonian equations.

Since H is a function of {d, ^, &c.), {u, v, &c.) we have, if accents denote total

differential coeflficients with regard to the time,

,,, dH dH ,, dH
, ^ dH

dt dd du dt

Thus the total differential coefficient of H with regard to t is always equal to the

•partial differential coefficient. If the geometrical equations do not contain the

time explicitly, this latter vanishes and we have H=h, where 7i is a constant.

Ex. 2. To deduce Euler's equations of motion from the Hamiltonian equations.

Taking the same notation as in the corresponding proposition for Lagrange's

equations. Art. 406, we have

dT , . ^ ^ , dT ^
dd'

i ^ ^ ^'
d(f>'

^

dT
w =

-fr,
= {

- -^^i cos + Bo}2 sin (p) sin 6 + Cwg cos 6.

Before we can use the Hamiltonian equations we must by Art. 411 express T in

terms of {u, v, w). To do this we solve these equations to find Wj, Wg, Wg in terms

otu.v.w. We find Aio^=usmd) + (vco8 6-tv)—.—?,

Bcoo= u cos <t>-{v cos d-w) ~^—\

.

^ ^ ^ ' sin ^

AJso by Art. 414 H=l {A coja+ Bui^^ + Gcj^^) - U.

As we only require one of Euler's equations, let us use ^— = -v', -^ — <b'

.

dtp dv

The former of these gives Aw. -=-^ +Ba}^-—^ _ = _ c ^,^
^ d(p ^d(p d<p dt

'

1 • 1 • J.T J ^^1 r, ^^\ dU ^dwo
which IS the same as Aco. —r^ - JBwo-^ - -y- = - G-^

,

^ A ^ B d(i> dt

and this leads at once to the third Euler's equation in Art. 252. The latter of the

two Hamiltonian equations leads to one of the geometrical equations of Art. 256.

Thus the six Hamiltonian equations are equivalent to all the three dynamical and

the three geometrical Eulerian equations.

Ex. 3. A sphere rolls down a rough inclined plane as described in Art. 144.

We have T==^^maW^ and U=mgad sin a. Is it correct to equate IZ^ to the difference

of these functions ? Verify the answer by obtaining the equations of motion given

|in Art. 144. See Art. 411.

Ex. 4. A system being referred to coordinates d, <p, &c., and the corresponding

momenta u, v, &c., in the Hamiltonian manner, it is desired to change the co-

ordinates to X, y, (fee, where 6, <p, &c. are given functions of x, y, &c. Show that

if ^, 7j, &c. be the corresponding momenta, then

^ = W^a. + t;0jf+..., ifi= uey + V(t)y+ ..., &c. = &c.,

where the suffixes as usual denote partial differentiations. Show also by a purely

analytical transformation that the Hamiltonian equations with d, u, &c. change into

the corresponding ones with x, ^, &c.

R. D. 22
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Ex. 5. The Lagrangian function is a function of d, 0, &c. and 6', 0', &c. In

what precedes we have taken the reciprocal function with regard to 6', <p\ &c., but

we might also have taken the reciprocal function with regard to 6, 0, &c. The
following example will illustrate this.

Let Tj, or L, be the Lagrangian function, and in order to keep the notation as

nearly the same as possible, let U= -j~ , V= -— , &c. Then if T, be the reciprocal
da a<p

function of 1\ , the transformation corresponding to Sir W. Hamilton's leads to the

typical equations 6=^, U=---^.

To verify this, it is sufficient to notice that T^= - T-^+Ud+V<p+ ...

.

dT dT dT
Then by the lemma in Art. 410 we have -j^= - -r^, and-^= ^, whence the results

du du dU
follow at once by Lagrange's equations.

416 a. The analogy to reciprocation in Geometry. The Hamiltonian

transformation of Lagrange's equations bears a remarkable analogy to the trans-

formation by reciprocation in Geometry. Thus suppose the system to have three

coordinates 6, 0, i^, and let the semi-vis viva T^ be a homogeneous quadratic function

of the velocities d', 0', \p'. We may regard 6', 0', \j/' as the Cartesian coordinates of

a representative point P, the position and path of which will exhibit to the eye the

instantaneous motion of the system. These coordinates of P may be found from

Lagrange's equations. In the same way we may regard the Hamiltonian variables

M, t;, w B.& the Cartesian coordinates of another point Q whose position and path

will also exhibit the instantaneous motion of the system.

Taking any instantaneous values of 6', <j>', \//' the point P will lie somewhere on

the quadric Tj^= U yfhere Uis the instantaneous value of the force function. Then

since u= ^-/, v= -r^., w= -—j, we see that Q will also lie on a quadric, which is
dd dtp d^

the polar reciprocal of the quadric Tj with regard to a sphere whose centre is at

the origin, and whose radius is equal to JiU.

Let this reciprocal quadric be T^= U. Then, since these quadrics possess recipro-

cal properties, we see that d = -~, = -^, ^ = -y-^. I

Ex. 1. If the coefficients of the two quadrics T^ and T^ be functions of any
dT dT

quantity 6, show geometrically that -—^ =—^. Thence deduce the remaining
du da

r xu TT -1. • X- •
r
d^

,
dll

,
dH ^

three of the Hamiltonian equations, viz. -«=——, -v =^— , -w =-^--, where
dO d(p dy

," p. 62.

Ex. 2. Show that the form of Tg ^^s used in Geometry is the same as that given

in Art. 413, Ex. 2.

417. Reciprocal Theorems*. Let us suppose that two
sets or arrangements of impulses are applied to the same system

* The reciprocal theorem is primarily due to Eayleigh who has given many
illustrations of it. See Phil. Mag. 1874 and the Theory of Sound. There is also

a memoir by Helmholtz in Crelle's Journal, 1886. Many examples are given by

Prof. Lamb in the Proc. London Math. Soc. 1888. The one at the end of Art. 417

is taken from the article Dynamics in the Encyc. Brit.
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of bodies at different times, the system being in each case

previously placed in a given state of motion. Let

be respectively the work function due to each set as explained in

Art. 401. Let ^Z, </>/, &c. d^, 4>^, &c. be the velocities generated

by each set. If the vis viva be represented by the general ex-

pression for 2T given in Art. 413, Ex. 2, we have

p,=A,,e; + A,,cf>^+..., Q, = A,,e^+ko (i),

while P2, Q25 &c. are represented by similar expressions with 6^, &c.

written for 0^, &c. It immediately follows by substitution from

(1) that

PA'+Qii>.' + ... = PA'+Q2<l>i + (2),

each being equal to a symmetrical expression. Using the language
of the principle of virtual velocities, it follows that the sums of

the virtual moments of either set of impulses for the actual dis-

placement produced by the other set are equal.

Let each of these systems consist of a single blow and let

A, B he the points of application. To trace their effects let two
of the coordinates, say 6, (j), be the ordinates of A, B measured in

the direction of the blows. Then if Pj, Q^ are the blows the

work will respectively be PiBd, Q^Bcj). The reciprocal equation (2)

then becomes

Pi^/=Q.0i' (3),

all the other terms being zero. The blow at A affects all the co-

ordinates and causes velocities 6^, 0/, &c. That at B also affects

all the coordinates, but this proposition shows that the velocity of
B due to the blow at A and that at A due to the blow at B are in

the same ratio as the blows to which they are respectively due. The
equation (3) also follows very easily from Art. 41.5.

As an example of this theorem consider the case of a straight chain of rods

hinged each to the next. A blow at any point A will produce a certain velocity at

any point B ; the theorem asserts that an equal blow at B will produce an equal

velocity at A. An impulsive couple acting on any rod will produce a certain

angular velocity in a rod B, an equal couple acting on the rod B will produce an
equal angular velocity in the rod A. If a blow F acting at a point A produce

an angular velocity w in a rod B, then a couple Fa on the rod B will produce a

linear velocity ua at the point A.

418. The Modified Lagrangian Function. Sir W. Hamilton
transforms all the accented letters 6\ (f>\

&c. into the corresponding

letters u, v, &c. But we may also apply the Lemma to change
some only of the Lagrangian coordinates into the corresponding

Hamiltonian coordinates, leaving the others unchanged. We
may thus use a mixture of the two kinds of equations. With
one and the same function we can use Lagrange's equations for
those coordinates for which they are best adapted, and the

22—2
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Hamiltonian equations with the remaining coordinates, if we
think their forms preferable.

The substance of this theory, as given in Arts. 418 to 425, is taken from the

author's essay on " Stability of Motion," 1876.

419. To explain this more clearly let us consider a system
depending on four coordinates, 6, 4*,^,i]- Let Li be the Lagrangian
function. Let us now suppose that we wish to use Lagrange's

equations for the .coordinates ^, rj and the Hamiltonian equations

for the coordinates 0, (p. To do this we use the two formulae of

transformation -T7i = u, -rn =v, and we put
dd d(p ^

Zg = — Xj + ud' + V(j)\

We have as in Art. 414 the two sets of Hamiltonian equations,

~d^' ""'"dd'

We must now include f ', rj' among the unaccented letters spoken

of in the Lemma of Art. 410, so that we have

c^Zg _ dLi dL^ _ dLi

d^' ~~W dl ~~~~d^'

with two similar equations for r]. Thus the two Lagrangian
equations for f, 77 are still true if we replace L^ by L^ ; so that

we have the two sets of Lagrangian equations,

d dL^ _ dL^ d dL^ _ dL^

dt d^' d^
'

dt di] drj

420. The function L^ might be called the modified function^

but it is more convenient to give this name to the function with

its sign changed. The definition may be repeated thus :

—

If the Lagrangian function X be a function of 6, 6\ <j), 0', &C.,.

then the function modified for (say) the two coordinates 0,
(f>

will be L = L — u6' — vcj)',

where u = -jw, , v = -.-.,
, and we suppose 6\ <p! eliminated from the

function L'. Thus Z is a function of 6, </>, 6', <^' and all the other

letters, L' is a function of 6, cf), u, v and all the other letters.

These two functions L, L' possess the property (by Art. 410)
that their partial differential coefficients are the same with respect

to all letters except d\ <^\ u, v. As regards these four we have

dL dL , dL' ^, dL' ,,

We may form the dynamical equations, for the coordinates with



ART. 421.] THE MODIFIED LAGRANGIAN FUNCTION. 341

regard to which the function has been modified by the Hamiltonian

rule, as if L^ — — L' were the Hamiltonian function, and for the

remaining coordinates by the Lagrangian rule, as if either L^ or

L' were the Lagrangian function.

The function L^ may be also called the reciprocal function of

the Lagrangian function L^ with regard to the coordinates 0, </>, &c.,

because it is obtained from L^ just as T^ is obtained from T^ in

Art. 410, except that we operate only on such of the coordinates

as we please. It is however convenient to distinguish the two

operations by different words. We shall use the word Reciproca-

tion when we change all the coordinates, and Modification when
we change only some.

421. To find a general expression for the modified Lagrangian function after

the necessary eliminations have been performed.

Let the vis viva IT be given by the homogeneous quadratic expression

T=ir,,^'2+ r,^^V + ... + ir^^r+ r,^^r + ...

,

so that the Lagrangian function is L = T+U, where iiJ is a function of the co-

ordinates 6, 0, ^, &c. We intend to modify L with regard to d, <p, &c., leaving

I, 7), &c. to be operated on by Lagrange's rule. We therefore have according to

Art. 420 to eliminate 6', <p', &c. by help of the equations

W' + ^</>**^'+ rrf.^^'-^rf>y+-
</.r W'

&c. = &c.

.(1).

For the sake of brevity let us call the right-hand members of these equations

ti-X, v-Y, &c. Since T is a homogeneous function, we have

T= ^T^^^'^ + T^^^'7j'+...+ie'{u + X) + ^<p'{v+Y)+&G (2).

But by definition the modified function L'= - Lg is

L'=L- ud' - V(j> - ...

= hT^^^"'+T^/v'+... + U-id'{u-X)-^<p'{v-Y)-&c (3).

Solving equations (1) we find 6', </>', &g. in terms of ^', t)', &c. by the help of

determinants. Substituting their values in the expression (3), we find

hT^^^-+T^/v' + &c. + U+^ 0,

u-X,

v-Y,

u-X, V-Y,

T.J.,

where A is the discriminant of the terms in T which contain only d', 0', &c. It

may also be derived from the determinant just written down by omitting the first

row and the first column.

We may expand this determinant, and write the modified function in the form

1 0, V

u, T,

V, T,

2A
0,

X,

Y,

0<^ ' -^(jxf)^

X
To.

T,
e4>' ^<f>it,>
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dT dT
where u, v, &c. as usual stand for -—-. , -^—, , &c., and X, Y, &c. are given by

da d<j>

x= r,^r + T,^v' +•:, Y= T^^r

+

T^n-n' +; &c. = &c.,

so that X, Y, &c. may be obtained from u, v, &c. by omitting the terms which

contain d', <p', &c., i.e. the coordinates to which we intend to apply the Hamiltonian

equations.

It should be noticed that the first of the three determinants in the expression

for L' contains only the momenta u, v, &c. and the coordinates. The second does

not contain u, v, &c. but is a quadratic function of ^' rj', &g. The third contains

terms of the first degree in ^', rj', &c. multiplied by the momenta u, v, &c.

422. Case of absent coordinates. In many cases of

small oscillations about a state of steady motion, and in some
other problems, the Lagrangian function L does not contain

some of the coordinates as 6, 0, &;c., though it is a function

of their differential coefficients 6\ <f)\ &c. ; at the same time it

may contain the other coordinates f, rj, &c., as well as their dif-

ferential coefficients ^', rj', &c. When this occurs, the Lagrangian

equations for 6, </>, &c. become -^ -^^ = 0, &;c. Integrating, we have

dL dL

where u, v, &c. are absolute constants whose values are known
from the initial conditions. By the help of these equations we
may find 6\ </>', &c. in terms of ^', rj', &c., so that the problem is

really reduced to that of finding f, 77, &c.

The names kinosthenic and speed coordinates have both been
suggested by Prof J. J. Thomson for coordinates which enter into

the Lagrangian function only through their differential coefficients

(Phil. Trans. 1885, and Applications of Dynamics to Physics and
Chemistry, 1888).

We may now simplify the process of finding these remaining
coordinates ^, rj, &c. by modifying the Lagrangian function so as

to eliminate the variables 6', <^', Szc, and introducing in their place

the constant quantities u, v, &c. We write

and eliminate 6\ (j)\ <&;c. by help of the integrals just found. The
equations to find f, rj, <&:c. may he deduced by treating ± L' as

the Lagrangian function.
,

423. When the system starts from rest the modified function

takes a simple form. Suppose the Lagrangian function L to be
a homogeneous quadratic function of 0',

<f>\
&c. Then, referring to

the first integrals found above, and remembering that the initial

values of 6\ </>', &c. are all zero, we have

u = 0, v = 0, &c. = 0.
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TJius the modified function L is equal to the original function, but

is differently expressed. The function Z is a function of 0\ i^', &c.;

the function L' is the value of L after we have eliminated the

differential coefficients Q\ ^', &dc. by help of the first integrals.

The result of the elimination can be deduced from Art. 421. The first and

third determinants are here zero. We have therefore

0, X, Y, .,

^'=^«T+^s/'''+*"- + ^+^

We may deduce this expression from the Lagrangian function Zi by a simple

rule, viz., omit all the terms ivhich contain the differential coefficients 6\ 0', d'c. to be

eliminated, and add the determinantal term loritten doion above.

424, Example of the Solar System. As an example let us consider the case

of three particles whose masses are m^, m^, m^ mutually attracting each other

according to the Newtonian law and moving in any manner in one plane. Referring

these to any rectangular axes, their vis viva and force-function will be functions of

the six Cartesian coordinates and their differential coefficients. But we may move
the origin and turn the axes round the origin without altering the vis viva or the

force-function. It follows that each of these functions is independent of three

of the coordinates, though it may depend on their differential coefficients with

regard to the time. We may therefore modify the Lagrangian function and make
it depend only on the three other coordinates.

The vis viva of the system is equal to the vis viva of the whole mass collected

at the centre of gravity together with the vis viva relative to the centre of gravity.

The former is easily written down and is in our case a constant ; let us turn our

attention to the latter.

Let G be the centre of gravity, draw Ga, (r/3, Gy to represent in direction and
magnitude the velocities of the three particles, i.e. let a, ^, y trace out their

hodographs. Then the sides of the triangle a^y represent the relative velocities of

the particles, and the vis viva of the system is represented by m-^Ga^-\-m^G^'^-\-m^Gy^.

Since the momentum of the system relative to its centre of gravity resolved in any
direction is zero, it follows that G is the centre of gravity of three particles

m^, m^, m.^ placed at a, ^, y. By a well-known property of the centre of gravity we

have m-^m^{apf+ =/a{wJi {Gaf +...},

where jx is the sum of the masses. It immediately follows that the

vis viva of any system relative to its centre of gravity=—L, ^ •'^

,

where v-^2 is the relative velocity of the particles m^, Wg. This formula for the

relative vis viva is evidently true for any number of particles. It was obtained

by Sir E. Ball by a different method in the Astronomical Notices for 1877.

Let a, b, c, A, B, C be, as usual, the sides and angles of the triangle formed by
joining the particles. Let 6 be the angle made by the side c with any straight line

fixed in space. Let accents as usual denote differential coefficients with regard to

the time. Then we have

2mi?n2V= 7Mi7W2 {c'^ + c^d'^}+m^m^ {b'^ + b^ {$' + A^} + m^m^ {a'^+ a^ {d'-B')-}.

Thus, if 2r be the vis viva relative to the centre of gravity, we have

2T=Pd'^ + 2Qd' + R,
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where P, Q, R are functions only of the triangle, and not of 6. We have

fMP= m-^m2C^ +

fxR:

How we shall express these must depend on the coordinates we wish to use. Thus

we may choose any three parts of the triangle, except the three angles, as co-

ordinates.

Ex. Supposing it to be convenient to choose the distances b and c of two of the

particles from the third, and the angle A subtended by those two at that third

particle, as the coordinates of the triangle, show that P, Q, R may be expressed in

terms solely of 6, c, A and their differential coefficients by the help of the following

results a^= b'^+ c^-2bcGosA,

^ {be sin A) = b^A' +aW + 2bc' sin A,

a'-'^ + a^B'^ = b'-^ + c'^-2b'c' co9A+bW^ + 2bA'c' ainA.

These admit of easy geometrical demonstrations.

425. We may also modify the Lagrangian function with regard to d. To do

this we put u= dTldd' = Pd' + Q. We notice that, since the force-function U is not

a function of 6, u is by Art. 422 an absolute constant. We now form the modified

function L'=L-ud = ^ h (/.

This function may now be used as if it were the Lagrangian function to find any

changes in the triangle joining the three particles.

We may also notice that the angular velocity in space, viz. 6', of the side of the

triangle joining ?%, Wg is given by the equation Pd'+Q= u, where w is a constant.

Ex. 1. Show that P is equal to the moment of inertia of the three particles

about the centre of gravity.

Ex. 2. Show that fi^ {PR - Q'^) may be written in the symmetrical form

{m^m2C^ + in^m^b^ + m.^m^a^} {m^m2c'^ + m^mjb''^ + m^m^a'^]

+ m^m2m^ {wi {bcA')^ + m2 {caBy + ms{abC'f}.

Ex. 3. Show that the quantity u is equal to the angular momentum of the

system about the centre of gravity. See Arts. 397 and 402.

Ex. 4. Show that we may take for fiQ either of the forms m-^^ {m2C^B' - vi.^b^C),

or m2{m^a^C' -vi-i^c^A'), the effect of the change being to add to the Lagrangian

function L' a quantity equal to B' or C respectively. See Art. 399, Ex. 2.

426. Non-Conservative Forces. To explain how Lagrange's equations are to

he used when some of the forces are non-conservative.

Lagrange's equations in the form given in Art. 399 can be used only when the

forces which act on the system have a force-function. If however P5d be the

virtual work of the impressed forces obtained by varying 6 only, Q50 the vir-

tual work obtained by varying only, and so on, it is clear from Art. 399 that

Lagrange's equations may be written in the typical form — -7^ - -—-z=P.
at ad do

427. It is often convenient to separate the forces which act on the system

into two sets. Firstly those which are conservative. The parts of P, Q, &c. due to

these forces may be found by differentiating the force-function with regard to 6, <f>,

&c. Secondly those which are non-conservative, such as friction, some kinds of
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resistances, &c. The parts of P, Q, &g. due to these must be found by the usual

methods given in statics for writing down virtual work.

Though the non-conservative forces do not admit of a force-function, yet

sometimes their virtual works may be represented by a differential coefficient of

another kind. Thus suppose some of the forces acting on a particle of a body to

be such that their resolved parts parallel to three rectangular axes fixed in space are

proportional to the velocities of the particle in those directions. The virtual work

of these forces is S {fi-^x'bx + fi^y'dy + /JL^^'dz)

,

where fx.^, ix^, fi^ are three constants which are negative if the forces are resistances.

Eor example, if the particles are moving in a medium whose resistance is equal to

the velocity multiplied by a constant k, then A^i » /^ > A^a are each equal to - k. Put

Since [x, y, z) are functions of 6, 0, &c. given by the geometry of the system we

dx dx
have, as in Art. 396, x'= -zr- + t-^ 6'

-i- . .

.

at ad

with similar expressions for the other coordinates. Substituting we have F
expressed as a function of 6, 0, &c., d\ ^', &c. We also notice that, as in Art. 397,

-r^ = :t^- Differentiating F partially we have
uo da

^.^(..^^^\ ^,. \_v/.. ..«^^

dd'
-^. = ^ifH-'% + &c.y^(^f.,x'^^ + &c.y

dF ^^ dF ^ „ ^ f , fdx ^„ dx ^ \ )

In this case, therefore, if U be the force-function of the conservative forces, F the

function just defined, 05^, 4»50, &c. the virtual works of the remaining forces,

Lagrange's equations may be written

d dT _dT _dU _dF
dtdd'~ dd ~dd ~ dd'^ '

with similar equations for 0, xj/, &c.

We may notice that, if the geometrical equations do not contain the time

explicitly, the function i^ is a quadratic homogeneous function of 6', 0', &c.

If the forces whose effects are included in F be resistances, then fi^, fx^, fx.^, &c.

are all negative. In this case F is essentially a positive function of the velocities,

and in this respect it resembles the function T representing half the vis viva.

If we treat the equations written down above exactly as Lagrange's equations

are treated in Art. 407 to obtain the principle of vis viva we find

^(T-U) = e'e + &c.-^,d'-&G.,
dt^ ' dd

but in this case F also is a homogeneous function of 6', &c. Hence we find

^^{T-U) = e'e + &c.-2F.

We therefore conclude that, if the geometrical equations do not contain the time

explicitly, and if there be no forces present but those which may be included in the

potential function U and in the function F, then F represents half the rate at

which energy is leaving the system, i.e. is dissipated.

The use of this function was suggested by Lord Eayleigh in the Proceedings of

the London Mathematical Society, June, 1873. The function F has been called by
him the Dissipation function.
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428. Ex. 1. If any two particles of a dynamical system act and react on each

other with a force whose resolved parts in three fixed directions at right angles are

proportional to the relative velocities of the particles in those directions, show that

these may be included in the dissipation function F. If F^. , Vy, V^ be the com-

ponents of the velocities, fiiV^, ix^Vy, fi^V^ the components of the force of repulsion,

the part of F due to these is -|S (fJ'-iV'x^ + f^z^y^ + f^s^z^)' This example is taken

from the paper just referred to.

Ex, 2. A solid body moves in a medium which acts on every element of the

surface with resisting forces partly frictional and partly normal to the surface.

Each of these when referred to a unit of area is equal to the velocity resolved in its

own direction multiplied by the same constant k. Show that these resistances may
be included in a dissipation function F, where

F='^{ff{u^ + v^ + 10^) +Ao}^^ + 5aj/ + Cw/ - 2D(ayb}, - 2^w,w^ - 2Foj^(Oy}

,

.

where a is the area, A, B, &c. the moments and products of inertia of the surface-

of the body, and {u, v, w) the resolved velocities of the centre of gravity of cr.

429. Systems not holonomous. To explain how Lagrange's

equations can be used in some cases when the geometrical equations

contain differential coefficients with regard to the time.

It has been pointed out in Art. 396 that the independent
variables 0, </>, &c. used in Lagrange's equations must be so chosen

that all the coordinates of the bodies in the system can be ex-

pressed in terms of them without introducing 6',
(f>,

&c. But
when we have to discuss a motion like that of a body rolling on
a perfectly rough surface, the condition that the relative velocity

of the points in contact is zero may sometimes be expressed by an
equation which, like that given in Art. 137, necessarily involves

differential coefficients of the coordinates. In some cases the

equation expressing this condition is integrable. For example

:

when a sphere rolls on a rough plane, as in Art. 144, the condition

is x — aO' = 0, which by integration becomes x — a6 = b, where h

is some constant. In such cases we may use the condition as one
of the geometrical relations of the motion, thus reducing by one
the number of independent variables.

But when the conditions cannot easily be cleared of differential

coefficients, it is often convenient to introduce the reactions and
frictions into the equations among the non -conservative forces in

the manner explained in Art. 426. Each reaction has an accom-
panying equation of condition, and thus we always have sufficient

equations to eliminate the reactions and determine the coordinates

of the system.

The elimination of the reactions may generally be most easily

effected by recurring to the general equation of virtual work and
giving only such displacements to the system as make the virtual

work of these forces disappear. Suppose, to fix our ideas, that

a body is rolling on a perfectly rough surface. Let 6, </>, &c. be
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the six coordinates of the body, then by Art. 137 there will be
three equations of the form

A = ^i^' + 5af +...=0 (1),

the other two being derived from this by writing 2 and 3 for the

suffix. These three equations express the fact that the resolved

velocities in three directions of the point of contact are zero. The
equation of virtual work may be written (Art. 398)

[dtde'-der^^'''^W^^^^' ('>'

where U is the force-function of the impressed forces. Since the

virtual works of the reactions at the point of contact have been
omitted, this equation is not true for all variations of 6, (j>, &c.,

but only for such as make the body roll on the rough surface.

But the geometrical equations L^, Xo, L^ express the fact that

the body rolls in some manner, hence B6, B<j), &c. are connected
by three equations of the form

A,Be + B,Bcl> + ...= (3).

If we use the method of indeterminate multipliers (see Art.

400), the equations of virtual work are transformed in the usual

manner into

d dT dT_dU dL, dL, dL, ,,.

dtdO'~dd-dd'^^W^-^d¥'^''W ^*^'

with similar equations for the other coordinates </>, yfr, &c. These
joined to the three equations Xj, L^, L^ are sufficient to determine
the coordinates of the body and X, //., v.

This process will be very much simplified, if we prepare the
geometrical equations Xi, L^, L^ by elimination, so that one dif-

ferential coefficient, as 6', is absent from all but the first equation,

another, as
<f>\

absent from all but the second, and so on. When
this has been done, the equation for becomes

±dT_dT_dU dX,

dtdO' dd~ dO^ dO' ^
^•

Thus \ is found at once. The values of //, and v may be found
from the corresponding equations for ^, -^/r. We may then sub-

stitute their values in the remaining equations.

It is here supposed that some of the equations of condition

represented by equation (1) do not admit of exact integration.

The systems here considered are therefore not necessarily holono-

mous, see also Art. 396.

In Art. 232 of the second volume of this treatise this method
is applied to find the oscillations of a heavy sphere set rotating
about a vertical axis and placed on the summit of a fixed rough
surface.
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429 a. The method of indeterminate multipliers is really an
introduction of the unknown reactions into Lagrange's equations.

Thus let Ri, jRg) -^3 he the resolved parts of the reaction at the

point of contact in the directions of the three straight lines

used in forming the equations L^, L^, L^. Then L^, L^, L^ are

proportional to the resolved relative velocities of the points of

contact. Let these velocities be k^L^, k^^L^, k-^L^. Then if 6 only

be varied the virtual velocity of R^ is k^A^W, which may be

written k^ -y^ hO. Similarly the virtual velocities of Ro and R^
do

are k^ ,^ W and k^ -twf 80. Hence, by Art. 426, Lagrange's

equations are of the form

d_dT_dT _dU dL^ dL, dL,

dt dO' dd ~dO^ "'^^ dO'
"^ "'^^

dO'
"^ "' ' dd'

'

Comparing this with the equations obtained by the method of

indeterminate multipliers we see that \, /jl, v are proportional to

the resolved parts of the reactions. The advantage of using the

method of indeterminate multipliers is that the reactions are

introduced with the least amount of algebraic calculation, and in

the manner which is most convenient for the solution of the problem.

430. Appell's Equations. There is another method of forming the general

'equations of motion besides that of Lagrange which has at least the advantage of

not being restricted to holonomic systems*. To simplify the discussion let us

however first suppose that the geometrical equations do not contain any differential

* The first writer who extended Lagrange's equations to systems in which the

equations of condition are not expressible in an integrable form was Ferrers,

Quarterly Journal of Mathematics, No. 45, Vol. xii. 1872. He replaces Lagrange's

d equation by another of the form

d dT ^ ( ,dQ^\ dU

I

dtde' -r-ryr ^^ j ^^ >

where 6, 0, &c. are the generalized coordinates, x^. is a Cartesian coordinate con-

nected with a mass m^ subject to the condition

which may be integrable or not integrable.

The method explained in Art. 429 of applying Lagrange's equations to systems

not holonomous by using indeterminate multipliers was first given in the third

edition of this treatise, 1877. It requires no new function.

The equations of Appell are briefly explained in the Comptes Rendus, tome cxxix.

1899, and more fully developed in the Journal de Mathemdtiques (formerly known
as Liouville's Journal), tome vi. 1900. The theory given in Arts. 430 b, &c. is chiefly

founded on the latter account.

There are also some memoirs on The Equations of Mechanics by P. Jourdain in

the Quarterly Journal of Mathematics, 1904, 1905. It appears that he had inde-

pendently arrived at the equations given by Appell.

Appell in Art. 462 of his Traite de Mecanique has given a list of foreign writings

on this subject, the earliest being dated 1888.
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coefficients with regard to the time. We have seen in Arts. 398, 399 that the

equations of motion are included in the form

,dx „dy „dz\ dU
^''\''"re*y"f0'-'"de) = M W'

where the dxjdd, &c. are the partial differential coefficients of x^ &c. when any one

coordinate as d is alone varied.

We then have by (3) of Art. 396

It follows from the latter equation that the partial differential coefficients

dx" _df _dx
W'~dd~dd'

we may therefore write (1) in the form

^ / „dx" „dy" „dz"\ dU

If then we introduce a new function

the equation (2) becomes
dS__dU dS _dU
dd"~ dd' dip"~dct>'

^"^ ^^^'

since d stands for any one of the coordinates. Here the differential coefficients with

regard to 6",
<f>", &c. on the left-hand side and d, (p, &c. on the right-hand side are

partial. The function S has been called the energy of the accelerations.

When we have constructed a method of expressing the function S in terms of

the coordinates d, 0, &c. including their first and second differential coefficients

with regard to t, the equations (3) give the differential equations of motion of the

system. The right-hand sides are deduced from the force-function U exactly as in

Lagrange's equations.

430 a. In calculating the function S we may obviously omit all terms which do

not contain the second differential coefficients 6", 0", &c. for all such terms disappear in

the partial differential coefficients which occur in equations (3). We also notice

that the function S in general contains quadratic and first powers of 6", cji", &c.

430 h. Let us noio apply similar arguments to systems ivhich are not holonomous.

Let us suppose that the displacements have been made to depend on K-\-p coordi-

nates having p relations between them, so that the variations of k of these are

arbitrary. Let these be q-^, q.-^, ... q^. Let x, y, z be the coordinates of any point

of the system referred to axes fixed in space, then every possible motion of that

point, consistent with the geometrical conditions, are given by

dx= a-^dq^-\-a<^dq^-\- ... •\-a^dq^-radt\

dy = bj^dq^ + b^dq2+ ... +b^dq^ + bdt\ W'
dz= Cidq.j^ + c^dq2+ ... +c^dq^+cdt)

Let q^, . . . q^,p be the p other variables which have been introduced into our

'equations to assist in expressing the geometrical conditions. Let these be related

to the former variables by equations of the form

^?K+i-"i^3'i + a2^9'2+ ••• +oi^dq^ + adt\

\
(2).
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Here the coefficients «! ... c^ and aj ... \^ as well as a, b, c, a .., \ may be functions

of all the variables q^ ... q^^^ and t. The right-hand sides of these equations are

not necessarily exact differentials, but may express geometrical conditions in the

same way that the equations (1) of Art. 429 expressed the conditions that the body

there mentioned was rolling on a surface.

430 c. To form the equations of motion we use the principle of virtual work as

in Arts. 398, 399. This equation is

'Zm{x"dx + y"dy + z"8z) = 'E{Xdx+Y8y + Z8z) (3).

Since the virtual displacements 5a;, 5y, 5z are to be consistent with the geometrical

equations which hold at the time t, we use the equations (1) and (2) without their

last terms, hence dx= a^dq^+ ... +a^8q^ (4),

with similar expressions for dy, 5z. Since dq^... dq^ are arbitrary the equation (3)

decomposes into the k following equations

2??i {x"a-^ + y"bj^ + z"Ci) = dUldqi
j=
} (5).

Xm{x"a^ + y"b^ + z"c^) = dUldq^^

These correspond to equations (1) of Art. 430.

By dividing the equations (1) of Art. 430 b by dt and differentiating the quotient

with regard to t, we obtain

^" = %(?l" + «2Q'2"+ ••• +^k?k" + *° (^)'

with similar expressions for y" and z" obtained by writing 6 and c for a. The
terms which do not contain q^" ... q^" are included in the &c. It is evident that

a^= dx"ldqi", b-^= dy"ldqf^' and so on. Hence the equations (5) become

^'»(^"^^^"l7^^"l?')=''^"'«'
<"•

with similar equations for the other coordinates. If we now construct the function

S=^^m{:x"^^ + y"-^ + z"^) (8),

the equations of motion are

dS^ _dU _dS__dU dS _dU
dqi'~dqj^' dq^'~dq^^ '' dq^" ~ dq^ ^

''

To form the equations of motion of a system whether holonomous or not it is

sufficient to express the function *S' so that it contains no other second differential

coefficients than those of the coordinates q^.-.q whose variations are regarded as

arbitrary. If in constructing the function S any second differential coefficients of

the remaining coordinates made their appearance they should be eliminated by

using the conditions (2). After division by dt, these conditions take the linear

form ?',+!= cti2i'+ ...+%q,'-^a, i

with similar expressions for q'^_^_^ , &c. By differentiation we obtain q"^^-^ . • Q^^+p

in terms of q^" .

.

. q^", and these should be substituted in the function S.

430 d. If the forces do not admit of a force-function U, we proceed as explained

in Art. 426. Let P^dq^ be the virtual work of the forces produced by varying q^ only,

P2dq<2. that obtained by varying g-g only and so on. We then replace dUjdq^,

dUldq^, &c. by P^, P^, &c.

430 e. Another proof. We may also deduce Appell's equations (as he has also

done) from Gauss' principle of least constraint by translating the formula of

Art. 394 a into generalized coordinates. This principle applies to systems not

holonomous because it has not been assumed in the proof that x, y, z are integral

functions of the coordinates q-^^ 32 ••• S'* •
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By Gauss' principle the accelerations assumed by the system are such as to

make 2jRj3= Sm {{x" - X)'^ + {y" - Y)^+{z" - Z')^} =minimum subject to the geometri-

cal conditions of the problem. By differentiating (1) of Art. 430 b we have

x"= a^q^' + a^qc^" + ... +%q^",

where all terms are omitted which do not contain the second differential coefficients

^i"> (I2" ••• Q " (A-rt. 430a). There are similar expressions for y" and z"

.

Again if P^, Pg, &c. are the generalized equivalents of Z, F, Z we have

•Lm {Xbx + Yhy + Zhz) = P^ dq^ + P^5q^+...

as in Arts. 426 and 430 d. Hence by (4) of Art. 430 c,

Xa^+Yb^ + Zc^= P^,

where n has any value from n=l to n= K. It follows that

Sm {Xx" + Yy" + Zz") = P^ q{' + P^ q^' + cfec.

Putting 2/S'=Sw (a;"-+7/"2 + 2"2) we have to make

E,3= S'-(Pig'/' + P2g2" + &C.)+lSm(Z2+ 72 + ^2)^

a minimum with regard to q-['
,
q^' ... q^'. Since these second differential coefficients

do not appear in the last term of Pjg, we find by differentiation

dSldq"= P^, dSjdq^= P^, &c.,

and these are the equations to be proved.

430/. To find the function S for any given system of bodies we follow the

analogy of Lagrange's function T. Since S* is a quadratic function of x'\ y", z'\

we first deduce from the general theorem of parallel axes (Art. 14) that the value of

8 for a system of Cartesian axes is equal to that for a parallel system of axes with

the centre of gravity for origin plus the value of 8 for the whole mass collected at

the centre of gravity with reference to the first system.

We also notice that since x"'^ + y"''^^-z"'^ is the resultant acceleration of the

particle m the value of »S' must be the same for the same bodies, however the

coordinates may be transformed.

430 g. To investigate the form of the function S for a body free to turn about a

fixed point lohen referred to the principal axes at 0. These axes are either fixed

in the body or (if two or more of the principal moments of inertia at are equal)

may move in an arbitrary manner, yet so that they remain principal axes.

The space-velocities of any point [x, y, z) are by Art. 238

u^w.^z-w^y, v = o}.^x- (jo-^z, w = u^y - ca^x.

The x component of acceleration is

X=duldt-vd.^ + wd2

= - a;(a>2^ + Wg^) +?/ {wg (wj - d^) + Wj^g " ^3'} +2 {^3 (wj - 6^) + (^id-^ + u^'},

by using the formulae of Art. 251.

••• Z2=-.^2[a,3'2-2a;3'{a,2(a,i-^i) + a;i^2}] + ^2|-^^/2 + 2a;2'{w3(wi-^i)+a;i^3}],

where only terms which contain Wj', Wg', co-/ have been retained (Art. 430 a). Terms
depending on the products xy, yz, zx have also been rejected as they will presently

disappear when the summation S is effected.

The expressions for Y^ and Z^ can be written down by symmetry. We now
form 2,Sf=Sm(Z2+ 72 + ^2) and substitute

2Xmx'^=B+C-A, 2Sm?/2=C+ 4-P, 2:Emz^=A+B- C,

.-. 2S= ^wi'2 + Bu}^'^ + Ca;3'2

-2iOj'{{B-C) «2W3 + 4 ('^2^3-<*'3^2)}

- 2W2' {{C -1) W3W1+ P (Wg^i - Wj^g)
}

- 2W3' {(^ - P) Wj W2+ C (Wi^2 - ««'2^l)}-
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If the axes are not principal axes, we must add to these three sets of terms con-

taining D, E, F respectively as factors. The first set is

2D [ - W2' W3' - W/ (W2^ - W32) + Wg' { W2 (Wi - ^1) + Wi 62} - W3' {W3 (wi - d^) + Wi ^3}] ,

those with E and F follow by symmetry.

430 h. To deduce Euler^s equations. Let the moving axes be fixed in the body,

then ^1 = wi , d^= W2, ^3= ci'3 . We then have

2S=Ao}^^-+ Boj^'^+Cw^"^ -2{B-C) wawgoj/ -2{C-A) u^^w^w^ -2{A-B) u^u^u)^
;

since the body has three degrees of freedom, we have to choose three variables

Q'lj 9'2» Ss which are to be arbitrary and whose variations should express every

possible small displacement of the body. These conditions are satisfied if we put

dq-^= (a^dt, dq^= w^dt, dq^=u}^dt.

We then have

2S= Aq^"^ + Bq2"''+Cq,"'^-2{B-C)q2'qs'qi"-2{G-A)qs'q^'q^"-2{A-B)q{q,'q,".

The equation dSjdq-^'= dUldq^ then gives Aq-^' -{B-G)q^q^ = dTJldq^. This

becomes Euler's first equation (Art. 252) when we write qi=w^, &g. and

dUldq^ =L (Art. 340).

430 i. An elliptic disc rolls in a vertical plane on a rough ground. To form the

equation of motion.

Let ^, 7) be the coordinates of the centre C, ^ being measured along the ground

and 77 vertically upwards. Let 6 be the angle the major axis makes with the vertical.

Let P be the point of contact and let CN=7] be the perpendicular from G, let also

PN=u. Since the point P of the body is at rest we have ^

If the mass be unity, we have

2^= r'2 + V" + Ce"^ U= - gtt.

Hence by eliminating ^", tj"

2S={G + 'n^ + u^)d"'' +2L^^ + u^\e'^d'\

where only terms which contain d" are retained. The equation dSldd" = dUldd gives

Since the boundary is an ellipse, both 77 and u are known functions of 6.
*

We may easily verify this result by using the ordinary equations obtained by

resolving and taking moments.

430^'. To determine the motion of a circular disc or hoop rolling on a rough

ground but not necessarily in a vertical plane.

In the figure the disc GP is drawn with its plane perpendicular to the paper,

GM is a perpendicular from the centre G on the

. ground and P is the point of contact. Let GP, GB,

\
'i

GC be the moving axes of reference; since GG is

\ [ ^
y^C fixed in the body its motion whether deduced from

\r>^ the angular velocities (w^, W2, Wg) of the body or the

^'"Q^. angular velocities (^j, Q^, 6^) of the axes must be the

\^ n same, hence ^i = a>i, d^^w^.

\ Let u, V, w be the components of the velocity of G
J- ' N ^— along the axes of reference, then since P is instanta-

^ neously at rest,

M=0, v + aw3= 0, w-a(>}2= 0.
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The component accelerations of G are by Art. 251

X= dujdt -vd^ + wd2= awg ^3 + acog^,

Y= dvjdt -w6i + ud^= - awg' - ao)^ w^

,

Z= dw/dt - ud^ + vd-^ = awg' - aoj^ Wj

.

If Sq be the part of S which depends on the motion of G we have

2^0= 2m {Z2 + 72 + Z2) = a^ {u,^'^ + u,.p + 2wi (Wg Wg' - Wg Wg') }

,

where all terms which do not contain w^', w./ or w^ are omitted.

Let S^ be that part of S which depends on the motion relative to G. By writing

A — B, ^i = a>j, ^2= '^2 i'^ -^^^- 430 p we deduce

2;Sfi=^ (Wi'2 + Wg'^) + CW3'2+ 2 (^6'3 - CW3) (WiW/ - W2W1').

The complete value of S is found by adding together S(, and S^ (Art. 430/). We
now introduce the variables qi, q^, q^ where as before dq^ = u}^dt, dq2= o}2dt, dq^=oi).^dt

(Art. 430 h) and deduce

2S= Aq,"-' +{A + a2) q^'"' + (C + rt^) q^"2

+ 2 {^^3 - Cq,') {q^q^' - q^q^') + 2a2^i' {q^q^' - q^'q^').

We notice that since 6^ is an angular velocity (not an acceleration) we are not

obliged to eliminate it before differentiating the function S (Art. 480 a).

We have yet to consider the differential coefficients dUjdq^, &c. When the

body receives the angular displacements dq^^, dq^, dq^ the centre G moves and the

body turns round P as an instantaneous centre. Hence dUjdq^, &c. are the

moments of the forces about axes parallel to GA, GB, GC but having their origin

at P (Art. 340). These moments are

dUldq-^ = 0, dUIdq2= - ga COB 0, dUldq^= Q,

where 6 is the angle the plane of the disc makes with the horizontal ground.

The equations of motion of the disc are therefore

Aq^' - {Ad^- Gq^) q^ =0,
{A + a?) q^' + {Ad^- Cq^) q^ - o?q{q^= - ga cos 6,

{G + a^)qs" +a^^'q^'= 0.

The problem of the motion of a disc or hoop rolling on a rough ground is also

discussed by another method in Art. 244 of Vol. 11. of this treatise. The variables

there used are the two angles 6, xp of Euler and Wg. If we write in the equations (5)

of this article g-/= Wi =-;/'' sin ^, q2=u}o=6', qs=<^3, d^= \f/'coB6 we arrive at

equations equivalent to those in Vol. 11, The interpretation of these equations will

be found in that volume.

431. Change of the independent variable. A system of n degrees of freedom

IS defined by the Lagrangian function

L= T+U+G, T= lA^^d'- + A^2^'<f>' + &c (1).

Let us now change the independent variable i to r and put P=dTldt. For the

ake of distinctness let suffixes applied to the coordinates 6, 0, &c. mean differentia-

ions with regard to r just as accents denote differentiations with regard to t ; then

= Pdi, 0'= P0i, &c. We now write

T,=iA,,e,'+A,2e,<f>,+ (2),

that Tj differs from T only in having r written for t. The equation of vis viva

therefore T=P^T^=U+G (3).

e shall now prove that we may take as a Lagrangian function either of the forms

L,=PT,+ ^-±^=2{iU+C)T,}i (4),

le second being derived from the first by using (3). Here P is an arbitrary function

)f the coordinates 6, <p, &c. and their velocities di, (j>^, &c.

R. D. 23
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The new Lagrangian equations will then be

d dL^ dL^ d dL^ dLi

dT~ddl~~dd' dTd^^~~d^
&c (5).

TJ+G\dP
P2 ) dd

To prove this we form the partial differential coefficients dLJddi, dLj^jdd,

since d'= Pd^, <p'= P(f>j^, &c.,

4{§^'^h{-^-'-P)§ <')•

Substituting in the Lagrangian equation

±dT_dT dU
dt dd' ~ de'^ dd '

and using the equation (3) because d/dt is a total differential coefficient we arrive at

the new typical equation -j- — = -~
,

dT du^ do

where dr has been written for Pdt.

The first of the two forms for Lj given by the equation (4) should be used when

we desire to simplify the original form of the Lagrangian function L by a proper

choice of the arbitrary factor P. Thus in the example solved in Art. 431a, we

transfer a factor 31 from the expression for T to that for U.

The second form may be used when we wish that the new independent variable r

should have any special vahie, while the form of P is a matter of indifference. For

example, in Art. 431 b we replace t by one of the coordinates 6 and thus eliminate

the time from the Lagrangian equations. !

431 a. As an example consider Liouville's integral, Art. 407, Ex. 4. We have

T=^M{A^d'^ + A^((>'^ + &c.}, U+C={F^{d) + F^{<(>) + &c.}IM,

where A^ is a function of 6 only, A^oi (p only, &g., while M may be a function of all

the coordinates. Taking P=l/ilf we form the Lagrangian function

L, = h{A,ei^ + A2cf>^^ + &G.} + {F^{e)+F,{<f>) + &G.}.

The Lagrangian 6 equation then becomes

d^:^'^'^ 2~dd^'--d~d ' 2d^^^^^^'-^dd~^''

Hence by an easy integration we have

^A^d^^= F,{e) + a, .-. iA^M^d'^= F^{e) + a.

This is the integral already arrived at in Art. 407.

431 6. When the paths of the particles are alone required, we may eliminate

the time from the Lagrangian equations by using a new function instead of the

Lagrangian function.

In this method we choose some one coordinate 6 to be the independent variable

and regard the others <p, \f/,
&c. as unknown functions of 6 whose forms are to be

found by the altered equations of motion. Let

T=JiA^^d'^ + Ai2e'<p' + iA^<f>'^ + A^<p'rly' + &c (1),
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where accents denote differential coefficients with regard to the time. Let also

r'= ^^ll + A201 + i^220l'+ ^230l'/'l + &C (2),

where the suffixes of 0, x//, &c. here denote differentiations with regard to the new
independent variable 6.

"
d(f>' d0i ' d<f>~ d(t>

^^'

where the differential coefficients of T and T' are partial.

The equation of energy gives

T'd'^=U+C; :. d'={^^\ (4).

^, T . ^. d dT dT dU ^The Lagrangian equation — :t-; - 3— = ^— becomes
at aq> acp a<p

/ U+G\^d UU+C\idT'\
\ T' ) dd \\ T' ) dcp, (

dT' U+G dU
d(t> T'

where all the differential coefficients are partial except the djdd. Since XJ is not a

function of 0i , this becomes

I4^'''^^*^''*==^**^+^'^'J* <'»•

If then we use Q={{U+G) T']^ as if it were the Lagrangian function and regard
• 6 as the independent variable, we have the equations

d^dQ__dQ d^dQ__dQ .

dd d<t>^ d(t>' dd dxjy^~ dxl^
' ^''

from which the paths viay he found.

This result also follows from the theorem of Art. 431 by putting dr=dd, and we
have here reproduced in another form so much of that article as is required for our

present purpose. Since dT= Pdt we have P= ddldt, and 6-^= 1,
<f)-^
= d(t>ldd and so on.

It immediately follows from (2) and (3) of Art. 431 that T^=T', P=fE±^\ .

The Lagrangian function given by (4) of that article becomes

L^ = 2{{U+G)T'}^= 2Q.

431 c. We notice that however the expressions for the vis viva and the work
function maybe altered, yet so long as the product {U+G)T' remains unchanged

the general equations of the paths are determined by the same relations between the

coordinates 6, (f>,
&c. The times of describing the paths may however be altered.

431 d. Since in the Lagrangian equations, the letters 6, <{>, &c. represent

prbitrary functions of the quantities or coordinates which determine the position of

the system, it is evident that we have here taken as the independent variable any
arbitrary function of the coordinates.

431 e. If some one coordinate, say 0, is absent from the product {U+G)T'
(though 2" contains the differential coefficient of 0) we have dQld<p= 0. It follows

that one integral of the equations of motion is

d0i d0i

where a is an arbitrary constant. If G is an arbitrary the product Q cannot be

independent of
<f>

unless T' and U are separately independent of 0. But when G is

given by the initial conditions this limitation is not necessary.

If we substitute for dT'ldtp^ and 6' the values given by (3) and (4) of Art. 431 &,

Pthis integral becomes dTjd^'= 2a which is the same as that obtained in Art. 407, Ex. 5»

23—2
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431/. To make a comparison of methods, let us use the function Q to investi-

gate the paths when T and U have the forms given in Art. 431 a. We have

T'=\M{A^ + A^<t>^^+ &Q.}, U+C={F^{d)+F^{<p) + &c.}IM,

where d is the independent variable and 0j = dcpldd. We deduce

Q^=i{Aj + A^cf>,^ + &G.)G, G= Fi{d) + F^{4>)+&G.

r^^ ^- d dQ dQ

.

The equation -jt: tt = ^rr becomes
do d<pi a<p

d G<t>-^A^ _ G<f>j^ dA^ Aj^ + A2(f>i^ + &Q. dF^

dd Q ~ 2Q d0"
"^

2Q d^"

'

. G<t>i d (G<t>^ \_1 /G<f>,ydA.dF^
Q dd\ Q '^y-2\ Q J W^ d^^^'

.1 d fG<f>,y lfG<(>,ydA,_dF.
•'2'^^dd\ Q J

'^2\~Q~) d^-d0^i'

Substitute for G and Q and we find

A, + A^ 4>i'+:. ^ ^201^ ^ ^sj^i" ^Slc

the third and other fractions follow by symmetry. Since ^j^ = d<pldd, \(/-^= d\}/lddy

&c., these results agree with those obtained by eliminating t in Art. 431 a.

431 g. In some cases the Lagrangian function L takes the form

L= (lA^^e'^+ &c.) + {A^d' + A^<t>' + &c.) + A,+ U+C,

where ^n, &c., A^, &c., and Aq are functions of the coordinates but not of t. The
equation of vis viva is then (by Art. 407, Ex. 2),

^A^^d'^ + &c.-Af^=U+C.

Proceeding exactly as before we change dt into dr by taking as a new Lagrangian

A A-TJ A-G
function L^=P {\A^.^ 6^^ + &c. ) + {^i ^i + Ac.) + "-"p^

,

where as before d^ = ddjdr and P= drfdl.

The equation of vis viva gives

431 h. The elimination of the time from the Lagrangian equations is given by
Painleve in his Lemons sur V integration des equations differentielles de la MecaniquSy

1895, page 237. By an application of the principle of least action he obtains the

function here called Q and writes the equations in the typical form -v— -^ =— .

dq^dq,: dq^

From these he deduces (page 239) that the Lagrangian equations may be written in

the two forms
ddT_dT_dU d dT^ ^^' -o
dt dq' dq dq ' dr dq' dq ~ '

where T'= T{U+C) and dT= {U+C)dt. This special result follows from that

given here by putting P=U+C. Its importance lies in the fact that by this change

the motion is made to depend on that of a system moving under no forces.

The elimination of the time from Lagrange's equations is also given by Darboux
in his Legons sur la theorie generals des surfaces, Art. 571, 1889. He expresses the

result in the same form as Painlev6.



EXAMPLES. 357

EXAMPLES

1. Two weights of masses m and 2m respectively are connected by a string

which passes over a smooth pulley of mass m. This pulley is suspended by a

string passing over a smooth fixed pulley, and carrying a mass 4m at the other end.

Prove that the mass Am moves with an acceleration which is one twenty-third part

of gravity.

2. A uniform rod of mass 3m and length 2Z has its middle point fixed, and a

mass m attached at one extremity. The rod when in a horizontal position is set

rotating about a vertical axis through its centre, with an angular velocity equal to

tj{2ngll). Show that the heavy end of the rod will fall till the inclination of the

rod to the vertical is cos"^ {isJn'^+1 - n), and will then rise again.

3. A rod of length 2Z is constrained to move on the surface of a hyperboloid of

revolution of one sheet with its axis of symmetry vertical, so that the rod always

lies along a generator. If the rod start from rest, show that

r'2 - 2ar'd' sin a + a^ d'^ + sin^ (i{r"-^\ P) d"^ + 1g cos a{r- r^) = 0,

{a2 + sin2 ^ (^2+ 1 p)| 0' _ ar' sin a= 0,

where r is the distance measured along a generator from the centre of gravity to

tlie principal circular section, 6 is the excentric angle of the point in which the

generator meets this circular section, a is the radius of the circular section, and a is

the inclination of the rod to the vertical.

4. A ring of mass m and radius b rolls inside a perfectly rough ring of mass M
and radius a, which is moveable about its centre in a vertical plane. If 6, (p be the

angles turned through by the rings from their position of equilibrium, prove that

ad + h(t) = {a-h)\p, Mad"= mh<f)\ {2M+m) {a- b)\p"= - {M+m) g sin \//,

5. If I, m, n be the direction-cosines with respect to fixed axes of a rod moving
in any manner in space, and if V be the potential energy, prove that

T\ dt^'^ dl)~m\ dt-i
'^ dm)~n \ df' ^ dn )

'

where I is the moment of inertia of the rod about an axis through its centre

perpendicular to its length. See Art. 400.

6. A particle of mass m moves in one plane, and its motion is referred to areal

coordinates x, y, z. If 2r be the vis viva, and V the potential energy expressed as

a homogeneous function of the areal coordinates, prove that

2T= -m{a?y'z' + Wz'x' + c^x'y'),

fjY dV dV
m{bh" +cYl-^^ = m{c^x"+a^z")-2-- = m{aY' + h^x")-2^,

cLx (Xy cLz

7. A heavy rod, whose length is 2a, slips down with its extremities in contact

with a smooth horizontal floor and a smooth vertical wall; the rod not being

initially in a plane perpendicular to the wall. If d be the inclination of the rod to

the vertical, and xj/ the inclination of the horizontal projection of the rod to the

intersection of the planes, prove that

4
-J-

(cos d) = cot sec ^ -r-g (sin 6 cos rp)—^
,

(it Ut CI

d^ d^
4 —2 (sin d sin ;/')=: tan ^-r-^ (sin d cos \p).

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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8. A particle moves under the action of two centres of repulsive force F and G
tending from two fixed points, at a distance 2c from each other. Show that the

Lagrangian equations of motion may be written in the form

l^.^-F+G ^^-^=F^G,
dtdX' d\~ ' dt dfi' dfi

where X and fx are the elliptic coordinates of the particle referred to the fixed points

^ . , 2T \'2 /2
as foci, and ^^-^, = ^j-j, + ^-^, .

9. If r, d be the polar coordinates of a particle of mass m which describes

an orbit under the action of a central force F tending to the pole, and

M, V be the corresponding momenta, prove that the Hamiltonian function is

H=^—l--^
—-^+jFdr. Thence deduce the Hamiltonian equations of motion

u= mr', v— mrH', mr^{u' + F) = v\ v' = 0.

10. A perfectly rough horizontal disc, free to turn about a vertical axis, carries

a symmetrical spinning-top. The inclination of the axis of the top to the vertical

being d, and being the azimuth, relative to the disc, of the vertical plane con-

taining the axis, shew that the modified function 2Z' is of the form

A (^'2 + gin2 ^0'2) + 2 Cw cos ^0' - Gn^ - 2Mgh cos ^ - -^ ,

where D= I+Ma {a + 2h ein 6 cos <p) + A sin^^,

^=P - (^ sin ^ + Mha cos
<f>)

sin d<p'

- Mha cos d sin <pd' - Cn cos 6,

a is the distance of the vertex of the top from the fixed axis, P and Cn are constant

momenta, and I, A, C are inertia constants. [St John's Coll. Dec. 1904.

See Arts. 365 Ex. 1, 420, 421.



CHAPTER IX.

SMALL OSCILLATIONS.

Oscillations with One Degree of Freedom,

432. When a system of bodies admits of only one independent
motion and is making small oscillations about some mean position,

or some mean state of motion, it is in general our object to reduce

the equation of motion to the form

d?x _ dx ,

where x is some small quantity which determines the position of

the system at the time t This reduction is effected by neglecting

the square of the small quantity x.

433. nseaning of the Terms. We suppose the equation to be obtained by

writing down the equations of motion of all the particles, and then eliminating

the reactions. Let us consider the case in which the system is displaced from a

position of equilibrium. We represent the amount of displacement by some letter x

such that, X being known, the position of every particle can be deduced from the

geometrical conditions of the system. The displacement ^ of any particle m is

therefore some function of x, and since the square of x is to be neglected in a

small oscillation we have by Maclaurin's theorem ^=G + Hx, where G and H are

some constants depending on the position of the particle in the system. The
effective forces on m are (1) Hmx along the tangent to its arc of oscillation, and

(2) a centrifugal force which has mx^ in the numerator, and may therefore be

neglected. The effective forces therefore contribute terms of the form x to the

differential equation.

The impressed forces on the system are of three kinds.

(1) The system being displaced the forces of the system tend to bring it back

to its position of equilibrium, if this position is stable. These forces are all

functions of x, and since the square of x is neglected, they contribute terms of the

form c-bx to the equation. The terms c - bx therefore represent the natural

forces of restitution.

(2) There may be some forces of resistance acting at special points of the

system which depend on the velocities of the particles. The velocity of any such

particle m will be some function of |, which, as before, may be taken equal to Hx.
These resistances will therefore contribute terms of the form ax to the equation.
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(3) We may have some small external forces which are functions of the time.

We may, when they exist, represent them by a term / (t) on the right-hand side of

the equation.

We see that the effective forces and the three kinds of impressed forces contribute

different kinds of terms to the equation, and, since the products of these terms are

to be neglected, each term comes exclusively from the source mentioned.

We propose in the first instance to omit the external forces, and to consider the

motion of a system acted on only by the forces of restitution and the forces of

resistance. The oscillation produced by these two together is called the natural

or free vibration. The oscillations produced by the external forces are sometimes

called forced vibrations, and will be considered under that heading in Vol. ii,

434. Solution of the Equation. It generally happens
that a, h, c are all constants, and in this case we can completely

determine the oscillation. By putting ^ = c/6 + fe~**, when b is not

zero, we reduce the equation to the well-known form

When b — a^ is positive, let us, for the sake of brevity, put
b — a^ = n\ We then have

^ = 7 + Ae-''^ sin {nt + B),

where A and B are two undetermined constants which depend on
the initial conditions of the motion. The physical interpretation

of this equation is not difficult. It represents an oscillatory

motion. The central position about which the system oscillates

is determined hy x = c/b. The system passes through this central

position whenever nt + Bis-A multiple of tt. We therefore infer

that the interval between two successive passages through the

central position is Tr/n. To find the times at which the system
comes momentarily to rest we put docldt = 0. This gives

tan {nt + B) = n/a.

The interval from one position of momentary rest to the next
is also TTJn. Measuring the time from any passage through the
central position we have x = c/b when t = and therefore B = 0.

The least negative root of the equation tan nt =: n/a (taken
positively) gives the interval from any position of momentary
rest to the central position, and the least positive root gives

the interval from the central position to the next position of

rest. The former is evidently greater and the latter less than
7r/2n, the sum of the two being tt/w. The extent of the
oscillations on each side of the central position may be found
by substituting the values of t given by this equation in

the expression for os — c/b. Since these must occur at a
constant interval equal to ir/n, we see that the extent of the
oscillation continually decreases, and that the successive arcs

on each side of the position of equilibrium form a geometrical
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progression whose common ratio is g-^Ww 'pj^g quantity n is

called the frequency of the oscillation. This very useful term has
b(3en introduced by Lord Rayleigh in his Theory of Sound.

When h — a^ is negative, we put b — a^ = — v^. In this case

ho sine in the solution must be replaced by its exponential value,

b
'

where G and I) are two undetermined constants. The motion is

aow no longer oscillatory. If a and b are both positive, v is

ess than a, and in this case, whatever the initial conditions

oiay be, o) ultimately becomes equal to c/b, and the system con-

tinually approaches the position determined by this value of oo.

I'he same thing occurs if v be greater than a, provided that the

Liiitial conditions are such that the coefficient of the exponential

which has a positive index is zero.

If b — a^= 0, the integral takes a different form, and we have

-vliere E and F are two undetermined constants. If a be positive,

he system continually approaches the position given by bx = c.

435. When the value of x as given by these equations becomes
large, the terms depending on x^ which have been neglected in

ibrming the equation may also become great. It is possible that

these terms may alter the whole character of the motion. In
^uch cases the equilibrium, or the undisturbed motion of the

system as the case may be, is called unstable, and these equations

can represent only the nature of the motion with which the system
begins to move from its undisturbed state.

436. Ex. 1. Find the ultimate value of x when we have initially

dx , s / c

/It dor
Ex. 2. Show that the complete integral of -^ + 2a -— + bx=f{t) is

r^ — Q-ath^ +a;o (coswf + - sinwnl +- I e-«('-'')sinw («-«')/(«') d«',

vhere x^, x^ are the values of x and x when t= Q. [Math. Tripos, 1876.

437. It will be often found advantageous to trace the motion
)f the system by a figure. Let equal increments of the abscissa

)f a point P represent on any scale equal increments of the time,

md let the ordinate represent the deviation of the coordinate x
Tom its mean value. Then the curve traced out by the repre-

ientative point P will exhibit to the eye the whole motion of the
5ystem. In the case in which a and b — a^ are both positive the
mrve takes the form here represented.
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The dotted lines correspond to the ordinate + Ae~'^K The
representative point P oscillates between these, and its path

alternately touches each of them. In just the same way we may
trace the representative curve for other values of a and h.

The most important case in dynamics is that in which a = 0.

The motion is then given by

x-^ = Asm {sfht + B).

The representative curve is then the curve of sines. In this

case the oscillation is usually called harmonic.

438. Ex. 1. A system oscillates about a mean position, and its deviation is

measured by x. If x^ and x^ be the initial values of x and i, show that the system

will never deviate from its mean position by so much as <-^
, _°

" -\ if h

be greater than a?.

Ex. 2. A system oscillates about a position of equilibrium. It is required to

find by observations on its motion the numerical values of a, b, c.

Equations to find the constants may be constructed by measuring x at

different times, but some measurements can be made more easily than others.

For example, the values of x when the system comes momentarily to rest can be

conveniently observed, because the system is then moving slowly, and a measure-

ment at a time slightly wrong will cause an error only of the second order,

while the values of t at such times cannot be conveniently observed, because

owing to the slowness of the motion, it is difficult to determine the precise moment
at which x vanishes.

If three successive values of x thus found be x-^, x^, x^, the ratio of the two

successive arcs X2 - x-^ and x^ -x^ is a known function of a and b, and one equation

can thus be formed to find the constants. If the position of equilibrium is

unknown, we may form a second equation from the fact that the three arcs

a?! - - , x^-j, x^-j also form a geometrical progression. In this way we find -

,

which is the value of x corresponding to the position of equilibrium, and also a/w.

The position of equilibrium being known, the interval between two successive

passages of the system through it can be conveniently observed. This is also a

known function of a and b, and thus a third equation may be formed.
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Ex. 3. A body performs rectilinear vibrations in a medium whose resistance is

pioportional to the velocity, under the action of an attractive force tending towards

a fixed centre and proportional to the distance therefrom. If the observed period

of vibration is T, and the coordinates of the extremities of three consecutive semi-

vilnations are p, q, r, prove that the coordinate of the position of equilibrium and

the time of vibration if there were no resistance are respectively

and T jl +l Aog^^Yi . [Math. Tripos, 1870.
pr-q'

p + r-2q

First Method of forming the Equations of Motion.

439. When the system under consideration is a single body
there is a simple method of forming the equation of motion which
is sometimes of great use.

Let the motion be in two dimensions.

It has been shown in Art. 205, that if we neglect the squares

of small quantities we may take moments about the instantaneous

centre as a fixed centre. Usually the unknown reactions will be
such that their lines of action will pass through this point, their

moments will then be zero, and thus we shall have an equation

containing only known quantities.

Since the body is supposed to be turning about the instan-

taneous centre as a point fixed for the moment, the direction of

motion of any point of the body is perpendicular to the straight

line joining it to the centre. Conversely, tuhen the directions of
/Notion of two points of the body are known, the position of the

instantaneous centre can he found. For if we draw perpendiculars

at these points to their directions of motion, the perpendiculars

must meet in the instantaneous centre of rotation.

The equation may, in general, be reduced to the form

MU ^^^ — /^'foment of impressed forces about'

dt^ \ the instantaneous centre

where is the angle some straight line fixed in the body makes
•with a fixed line in space. In this formula Mk^ is the moment
of inertia of the body about the instantaneous centre, and since

d^d
the left-hand side of the equation contains the small factor -i—

we may here suppose the instantaneous centre to have its mean
or undisturbed position. On the right-hand side there is no small

factor, and we must therefore be careful either to take the moment
of the forces about the instantaneous centre in its disturbed position,

or to include the moment of any unknown reaction which passes

through the instantaneous centre.

Ex. If a body with only one independent motion can be in equilibrium in the

wsame position under two different systems of forces, and if L^ , L^ are the lengths
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of the simple equivalent pendulums for these systems acting separately, then the

length L of the equivalent pendulum when they act together is given by

440. Ex. 1. A homogeneous hemisphere performs small oscillations on a perfectly

rough horizontal plane : find the motion.

Let C be the centre, G the centre of gravity oi

the hemisphere, N the point of contact with the

rough plane. Let the radius= a, GG = c,

d= INCG.

Here the point N is the centre of instantaneous

rotation, because, the plane being perfectly rough,

sufficient friction is called into play to keep N ai

rest. Hence taking moments about N
{k^+GN^)e=-gc. sine.

Since we can put GN=a- c in the small terms, this reduces to

{k^+{a-cY\e + gc.e= 0.

/k''+{a-cf
Therefore the time of a small oscillation is 27r

eg

It is clear that it^ + c^^sq. of rad. of gyration about C= td^, and that c = fa.

If the plane had been smooth, M would have been on the instantaneous axis,

GM being the perpendicular on GN. For the motion of ^ is in a horizontal

direction, because the sphere remains in contact with the plane, and the motion

of G is vertical by Art. 79. Hence the two perpendiculars GM, NM meet on the

instantaneous axis. By reasoning similar to the above the time is found to be

2Trs/k^lcg.

Ex. 2. Two circular rings, each of radius a, are firmly jointed together at one

point so that their planes make an angle 2a with one another, and are placed on a

perfectly rough horizontal plane. Show that the length of the simple equivalent

pendulum is | a (1 + 3 cos^ a) cos a cosec^ a. [Math. Tripos.

Join the centres G, G', and describe the enveloping cylinder whose generators

are parallel to GG\ Treat the elliptic perpendicular section drawn through the point

of contact A of the two circles as the rolling body, the k"^ about the point of contact

being equal to that of the two circles about the generator most remote from A.

441. Oscillations of Cylinders. A cylindrical surface oj

any form rests in stable equilihrium under gravity 07i another

perfectly rough cylindrical surface, the axes of the cylinders being

horizontal and parallel. A small disturbance being given to the

upper surface, find the time of a small oscillation.

Let BAP, B'A'P be the sections of the cylinders perpendicular

to their axes. Let OA, GA' be normals at those points A, A'
which before disturbance were in contact, and let a be the angle

made hy AO with the vertical. Let OPG be the common normal
at the time t. Let G be the centre of gravity of the moving body,

then before disturbance A'G was vertical. Let A'G^r,
Now we have only to determine the time of oscillation when

the motion decreases without limit. Hence the arcs AP, A'P will
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?be ultimately zero, and therefore G and may be taken as the

centres of curvature of AP, A'P. Let p= OA, p = GA\ and let

Ithe angles AOP, A'CP be denoted by
<f), <f>

respectively.

Let 6 be the angle turned round by the body in moving from
i the position of equilibrium

into the position B'A'P.
Then, since before disturb-

jance A'C and AO were in

the same straight line, we
have e = l.GDE =

(f>
+ (j>',

where GA' meets OAE in

D. Also, since one body
rolls on the other, the arc

AP = arc A'P, .-. p0 = pep',

.-.</> = -,e.

7 cos a e.

p + p
Again, in order to take

moments about P, we re-

quire the horizontal dis-

tance of G from P ; this

may be found by projecting

the broken line PA' + A'G on the horizontal. The projection of

PA' = PA' cos (a + 0) = p(f) cos a when we neglect the squares of

small quantities. The projection of A'G is rd. Thus the hori-

zontal distance required is (—

^

If h be the radius of gyration about the centre of gravity, the
ecjuation of motion is

If L be the length of the simple equivalent pendulum, we
have k'^ + r^ pp—

r— =
, cos a — r.L p + p

442. Circle of Stability. Along the common normal at

the point of contact A of the two
cylindrical surfaces measure a length

AS = s, where - = - + — , and de-

.
^ P P

scribe a circle on AS as diameter.
Let AG, produced if necessary, cut
this circle in JSf. Then

GN= s cos a — r,

the positive direction being from N
towards A. The length L of the
simple equivalent pendulum is given
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by the formula

L . GN = sq. of rad. of gyration about A.

It is clear from this formula, that if (r* lie without the circle

and above the tangent at ^, L is negative and the equilibrium

is unstable, if within, L is positive and the equilibrium is stable.

This circle is called the circle of stability.

This rule will be found very convenient to determine not only

the condition of stability of a heavy cylinder resting in equilibrium

on one side of a rough fixed cylinder, but also to determine the

time of oscillation when the equilibrium is disturbed. An ex-

tension of the rule to cases of rough cones and other surfaces will

be given further on.

44.3. It may be noticed that the preceding result is per-

fectly general and may be used in all cases in which the locus of

the instantaneous axis is known. Thus p is the radius of curva-

ture of the locus in the body, p that of the locus in space, and a

the inclination of its tangent to the horizon.

If dx be the horizontal displacement of the instantaneous

centre produced by a rotation dO of the body, the equation to

find the length of the simple equivalent pendulum of a body
oscillating under gravity may be written

^_+r^_dx__
^^ dd ^'

This follows at once from the reasoning in Art. 441. It may
also be easily seen that the diameter of the circle of stability is

equal to the ratio of the velocity in space of the instantaneous axis

to the angular velocity of the body.

Ex. 1. A homogeneous sphere makes small oscillations inside a fixed sphere so

that its centre moves in a vertical plane. If the roughness be sufficient to prevent

all sliding, prove that the length of the equivalent pendulum is seven-fifths of the

difference of the radii. If the spheres were smooth the length of the equivalent

pendulum would be equal to the difference of the radii.

Ex. 2. A homogeneous hemisphere being placed on a rough fixed plane, which

is inclined to the horizon at an angle sin-^|^2, makes small oscillations in a

vertical plane. Show that, if a is the radius of the hemisphere, the length of the

equivalent pendulum is ^^ (92 - 5 x/14) a.

* Let R be the radius of curvature of the path traced out by G as the one

cylinder rolls on the other, then we know that B = -tt-^ , and that all points with-

out the circle described on AS as diameter are describing curves whose concavity

is turned towards A, while those within the circle are describing curves whose

convexity is turned towards A. It is then clear that the equilibrium is stable,

unstable, or neutral, according as the centre of gravity lies within, without, or on

the circumference of the circle.
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444. If the body be acted on by any force which passes through the centre of

gravity, the results must be slightly modified. Just as before, the force in equi-

librium must act along the straight line joining the centre of gravity G to the

instantaneous centre A. When the body is displaced, the force cuts its former

line of action in some point F, which we shall assume to be known. Let AF=f,
taking / positive when G and F are on opposite sides of the locus of the instan-

taneous centre. Then it may be shown by similar reasoning, that the length

L of the simple equivalent pendulum under this force, supposed constant and

'f+r
direction of the force makes with the normal to the path of the instantaneous

centre.

If we measure along the line AG a. length AG' so that -—
-,
= --^ + -Te, . tlien the

equal to gravity, is given by — , - = , cos a
L. p + p

where a is the angle the

k^ + r^
expression for L takes the form —=— = G'N.

AG' AG AF'

The equilibrium is therefore stable

or unstable according as G' lies within or without the circle of stability.

445. Oscillations of a body resting on two curves. Two points A, B of

a body are constrained to describe given curves, and the body is in equilibrium under

the action of gravity. A small disturbance being given, find the time of an oscillation.

Let C, D be the centres of curvature of the given curves at the two points A, B.

Let AG, BD meet in 0. Let

G be the centre of gravity

of the body, GE a perpen-

dicular on AB. Then in

the position of equilibrium

OG is vertical. Let i, j be

the angles which CA, BD
make with the vertical, and

let a be the angle AOB.
T>(-t A', B', G', E' denote the

positions into which A, B,

G, E are moved when the

body is turned through an

angle 6, and let 0' be the

point of intersection of the

normals at A', B'. Let

ACA'= (P, BDB'=
(f>'.

Since

the body may be brought

from the position AB into

the position A'B' by turn-

ing it about through an angle 6, we have 0. Also GG' is
CA.(f> _ BD.<f>'

OA ~ OB
ultimately perpendicular to OG, and we have GG'=OG .6. Also let x, y be the

projections of 00' on the horizontal and vertical through O. Then by projections

a: cosJ + t/8inj = distance of 0' from OD= OD . <p',

X cos i-y sin i= distance of 0' from 0G= OG .0;

OD . sin i . 0' -1- OC . sinj .
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Now, taking moments about 0' as the centre of instantaneous rotation, we have

(/e2+OG2)||=-p.(GG' + a:)

/^^ OD.OBsmi OC.OA sinj\

where k is the radius of gyration about the centre of gravity.

Hence, if L be the length of the simple equivalent pendulum, we have

A;24-OG2_ OP . OB sin i 00 . OA sin j

L ~ BD sin a ^C sina'

If the given curves, on which the points A, B are constrained to move, be

straight lines, the centres of curvature C and D are at infinity. In this case, we

may put ^^= - 1, 77=,= - 1? ^^^ the expression becomes
BD AO

"It^^OG-OB.'-^-OA."^.
L sm a sm a

If OA and OB be at right angles, this takes the simple form

JLj

where F is the projection on OG of the middle point of AB.

Ex. 1. A heavy rod AGB rests in equilibrium in a horizontal position within a

surface of revolution whose axis is vertical. Let 2a be the length of the rod,

p the radius of curvature of the generating curve at either extremity of the rod, i

the inclination of this radius of curvature to the vertical. Prove that, if the rod be

slightly disturbed, so that it makes small oscillations in a vertical plane, the length

, , ^ , , . apsin2ico8t(l + 3cot2i)
of the equivalent pendulum is -^

. „ .,
~

.

^ ^ 3(a-/>sin3i)

Ex. 2. The extremities of a uniform heavy rod of length 2c slide on a smooth

wire in the form of a parabola, whose axis is vertical, and whose latus rectum is

equal to 4a. If the rod be slightly displaced from its position of stable equilibrium,

2ac 2(il2a^+c^
prove that the length of the equivalent pendulum is 7-^ —.

, or — 2_ .

2" >

according as the length of the rod is greater or less than the latus rectum of the

parabola.

In the first case the rod in its stable position of equilibrium passes through the

focus and is inclined to the horizon. In the second case the rod is horizontal.

When the length of the rod is equal to the latus rectum the oscillation is not tauto-

chronous, see Art. 450. If the rod start from rest at a small inclination a to the

horizon, it will become horizontal after a time -
( ^5- ) / {1 - (f)^)'^ d<p. The first

a \^9/ J
case of this question was set in a Caius Coll. paper.

Ex. 3. The extremities of a rod of length 2a slide upon two smooth wires,

which form the upper sides of a square whose diagonal is vertical, prove that the

length of the equivalent pendulum is fa. [Math. Tripos.

446. Oscillation wlien tlie path of centre of gravity is known. A body

oscillates about a position of equilibrium under the action of gravity, the radius of cur-

vature of the path of the centre of gravity being known, find the time of an oscillation.
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Let A be the position of the centre of gravity of the body when it is in its

position of equilibrium, G the position of the centre of gravity at the time t. Then
since in equilibrium the altitude of the centre of gravity is a

maximum or minimum, the tangent at A to the curve ^G is

horizontal. Let the normal GC to the curve at G meet the normal

at A in C. Then, when the oscillation becomes indefinitely small,

C is the centre of curvature of the curve at A. Let AG = s, the

angle ACG = ^p, and let R be the radius of curvature of the curve

at^.

Let d be the angle turned round by the body in moving from

the position of equilibrium into the position in which the centre

of gravity is at G ; then ddjdt is the angular velocity of the body.

Since G is moving along the tangent at G, the centre of instan-

taneous rotation lies in the normal GC, at such a point O that

OG^= vel.ofG=^^ ..G0 = ^^.dt dt
' dd

Let Mk'^ be the moment of inertia of the body about its centre of gravity, then

ing moments about 0, we h£

Ultimately, when the angle

d^d
taking moments about 0, we have {y^+OG^) -^-^= -g .OGB\n\p.

dt

nail,
e

dx//

''dd

dxj/

~ ds

ds

dd""

OG
^ R

0G2
R ,e,

d^d

and the length of the simple equivalent pendulum is L =
|
1 -h ^—^ j

jR.

447. Oscillations found by Vis Viva. When the system of bodies in motion
admits of only one independent motion, the time of a small oscillation may
frequently be deduced from the equation of vis viva. This equation is one of the

second order of small quantities, and in forming the equation it is thus necessary

to take into account small quantities of that order. This sometimes involves

rather troublesome considerations. On the other hand, the equation is free from

all the unknown reactions, and we thus frequently save much elimination.

The method of proceeding will be made clear by the following example, by

which a comparison may be made with the method of the last article.

The motion of a body in space of two dimensions is given by the coordinates x, y
of its centre of gravity, and the angle which any fixed line in the body makes with

a line fixed in space. The body being in equilibrium under the action of gravity, it is

required to find the time of a small oscillation.

Since the body is capable of only one independent motion, we may express (x, y)

as functions of 6, thus x= F{d), y=f{d).
Let Mk^ be the moment of inertia of the body about an axis through its centre of

gravity, then the equation of vis viva becomes x^ + y^ + k^^=G -2gy, where C is

an arbitrary constant.

Let a be the value of when the body is in the position of equilibrium, and

suppose that, at the time t, = a + <p. Then, by Maclaurin's theorem,

where y^', y^" are the values o^ ;^ » 7J when = a. But in the position of equili-

brium y is a maximum or minimum; ,*. r/o'= 0. Hence the equation of vis viva

becomes {xQ^+ k^)4>'^=C - gyo"^"^, where Xq is the value of dxld0 vfhen = a; dif-

ferentiating we get {xQ^ + k^)(p= -gyo"<t>-

E. D. 24
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If L be the length of the simple equivalent pendulum, we have

where for 6 we are to write its value a after the differentiations have been eifected.

It is not difficult to see that the geometrical meaning of this result is the same as

that given in the last article.

This analytical result was given by Mr Holditch, in the eighth volume of the

Cambridge Transactions. It is a convenient formula when the motion of the

oscillating body is known with reference to its centre of gravity.

Ex. 1. The lower extremity of a heavy uniform beam of length a slides on a

weightless inextensible string of length 2a, whose extremities are attached to two

fixed points in the same horizontal line, and the upper extremity slides on a vertical

rod which bisects the line joining the two fixed points. Prove that the only position

of equilibrium is vertical, and that the time of a small oscillation about this position

is »<» ,^, ) where 2J(a^ - b^) is the distance between the two fixed points.
^{Sg{2b-a)}

[Math. Tripos.

The lower extremity of the rod may be regarded as moving in a circle of radius

a^jb. Express the coordinates (x, y) of the middle point in terms of the angle 6

which the rod makes with the vertical. The result follows by the principle of

vis viva.

Ex. 2. The extremities of a rod slide on the circumference of a three-cusped

hypocycloid whose plane is vertical. The radius of the circumscribing circle is 3a,

and one of the cusps is at the highest point of the circle. Prove that the length of

the equivalent pendulum is ^a. [Math. Tripos, 1872.

First prove that in this hypocycloid the rod as it slides with its two ends on the

side branches BE, BE always touches the lowest branch BD. Its middle point R
describes a circle with centre 0, and radius a where O is the centre of the circum-

scribing circle. If BOR = (p, the angle which the rod makes with the tangent at the

cusp B is 10. The result then follows by using the principle of vis viva.

448. Moments about the Instantaneous Axis. When a

body moves in space with one independent motion there is not in

general an instantaneous axis. It has, however, been proved in

Art. 225 that the motion may always be reduced to a rotation

about some central axis and a translation along that axis.

Let / be the moment of inertia of the body about the instan-

taneous central axis, O the angular velocity about it, Fthe velocity

of translation along it, M the mass of the body, then by the prin-

ciple of vis viva ^Ifl^ + ^MV^= U + G, where U is the force-

function, and G some constant. Differentiating we get

da 1 di j^ydv_du
dt^2 dt^ a dt ~ndt'

In the time dt the body turns round the instantaneous axis

through an angle Hdi, and advances along that axis a space Vdt;
we therefore have dll = Ladt + ZVdt where L is the moment of

the impressed forces about the central axis and Z the component
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along it (Art. 340). Let p be the pitch of the screw-motion of

I
the body, then F= j^H. The equation of motion therefore becomes

1 If the body be performing small oscillations about a position of

equilibrium, we may reject the second and third terms, and the

equation becomes .^ ,. o\ ^^ r . n^ {1 4- i/pO -T7=L'\-'pZ.

\ If there be an instantaneous axis, ^ = 0, and we see that we
may take moments about the instantaneous axis exactly as if it

were fixed in space and in the body.

Ex. A rigid body moves in any manner about a fixed point. If fi is the

(angular velocity, I the moment of inertia, L the moment of the impressed forces,

each about the instantaneous axis, prove that ^r- — (I122)= L. [Arts 215, 252.]
2i\i dt

A uniform rough heavy circular disc of radius a has its edge touching a horizontal

table and rests against the pointed top of a peg of vertical height h fixed in the table.

»tn the position of equilibrium its plane makes an angle a with the table. Show that

llihe length of the simple equivalent pendulum for a small oscillation in which there

US no slipping is ah sec a tan a/4 {h - a sin a). [Math. Tripos 1904.

Second Method offorming the Equations of Motion.

449. Let the general equations of motion of all the bodies be

brmed. If the position about which the system oscillates be

mown, some of the quantities involved will be small. The squares

md higher powers of these may be neglected, and all the equations

vill become linear. If the unknown reactions be then eliminated

ihe resulting equations may be easily solved.

If the position about which the system oscillates be unknown,

t is not necessary to solve the statical problem first We may by
me process determine the positions of rest, ascertain whether they

ire stable or not, and find the time of oscillation. The method of

)roceeding will be best explained by an example.

450. Ex. The ends of a uniform heavy rod AB of length 21

we constrained to move, the one along a horizontal line Ox, and the

)ther along a vertical line Oy. If the whole system, turn round Oy
vith a uniform angular velocity co, it is required to find the posi-

ions of equilibrium and the time of a small oscillation.

Let X, y be the coordinates of G the middle point of the

od, 6 the angle OAB which the rod

nakes with Ox. Let R, R' be the re-

ictions at A and B resolved in the

)lane xOy. Let the mass of a unit

»f length be taken as the unit of mass.

The accelerations of any element ^;
Ir of the rod whose coordinates are

24—2



372
^

SMALL OSCILLATIONS. [CHAP. IX.

(f, 7)) are ^— «^f parallel to Ox, t'jA¥^) perpendicular to

the plane xOy, and -j- parallel to Oy.

As it will not be necessary to take moments about Ox, Oy, or

to resolve perpendicular to the plane xOy, the second acceleration

will not be required. The resultants of the effective forces l^dr

and r}dr, taken throughout the body, are ^Ix and 2ly acting

at G, and a couple 2lk^Q tending to turn the body round G. The
resultants of the effective forces ay^^dr taken throughout the body

are a single force acting at G = ay^{x + r cos 6) dr = co'^x . 21, and a

r+l p
couple * round G= \ co^ (^ + r cos 6) rsin6dr = (o^ .21 .- sin 6 cos

J —I o
'

the distance r being measured from G towards A.

Then we have, by resolving along Ox, Oy, and by taking

moments about G, the dynamical equations

2lx = -R+ay'x.2l
2ly = -R-\-g.2l

72

2lk^e = Rx- Ry-(oK2l.- sin ^cos 6

.(1).

We have also the geoinetrical equations

x=l cos 6, y=l sin 6 (2).

Eliminating R, R', from the equations (1), we get

xy—yx-v k^d = gx — ay^xy — J coH^ sin ^ cos ^ (3).

To find the position of rest. We observe that if the rod were

placed at rest in that position it would always remain there, and

that therefore x = 0, y = 0, 6 = 0. These give

f(x, y, 6) = gx— co^xy — ^coH'^ sin 6cos 6 = (4).

Joining this to equations (2), we get 6 =
^y , c>r sin 6 = ~r~

and thus the positions of equilibrium are found. Let any one oi

these positions be represented by ^ = a, x — a, y = h.

To find the motion of oscillation. Let x = a + x', y = h -\- y
6 = a + 0', where x, y',

6' are all small quantities, then we must
substitute these values in equation (3). On the left-hand side

since x, y, 6, are all small, we have simply to write a, h, a, foi

* If a body in one plane be turning about an axis in its own plane with ar

angular velocity w, a general expression can be found for the resultants of th<

centrifugal forces on all the elements of the body. Take the centre of gravity G as

origin and the axis of y parallel to the fixed axis. Let c be the distance of G from

the axis of rotation. Then all the centrifugal forces are equivalent to a single

resultant force at (r — Jw^ (c + x)dm= ox^ . Mc, since x= 0,

and a single resultant couple =jb}^{c + x)ydm= o}^jxydm, since ^= 0.
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X, y, 6. On the right-hand side the substitution should be made
by Taylor's Theorem, thus

We know that the first term f(a, 6, a) = 0, because this is the

very equation (4) from which a, h, a were found.

.-. ay - bx + k^B' =(g- co%) x - w^ay - ^coH^ cos 2a .
6'.

But, by putting ^ = a + ^' in equations (2), we get by Taylor's

Theorem w' = — lsmoL. 6', y' — l cos a . 6', also a = l cos a,b = l sin a.

Hence the equation to determine the motion is

(^2 4. ^2)^ + Li sin a +
I

coH' cos 2a] 6' = 0.

Now, if gl sin a + ^(o^P cos 2a = 71 be positive when either of the

two values of a is substituted, the corresponding position of equi-

librium is stable, and the time of a small oscillation is 27r a / •

If n be negative the equilibrium is unstable, and there can be

no oscillation. If o)^ > Sg/4fl, there are two positions of equilibrium

of the rod. It will be found by substitution that the position in

which the rod is inclined to the vertical is stable, and the other

position unstable. If o)^ < 3^/4^ the only position in which the rod

can rest is vertical, and this position is stable.

If n = 0, the body is in a position of neutral equilibrium. To
determine the small oscillations we must retain terms of an order

higher than the first. By a known transformation we have

xy-yx =
j^

(I'd).

Hence the left-hand side of equation (3) becomes (P + k'^)d.

The right-hand side becomes by Taylor's Theorem

^^ {^gl cos a - g coH' sin 2a
j
j-^ -f &c.

When 71 = 0, we have a = j7r and co^='SglU. Making the

necessary substitutions, the terms of the second order vanish, and
the equation of motion becomes

,j,^ i.2\^^^— 9^ a'z

Since the lowest power of 9' on the right-hand side is odd,

and its coefficient negative, the equilibrium is stable for a displace-

ment on either side of the position of equilibrium. Let a be the

initial value of 6\ then the time T of reaching the position of

equilibrium is /4 (Z^-f- A;^) T'* dd'

put ^=a^, then T =^^^^ .

J^ ^^j=^^
. -.
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Hence the time of reaching the position of equilibrium varies

inversely as the arc. When the initial displacement is indefi-

nitely small, the time becomes infinite.

This definite integral may be otherwise expressed in terms of the Gamma

function. It may be easily shown that I -—-^

—

=^—-^JX- . Vut d)^= x.

451. This problem might have been easily solved by the

first method. For, if the two perpendiculars to Ox, Oy at A and

B meet in iV, N is the instantaneous axis. Taking moments
about N, we have the equation

r+^ dr
{P -{-t)e = gl cos ^ - I a>2 il + ry sin cos d^

= gl cos 6 - ^P(o^ sin 6 cos 6.

If we represent the right-hand side of this equation by f{0),
the position of equilibrium can be found from the equation /(a) =
and the time of oscillation from the equation

doL

452. Ex. 1. If the mass of the rod AB is M, show that the magnitude of the

couple which constrains the system to turn round Oy with uniform angular velocity

is ikf -^ w — sin 26. Would the magnitude of this couple be altered if Ox or Oy

had any mass ?

Ex. 2. The upper extremity of a uniform beam of length 11 is constrained to

slide on a smooth horizontal rod without inertia, and the lower along a smooth

vertical rod, through the upper extremity of which the horizontal rod passes ; the

system rotates freely about the vertical rod, prove that if a be the inclination of the

beam to the vertical when in a position of relative equilibrium, the angular velocity

of the system will be (3^ sec ajU)^, and, if the beam be slightly displaced from this

position, show that it will make a small oscillation in the time T where

m -J
(sec a + 3 cos a). [Coll. Exam.

In the example in the text the system is constrained to turn round the vertical

with uniform angular velocity, but in this example the system rotates freely. The

angular velocity about the vertical is therefore not constant, and its small variations

must be found by the principle of angular momentum.

Lagrange s Method of forming the Equations of Motion.

453. Advantages of the Method. We now propose to

state Lagrange's method of forming the equations of motion. This

method has several advantages. It gives us the equations of

motion free from all reactions, and is therefore specially useful

when we have to consider the motions of several bodies connected

together. It also gives us a larger choice of quantities which we may
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take as coordinates. Again, as soon as we have written down the
Lagrangian function we may deduce from this one function all the
equations of motion, instead of deriving each from a separate
principle. On the other hand, this function must be calculated so

as to include the squares of the small quantities. Now in small

oscillations we retain only the first powers of the small quantities,

so that, when only a few equations are wanted, it is often more
convenient to obtain these by resolving and taking moments.

It will be seen, therefore, that the method is best adapted to

oscillations which have more than one degree of freedom. For
this reason we shall here only state the general mode of forming
the equations of motion, so that we may be able to apply
the method to the solution of problems. But we shall postpone
the general discussion of Lagrange's determinant to the second
part of this work.

454. The object of Lagrange's method is to determine the

oscillations of a system about a position of equilibrium. It does

not apply to oscillations about a state of steady motion. For
example, if a heavy particle were suspended by a string from a
fixed point, the string is vertical when the system is in equi-

librium, and the oscillations about this position could be found
by Lagrange's method. If however the particle were made to

describe a horizontal circle, as in the conical pendulum, the

oscillations about the circular steady motion could not be found
by this method. In the same way when a hoop rolls on the

ground in a vertical plane, it may make small oscillations from
one side to the other of the plane. These oscillations cannot be

found by Lagrange's method. A method of investigating the

oscillations of a system about a state of steady motion will be
given in the next volume.

We shall assume, for the present, that the forces which act on
the system have a force function. We shall also assume that the

geometrical equations do not contain the time explicitly, and do
not contain any differential coefficient with regard to the time.

In Lagrange's method it is essential that the coordinates

chosen should be such small quantities that we may reject all

powers of them except the lowest which occur. They should

generally be so chosen that they vanish in the position of equili-

brium. But with this restriction they may be any whatever. Let
us represent them by the letters 6, <^, &c. Then if the system
oscillate about the position of equilibrium, these quantities will be

small throughout the motion. Let n be the number of these

coordinates.

As before, let accents denote differential coefficients with
regard to the time.
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Let 2T he the vis viva of the system when disturbed from its

position of equilibrium, then as in Art. 396 we may express T as

a homogeneous quadratic function of 6', cj)', &c. of the form

2T = ^n<9''+2J[i2 6''</)' + ^22</>''+&c (1).

Here the coefficients A^ &c. are all functions of 6,
(f),

&c. and we
may suppose them expanded in a series of some powers of these

coordinates. If the oscillations are so small that we may reject

all powers of the small quantities except the lowest which occur,

we may reject all except the constant terms of these series. We
shall therefore regard the coefficients J.„ &c. as constants.

Let U be the force-function of the system when disturbed from
the position of equilibrium. Then we may also expand U in a

series of powers of 6, ^, &c.

Let this expansion be

2U=2Uo + 2B,d + 2B,4> + &c. + B^O' + 2B,^e(l> + &c. ...(2).

Here Uo is a constant, which is evidently the value of U
when 6, cf), &c. are all zero. It is necessary for the success of

Lagrange's method that both these expansions should be possible.

In the position of equilibrium, we must have, by the principle

of virtual work, -j-r = 0, -7-7 = 0, &c. = (see also Art. 340). If

the coordinates chosen are such that they vanish in the position

of equilibrium, it immediately follows that B^ = 0, ^2 = 0> &c. = 0.

If the coordinates have not been so chosen they must yet
vanish for some position of the system close to the position of

equilibrium. The differential coefficients of U, i.e. B^, B^, &c., are

therefore necessarily small. The terms B^d, B^(\>, &c. are thus of

the second order of small quantities and the quadratic terms of U
connot be neglected in comparison with them.

We may also notice that the equilibrium values of 6, (j>, &c.

may be found beforehand by equating to zero the several first

differential coefficients of u. But this is generally unnecessary, as

these values of 6, </>, &c. will appear in the sequel (see also

Art. 449).

We have now to substitute the expanded values of T and U
in the n Lagrange's equations

d^dT_dT^dU
I

dtdO' de dO ^ ^'

with similar equations for (/>, a/t, &c. Since the expression for T
does not contain 6,

(f),
&c., we have

<^^ n <^^ an
d0 = ^'d4 =

^'^''-



ART. 455.] LAGRANGE'S METHOD. 377

The n equations (3) therefore become

A,,6" + A,,<i>" + ... = B, + B,,e + B^_<i>+ ...\ (4).

&c. = &c.
J

[These are Lagrange's equations to determine the small oscillations

of any system about a position of equilibrium.

455. Method of Solution. We have now to solve these

equations. We notice that they are all linear, and that therefore

6, (j), &c. are properly represented by a series of exponentials of the

form Me^*. But, as we are seeking an oscillatory motion, it is

more convenient to replace these exponentials by the correspond-

ing trigonometrical expressions. Since the equations do not

contain any differential coefficients of the first order, it will be

found possible, on making the trial, to satisfy them by means of

the following assumption.

^ = a + ifi sin (p^t + €i) + M^ sin (p^t + eg) + &;c.^

^ = /3+ iVi sin (p,t + 6i) + iVa sin (pj; + e^) + &c. I . . .(5).

&c. = &c.
J

Taking the trigonometrical terms separately, they may be written

in the typical form

(9 = if sin (pt + e), (/) = iV^ sin {pt + e), &c. = &c.

If we now substitute these in equations (4) we have

(Aup' + ^n) M + {A,,p' + B,,) N + 8zc. = 0\

(A,,p' + B,,) M + {A,,p' + B^) i\r + &c. = 1 (6).

&c. &c. = OJ

Eliminating M, N, &c. we have the determinantal equation

^iijp' + ^ii, ^12P' + A2, &c. =0 (7).

^I2i)'+-5l2, ^22^' + ^22, &C.

&c. &c. &c.

This determinant, it will be observed, is symmetrical about the

leading diagonal. If there be n coordinates, it is an equation of

the n^"^ degree to find _p^ It will be shown in the second part of

this work that all the values of p^ are real.

Taking any root positive or negative, the equations (6)

determine the ratios of iV, P, &c. to M, and we notice that these

ratios also are all real. If all the roots of the determinantal

equation are positive, the equations (5) give the whole motion,

with 2?^ arbitrary constants, viz. M^, M^, M^... Mn and e^, eg ... e^.

These have to be determined by the initial values of 0, </>, &c., &,

<l>',
&c. If any root of the determinantal equation is negative, the

corresponding sine will resume its exponential form, the coefficient

If
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being rationalized by giving the coefficient M an imaginary form.

In this case there is no oscillation about the position of equili-

brium. The position is then said to be unstable.

It may be noticed that for every positive value of p^ given by
the equation (7) there are two equal values of p with opposite
signs. No attention however should be here given to the
negative values of p. To prove this, we notice that the solution

of the linear differential equations is properly represented by a
series of exponentials. Now each sine is the sum of two ex-

ponentials with indices of opposite signs. Both the values of p
have therefore been included in the trigonometrical expressions
assumed for 6, </>, &c.

The constants a, /3, &c. in the trial solution (5) are evidently

the coordinates of the central position about which the system
oscillates. Substituting these values of 6, cj), &c. in the equations

(4) we have = B, + BuOl + B,,^ + &c.^

= B,-{-B,,oL + B^l3-\-&^c\ (8).

= &c.
J

These equations determine the values of a, /S, &c. Since the

equations of motion are satisfied by these constant values of the

coordinates without any terms containing the time, it follows

that a, /3, &c. are the coordinates of the equilibrium position of
the system. That this is so, follows also from the rules given in

statics to find the position of equilibrium of a system when the

function U is known. According to these rules, we find the equili-

brium values of the coordinates 6, </>, &c. by equating to zero the

first differential coefficients of U with regard to 6,
(f>,

&c. The
equations thus obtained are evidently the same as the equations (8).

When a root (say^j^^ of the determinantal equation (7) is zero, the correspond-

ing terms in (5) reduce to constants. It also follows from (7) that the eliminant of

the equations (8) is zero, so that either the equations (8) are not independent or

the values of a, j8, Ac. are not so small that their squares can be neglected. In the

former case that part of the solution (5) which depends on the root p^^ takes another

form. Putting d= a + At, <p= ^ + Bt, &g. we arrive at the same equations (8) as

before, together with another set derived from (8) by writing A, B, &c., for a, ^, &o.

and zero for B^, B^, &c. If the coordinates have been so chosen that in the

expression for U, B^= 0, -Bg^O, &c. these two sets of equations give Ala= BI^= &G.

But whether this choice has been made or not, only 2n-2 of these 2?i equations

are in general independent and these determine 2n - 2 of the constants a, /3, &c.

A, B, &c., leaving two, say A and a, undetermined. The solution has therefore the

full number of constants.

Since the solution is properly expressed by a series of exponentials of the form

Me^ where q^= -p^, the determinant (7) may be regarded as having two equal values

of
2?i when jt^i^^O though it has only one value oi p^^. The theory of equal roots in

differential equations leads at once to the forms given above for 6, <p, &c. See also

Art. 462.
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456. Periods of Oscillation. We see from (5) that each

of the n coordinates 6,
(fy,

&c. is expressed in a series of as many
sines as there are separate values of p^ Thus, when there are

several independent ways in which the system can move, there

are as many periods of oscillation. These are clearly equal to

27r/pi, 277/p2, &c. Generally we want only these periods of oscillation

and not the particular position occupied by the system at any
- instant. In such a case we may in any problem omit all the steps

of the argument and write down the determinantal equation at

once. We then use the following rule. Expand the force-function

U and the semi-vis viva T in ascending powers of the coordinates

6, cf), &c., and their differential coefficients 0',
(f)\

&c., all powers

above the second being rejected. Then, omitting the accents or dots

in the expression for T and retaining only the quadratic term in U,

equate to zero the discriminant of p^T + JJ. The roots of the equa-

tion thus formed will give the required values of p.

The mode of using this rule in conjunction with the method of
indeterminate multipliers is given in the second volume.

457. Position of the system. If it be also required to find

the position of the system at any time, we must determine the

values of the constants. Referring to equations (6) we see that the

ratios of M, N, P, &c. for any particular trigonometrical term

in the solution (5) are the same as the ratios of the minors of the

constituents of any line we please in the Lagrangian determinant

(7). In these minors we of course substitute the value of^^ which

belongs to the particular trigonometrical term we are consider-

ing. In this manner the coefficients of all the trigonometrical

terms are found in terms of those which occur in the series for any
one coordinate.

The results may be symmetrically arranged in the following manner. Let

Ii(^), I^ip), &c. Iniv) be the n minors of any one row or column of Lagrange's

determinant regarded as functions of p. The solution then becomes

^= a + LiJi (i?i) sin [p-^t + ej) + L^I^ {p^ sin {p^^^t + eg) + &c.

,

= /3 + L]l2(Pi) sin (pi« + ei) +L2I2 (^2) sin (^2^ + 62) +&c.,

^= y + LJ^ [p-^) sin [p^t \- e^) + L^I^ (i'2) sin {p^t + e^-^&a.,

&C.=:&C.,

where L^, L^, &c., L^ are n arbitrary constants which represent the ratios of

M, N, &c. to the corresponding minors. This solution requires some modification

when either any value of p is zero or luhen all the minors in any column happen to

he zero. These cases will be discussed in the second volume.

The values of the 2w constants L^...L^ and e^.-.e^ must be found from the

initial values of the n coordinates d, 0, &c. and the initial values of their velocities

e', 0', &c. To effect this we put L^cos €^ = A^^ and L^sin€^=B^. Expanding

the trigonometrical terms we have 2n linear equations to find the 2w constants

Al...Ay^, Bj^...Bn' When n is large the solution of these 2n linear equations

becomes very troublesome. In many cases however we may use the method of

multipliers.
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If the number of coordinates is large the Lagrangian determinant itself may-

become unmanageable. In some of these cases we can marshal the coordinates

in such a way that we can use the calculus of finite differences. When the number

of coordinates is infinite, as in the case of a vibrating string, the equation thus

obtained takes the limiting form of a partial differential equation. Again, in other

cases it may happen that, though only some of the roots of the Lagrangian

equation are known, the corresponding coefficients in the solution can be found.

Lagrange's determinant gives the limiting values of the periods when the

oscillations are infinitely small. It may be shown that the small terms neglected

sometimes considerably modify the Lagrangian periods. An example of this occurs

in the Lunar Theory, These and other similar points of difiiculty are reserved for

the second volume.

It may be noticed that the determinant to find the periods of the oscillations

does not contain B^, B^, &c., but only B^^, &c., and Aj^^, &g. Any changes which

we may make in the values of B^, B^, &c., will therefore not afect the periods

though they may alter the position of equilibrium. The addition or removal of any

small constant forces will add terms of the first order to the force-function and

therefore change the values of B^, B^, &c. It now follows that the addition or

removal of any such constant forces will not alter the periods of oscillation. In the

same way these changes do not affect the ratios of M, N, P, &c. though they may
affect their absolute values.

458. Examples of Lagrange^s Method. The following

examples will show how we may use Lagrange's method to find

the small oscillations of a system. When only the periods are

required, the process may be summed up thus :

—

Form the terms

of T and U which depend on the squares of small quantities, and
equate to zero the discriminant of p^T + U.

Ex. 1. A body, of mass m, is suspended from a fixed point by a string OA of

length I attached to a point A of the body, B is the centre of gravity and AB = a.

The body oscillates under gravity in a vertical plane ; find the motion.

Let d, (p be the angles which the string OA and the radius AB make with the

vertical. Proceeding as in Art. 147 we find that when the powers of 6, (p higher

than the second are neglected

T=^m{ Pe'^ + 2ald'(t>' + ( A:^ + a") 0'^}

,

U=UQ-lmg{ld'^ + a<lP).

Forming the discriminant of p^T + U, and dividing by the common factor ml,

I

pH-g, ap'^ I =0.

I

alp^, p"^ (F + a^) - ag
\

.-. kHp^ -{al + k^ + a2) gp^ + ag"^= 0.

Taking the minors of the second row and representing the roots of the quadratic

by Pi^ i'2^
6= - L-yap^ sin [p-^t + e^) - L^ap^ sin {p^ + 62),

- -^1W^ - 9') sin [p^t + ei) + Lg {v^l - g) sin {p,JL + 63).

If the roots of the determinantal equation were equal we might expect that the

solution would take another form. Since the determinant is positive when p'^= ^<x>

,

and negative when p^=gjl, the roots are separated by the latter value of p^; the

roots, if equal, are therefore given hy p^= gll. Since tbe determinantal equation is

then not satisfied unless ap^ is also zero, the roots cannot be equal unless a= 0.

If a= 0, it is easy to see that the roots are not equal.
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If the string is attached to the middle point of a uniform rod, we have a =
and k^ finite. In this case one root of the Lagrangian determinant is zero, i.e.

p.r= 0, while the other root is 2^1^= gjl. Supposing that the position of the system

is also required, we have

T= ^m
(
Pe'^ + A;V^), U=Uq- \mgm.

The Lagrangian equations are therefore

ld" + ge = 0, 0"= O,

.-. ^= Lsin(^if + e), <p = ^ + Bt,

wliere L, e, j8, B are the four arbitrary constants. The point A therefore oscillates

as a simple pendulum while the rod turns round A with a uniform angular velocity.

If the string is attached to the end of a rod, Sk^=ia^. We may show that the

ratio of the periods cannot lie between 2±;^3.

Ex. 2. Two heavy particles, masses M and m, are tied to a string and suspended

from a fixed point O, the lengths OM, Mm of the string being respectively a and 6.

If the particles make small transverse oscillations find the two periods of oscilla-

tion, and show that they cannot be equal. Show also that one period is double

the other if 4.[M+m){a+hf= 15Mah.

It is sometimes important that the periods of a vibrating system should be

commensurable so that the motion may continually repeat itself at an interval

which is the least common multiple of the several periods. For example the

system may be intended to mark time like a pendulum or to give a resultant note.

Ex. 3. A particle can slide freely on a smooth circular wire which is suspended

from a fixed point on its circumference. The system being in equilibrium under

the action of gravity a small velocity is communicated to the particle in the

direction of a tangent to the circle, investigate the resulting small oscillations and
show that the periods are given by

2m + ^M g m +M(g
^ 2M a^ 2M \a

2

= 0,

where m, M are the masses of the particle and circle and a the radius. Show also

how the constants of integration are to be determined.

Ex. 4. A smooth thin shell of mass M and radius a rests on a smooth inclined

plane by means of an elastic string, which is attached to the sphere, and to a peg at

the same distance from the plane as the centre of the sphere, while a particle of mass
m rests on the inner surface of the shell. In the position of equilibrium the string

is parallel to tl^e plane, find the times of oscillation of the system when it is

slightly displaced in a vertical plane, and prove that the arc traversed by the

particle and the distance traversed by tbe centre of the shell from their positions of

equilibrium can always be equal if (M+m + mcosa) gl =Ea{l + cosa), where E is

the coefficient of elasticity of the string, I its natural length, and a the inclination

of the plane to the horizon. [Caius Coll.

Ex. 5. A three-legged table is made by supporting a heavy triangular lamina

on three equal legs, the points of support being the angular points of the lamina

;

if the legs be equally compressible and their weights be neglected, then the system

of co-existent oscillations of the top consist of one vertical oscillation and two

angular oscillations about two axes at right angles in its plane, and the periods

of the latter are equal and double that of the former. [St John's Coll. 1880.

Ex. 6. A bar AB of mass m and length 2a is hung by two equal elastic cords

AG, BD, which have no sensible mass, and have unstretched lengths Iq. C and D
are fixed points in the same horizontal line, and CD= 2a. Investigate the small
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oscillation of the bar when it is displaced from its position of equilibrium in the

vertical plane through CD, and show that the periodic times of the horizontal and
vertical oscillations of the centre of gravity of the bar, and of the rotational oscilla-

tion, are those of pendulums of lengths I, 1-Iq, i{l- Iq) respectively, where I is the

length of either cord when the system is in equilibrium. [Math. Tripos.

Ex. 7. Three equal particles mutually attracting each other according to the

Newtonian law are constrained to move like beads along the smooth sides of an
equilateral triangle. In equilibrium they occupy the middle points of the sides.

Prove that the equilibrium is unstable unless the initial displacements and the initial

velocities are equal, and in this latter case find the time of a small oscillation.

Ex. 8. Three equal particles, attracting each other with equal forces which are

constant at all distances, can slide freely on three equal non-intersecting circles

(radius r) whose centres are at the corners A, B, G of an equilateral triangle, and
which lie in the plane of the triangle. Show that, if the particles perform small

oscillations about their positions of equilibrium, two periods are equal to 27r/^, and

a third to 27r/p', where p^= —^ , p'^= -^^— =-— , R is the radius of the
' 4r R-r r R-r

circle circumscribing ABC, and F is the ratio of the force of attraction between any
two to the mass of either.

Ex. 9. A heavy body whose centre of gravity is H is suspended from a fixed

point 0. A second body whose centre of gravity is G is attached to the first at

some point A situated in OH produced. The system oscillates freely in a vertical

plane, prove that the quadratic giving the periods is

{
[MK-^ + ma^) p^ - (Mh + ma)g}{k^ -bg}=ma%Y>

where MK^ and mk^ are the moments of inertia of the two bodies about O and A
respectively. Also OH=h, OA = a, AG= b. What do these periods become when

(1) the upper body, and (2) the lower, is reduced to a short pendulum of slight mass?

The first case occurs when the attachment of a pendulum to its point of support is

not quite rigid, so that the pendulum may be regarded as supported by a short

string. The second case occurs when a small part of the mass of a pendulum is

loose and swings to and fro at each oscillation.

Ex. 10. A uniform circular disc of mass M and radius a is held in equilibrium

on a smooth horizontal plane by three equal elastic strings of modulus X, natural

length Iq and stretched length I. The strings are attached to the disc at the extremities

of three radii equally inclined to one another and their other ends are attached to

points of the plane lying on the radii produced. Show that the periods of vibration

of the disc are 27r . / ^, ,
and 2ir x/ —. ,t—;—r , where u= 2wZL/3X.

[Math. Tripos, 1898.

459. Principal Coordinates. To explain what is meant

by the principal coordinates of a dynamical system.

When we have two homogeneous quadratic functions of any

number of variables, one of which is essentially positive for all

values of the variables, it is known that by a real linear trans-

formation of the variables we may clear both expressions of the

terms containing the products of the variables, and also make the

coefficients of the squares in the positive function each equal to
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unity or some given positive constants. If the coordinates 6, <^,

'&C. be changed into f, 77, &c. by the equations

<^ = Atif + /^7; + &c.| (9),

&c. = &c.
J

we observe that 6\
(f>',

&c. are changed into f, rj', &c. by the
same transformation. Also the vis viva is essentially positive.

Hence we infer that by a proper choice of new coordinates, we
may express the vis viva and the force-function in the forms

I 2(?7-C^o) = 26,?+26,77 + &c. + 6nr+6^7;2+...r

I

These new coordinates f, 77. &c. are called principal coordinates

of the dynamical system. A great variety of other names has
been given to these coordinates ; such as harmonic, simple and
normal coordinates. Usually J.„, ^22? ^c. are made unity.

It is usually understood (when not otherwise stated) that prin-

cipal coordinates are so chosen that they vanish in the position

of equilibrium. We then have 61 = 0, 62 = 0, &c. = 0.

460. When a dynamical system is referred to principal co-

ordinates which do not necessarily vanish in the position of

equilibrium, Lagrange's equations take the form

A-^i^" — 6uf = 61, A^T}" — h^T] = 62, &c. = &c.

30 that the whole motion is given by

f = a + ^ sin (pi^ + 61), 7; = 6 -I- i^ sin {p^t + €2), &c.,

sphere E, F, &c., ei, e^, &c. are arbitrary constants to be deter-

mined by the initial conditions, and A-^^p-^ = — bn, A^p^^ = — 63.2, &c.

ind a, h, &c. are the values of f, t], &c. in equilibrium.

If we substitute the trigonometrical values of f, 77, &c. in

ihe formulae of transformation given above, we obviously reproduce

;he equations (5) of Art. 455, where the general coordinates 0, 0, &c.

tre expressed as trigonometrical functions of t. We may therefore

)btain one set of principal coordinates, viz. fi, 771, &c., which
vanish in the position of equilibrium, by writing

e= a + ifif, + i/2^i+...)

= ^ + A^,f, + i\r^77, + ... (10),

&c. = &c. J

wrhere the values of a, ^, &c., M^, M^, &c., Ni, A^a, &c. may be
bund by the methods explained in Art. 455. All other sets of

principal coordinates may be found from these by taking

^ = a + E^i, r) = h-\-Fr)^, &c.

When the initial conditions are such that throughout the

motion all the principal coordinates are constant except one, the

lystem is said to be performing a principal or harmonic oscilla-
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tion. It performs a compound oscillation when any two or more

are variable. We may therefore say that any possible oscillation

of the system about a position of equilibrium is analysed by

Lagrange's method into its simple or component oscillations.

From this reasoning we infer the important theorem that if

the equilibrium of a system is stable for the principal oscillations it

is stable for all oscillations.

The theorem that the general oscillations of a system may
be resolved into certain primary oscillations which can have a

simultaneous existence is sometimes called the principle of the

co-existence of small oscillations.

461. It is clearly important to determine the peculiarities

of a principal oscillation by which it can be recognized apart from

all mathematical symbols.

The physical peculiarities of a principal oscillation are

:

1. The motion recurs at constant intervals, i.e. after one of

these intervals the system occupies the same position in space as

before, and is moving in exactly the same way.

2. The system passes through the position of equilibrium,

twice in each complete oscillation. For, taking f as the variable co-

ordinate, we see that ^ — a vanishes twice while p^t increases by Stt.

3. The velocity of every particle of the system becomes zero

at the same instant, and this occurs twice in every complete

oscillation. For d^/dt vanishes twice while p:^t increases by Stt.

The positions of rest may be called the extreme positions of the

oscillation.

4. Let the system be referred to any coordinates 6,
(f>,

&c.

whose equilibrium values are (as before) a, 0, &c. When the

system is performing a principal oscillation these are all variable,

but the ratios of d — a, 4> — ^, &c. to each other are constant

throughout the motion*. For, referring to the formulae of trans-

formation (10), we see that, when rj^, fi, &c. are all zero and only ^i

is variable, — a <b — 13 „ ^

This theorem may be expressed by saying that every point of the

system is in the same phase of motion.

The periods of oscillation may all have a least common multiple.

If this be so, no matter what initial small disturbance is given to

the system, the initial state will be repeated over and over again

at intervals equal to the least common multiple. If on the

other hand no two of the periods of oscillation are commensurable,

the initial state can recur only when the system is performing a

* This property is mentioned by Lagrange, who on several occasions uses

principal coordinates, though not by name.
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(principal oscillation. Thus there are two kinds of oscillatory

systems, those in which the motion continually recurs at a
constant interval however the body is set in motion and those

in which this happens only when the initial impulse is properly

;

given. This may be one reason why some bodies are more sonorous

\than others, for if the interval is so short that the sound made
in the air is a musical note, that body when struck at random
gives a resultant note instead of an assembly of separate notes.

As an illustration of the method of finding the principal oscillations let us refer

to the example (1) already solved in Art. 458. There are two principal oscillations,

which are given respectively by

r 01= -L^ aPi sin [p-J^ + e^) ) 6^= - L^ap^ sin i^p^t + eg) )

I 0i= -^i{Pi^^-^)8in(^i< + ei)f 02= -^2(i'2'^-i^)sin(j?2« + e2)r

jThus in each principal oscillation both the string and the body oscillate. If we saw
|the system performing either of these oscillations we should recognize the fact by
'observing that both the string OA and the radius AB become vertical at the same
instant, that both reach their extreme positions at the same instant, and so on.

Ex. 1. A series of n heavy particles are attached at the points A, B, &c. of a

light string and the whole is suspended from a fixed point 0. When the system is

performing a principal oscillation, each portion of the string (produced if necessary)

intersects the vertical through in a point which is fixed throughout the motion.

[Kelvin's theorem. Popular lectures &c., 1867.

Let 6, (p, \p, &c. be the inclinations of the strings OA, AB, &c. to the vertical;

OA = a, AB= h, &c. Consider the motion of any point Pof one of the strings say J5C

and let BP= z. The distance of P from the vertical through is x= a6 + b^ + z\l/.

In a principal oscillation 0, <p, \p have constant ratios to each other ; hence if z

be so chosen that a;= at one instant, it is always zero.

The theorem is also true if OA, AB, &c. were rods hinged together, or any rigid

Dodies connected together in the manner described

.n Ex. 9, Art. 458.

Let us apply this theory to the example (1)

ilready considered in Art, 458. Let E be the

ixed point in the radius AB, z its distance from

4 measured positively towards B, then ld + Z(l>:=0.

Substituting for djcp the ratio of the minors of the

second row of Lagrange's determinant we have

I . ap^ - z {Ip^ - g)=0.

This determines the value of z corresponding to the two periods p^=p-^, P^=V^-
The two principal oscillations are exhibited in the figure, z=AE being negative in

ig. (1) and positive in fig. (2). The actual oscillation is constructed by the super-

Dosition of these two kinds of motion.

It is interesting to notice the way in which one principal oscillation disappears

vben either the length I of the string or the linear dimensions a of the body
iiminishes without limit. Referring to Lagrange's determinant we see that in both

iases one value of p"^ is very great so that the period of the disappearing oscillation

s very short. The visible motion is therefore reduced to a harmonic oscillation

)erformed in the finite time given by the other value of p^ together with a tremulous

notion. The values of Ip^ and ap^ given by the Lagrangian determinant, when I and a
vanish respectively, and p^ is infinite, are ultimately (k^ + a^) gjk^ and a-g/k^. The
lorresponding values of z are the positive quantity [k'^+ a'^)la and zero. The

II R. D. 25
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disappearing oscillation is that represented in fig. (2) ; the points and E are fixed,

and the extent of the tremulous motion is geometrically more and more limited as

either OA or AE becomes evanescent. In the oscillation which does not disappear

E ultimately coincides with 0.

Ex. 2. In the experiments conducted by Borda, Cassini, Arago and Biot to

determine the length of the seconds' pendulum by observing the time of oscillation

of a sphere supported by a wire, it has always been supposed that the diameter of

the sphere, which in the position of rest was vertical, continues during the whole

vibration to be in the same straight line as the wire. Show that the value of the

seconds' pendulum thus found is too short by k^jaP of itself ; where a is the radius

of the ball, k the radius of gyration about a diameter and I the length of the string.

In the experiments the ball used was so small that this correction is insensible.

[Airy, Camb, Trans, vol. iii. 1829.

In these experiments it is almost impossible to avoid giving the sphere a slight

spin about the diameter which in equilibrium is vertical. Treating the sphere and

the supporting wire as a rigid body, rotating with an angular velocity n about the

wire, we see by Art. 268 that the time of oscillation of such a system is 2irl{ix-^- ix^).

Substituting the values oi fx^, ix^ given in that article and writing - g tov g we easily

see that the length of the pendulum as observed is too long by a'^n^l25gP of itself

very nearly. This result agrees with that given by Poisson in the Connaissance des

Terns 1816. This correction also is insensible.

Ex. 3. If {^1, ^i), (^2' ^2) ^^® *^^ ^^o values of 6, for two principal

oscillations, prove that in example (1) of Art. 458, 16^6.2= -a^i^g- ^^ *wo equal

particles A, B, are suspended by a string from a fixed point 0, prove also that

2adjd2= -b(f)i(p2i where OA = a, AB = h. These relations between the principal

oscillations are special cases given by the method of Multipliers, vol. ii. , Art. 398.

462. Equal Roots in Lagrange^s Determinant. When
some of the roots of the equation giving p^ are equal, we know by

the theory of linear differential equations that either (1) terms of

the form (At -\- B) sin pt enter into the values of 6,
(f),

&c., or (2)

there must be an indeterminateness in the coefficients M, N, &c.

given by Art. 455. Referring the system to principal coordinates,

which vanish in the position of equilibrium, w^e see by Art. 460,

that the first alternative is in general excluded. If two values of

p^ are equal, say b^ and 622, the trigonometrical expressions for ^
and 7) have equal periods, but terms which contain ^ as a factor do

not make their appearance. The physical peculiarity of this case

is that the system has more than one set of principal or harmonic

oscillations. For it is clear that, without introducing any terms

containing the products of the coordinates into the expressions

for T or U, we may change f, 77 into any other coordinates ^1, t]-^,

which make p+ 77^= ^1^ + ^^ the other coordinates f, &c. remain-

ing unchanged. For example we may put ^ = fi cos a — rji sin a

and r) = Si sin « + '^1 cos a, where a has any value we please. These

new quantities fi, rji, f, &c., are evidently principal coordinates,

according to the definition of Art. 459.

One important case must however be noticed, viz., when
one or more of the values of p are zero. If, for example, bn = 0,

we have ^ = At + B, where A and B are two undetermined con-
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stants. The physical peculiarity of this case is that the position

of equilibrium from which the system is disturbed is not solitary.

To show this, we remark that the equations giving the position

of equilibrium are -^^ = 0, -^ = 0, &c., where U has the value

These in general require that f, 77, &c. should all vanish, but if

5ii
= they are satisfied whatever ^ may be, provided that 77, f, &c.

are zero. In any case however f must be very small, because the

cubes of f, 77, &c. have been rejected. It follows therefore that

there are other positions of equilibrium in the immediate neigh-

bourhood of the given position. Unless the initial conditions of

disturbance are such as to make the terms of the form At-\-B
zero, it may be necessary to examine the terms of higher orders

to obtain an approximation to the motion.

This line of argument requires that the equations of motion should be of the

Lagrangian form. In other cases the existence of equal roots in the fundamental

determinant may introduce powers of the time outside the trigonometrical expressions.

As the motion is greatly changed by the introduction of these terms, it is important

to have a criterion to determine beforehand lohether they are present or not. The
general conditions that all powers of the time are absent from the solution of a

system of linear differential equations are given in vol. ii., Art. 281.

Ex. 1. A heavy particle of mass m rests in equilibrium within a right circular

smooth fixed cylinder whose generating lines are horizontal. If the particle be

disturbed, form Lagrange's equations of motion, and show that in their solution

there may be terms of the form At + B.

Ex. 2. A rough thin cylinder of mass m and radius h is free to roll inside

another thin cylinder of mass M and radius a. The whole system is placed in

equilibrium on a smooth horizontal plane. A small disturbance being given, show

ithat the three values of p'^ are p^= 0, p^ = Q and p2__ _ y_
^ Interpret this

result. If X be the space rolled over,
<f>

the angle turned through by the outer

cylinder, and 6 the inclination to the vertical of the plane containing the axes, show

that all three coordinates have a common periodic term, while x and each have

additional independent terms of the form At + B.

How would the results be altered if the horizontal plane were perfectly rough?

463. Initial Motions. We may also use Lagrange's method
[to find the initial motion of any system as it starts from a position

lof rest. See Art. 199. As before we must choose for our co-

)rdinates some quantities whose higher powers can be rejected. It

generally convenient to choose them so that they vanish in the

litial position. As in Art. 454 we have

2T= And"" + 2A,,d'<t>' + A,,<l>'' + &c.,

^here A^^, &c. are functions of 6,
(f),

&c. Since the system starts

from rest, 6, </>, &c. are in the beginning of the motion all small

[uantities. If we reject all powers of 6,
<f>,

&c. except the

25—2
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lowest which occur, we may regard A^ &c. as constants whose

values are found by substituting for 6,
<f),

&c. their initial values.

We require also the expansion of U given in the same

article, viz., 2(U-Uo) = 2B,e + ^B^ + &c.

Since the initial position of the system is not close to a position

of equilibrium, the first differential coefficients of TJ with regard

to 6, (j), &c. are not small. The terms B^6, B^cf), &c. are not now
small quantities of the second order and hence it is unnecessary

to retain the quadratic terms of U. Proceeding exactly as in

Art. 454 the equations of motion are

A,,e'' + A^ct>''-h.., = B, I (1).

&C. = &C.J

From these we may deduce the initial values of 6'\ (/>", &c.

If X, y, z be the Cartesian coordinates of any point P of the

system, we may, by the geometry of the question, express these as

functions of Q, </>, &c., Art. 396. Thus suppose that x—f{d, 6, &c.),

then we have initially, since 6\ (j>' are zero,

with similar expressions for y and z. The quantities x'\ y'\ z" are

evidently proportional to the direction cosines of the initial direc-

tion of motion of the point P. In this way the initial direction

of motion of every point of the system may be found.

464. Initial Radius of Curvature. As explained in Art. 200, we sometimes

want more than the initial direction of motion of any point P of the system.

Suppose that we also want the initial radius of curvature of the path of P. We
must find the values of x" , x'", &c., and then substitute in any of the formulae

given in Art. 200. If, as before, x=f{d, <p, &q.) we find by differentiation that

initially ^"=f0d" +f^<f>" +...,

where suffixes as usual indicate partial differential coefficients with respect to

6, <f>,
&c. If y=F{d,

(f>,
&c.) there are of course similar expressions for y", &c., and

in three dimensions for z", &c.

If the point P be so situated that for every possible motion of the system it can

begin to move only in some one direction, we take the axis of x perpendicular

to that direction. We then have x" = Q for all initial variations of 6, <p, &c. It

follows that /g = 0, /. = 0, &c. = 0. Hence x'"= 0, and the value of x'" depends only

on 6", 0", &c., and not on 6'", 0''', &c. It is therefore unnecessary to differentiate

the dynamical equations (1) to find these higher differential coefficients. The axis of

y being parallel to the initial direction of the motion of P, the value of y" is finite.

Hence, taking the formula at the end of Art. 200, we find that the initial radius of

curvature p of the path of P is given by
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465. To simplify matters, let us suppose that the system has two coordinates

6, <p and that the initial radius of curvature of the path described by the point

x=f{d, 0), y = F{d, (p) is required, the system starting from rest.

Let 2T= Ad'^+ 2Bd'(l>'+C<f>'^ (1),

where A, B, G are given functions of 6, <p. The Lagrangian equations are

.(2).

Putting ^'= 0, 0'-O, these reduce to

Ad" + B<t>"=VQ, Bd" + C^"=U^ (3),

which give the initial values of 6", (p". To find the initial values of d"\ (f>"' we
differentiate (2) with regard to t and put ^'= 0, 0'= O. We obviously have d"'= 0,

0'"= 0. To find d'\ 0'^ we differentiate (2) twice. Noticing that when 0' = 0, 0'= 0,

|(P.') = .>^P + 3r(."| + 0"A)
d«3

^ {Pd'^ + Qd'<t>' + R<t>'^)= 2 {Pd"-' + Qd"<t>" + B<t>"\

where P, Q, R are any functions of d, <p, we easily find

Ad'' + B(f>^''= L, Bd''^+G<I^^=M (4).

If 2T2= Ad"^ + 2Bd"<p" + C<f>"^ (5),

we obtain L, M in the symmetrical forms

dd'^^ d<pj \de ^ de''\^ dd
(6),

where the differentiations with regard to 6, <p are partial and do not operate on
6", 0". Effecting the differentiations we have also

T_dW d^U dA (odA dB\
f dB dC\

^-W^ ^ddU"^ -^W^ -[^d^^de)^'^-[^d^--de)^'
M_d'^U dm ( dB dA\ fodC dB\ dC

These values of L, M contain only the first differential coefficients of A, By G
with regard to 6, 0, and after these differentiations have been effected, 6, are to

have their initial values Oq, 0,,. It follows that to find the initial values of 6'^", 0'',

we may expand the vis viva 2T in powers of the small quantities - ^o» ~ 0o (before

substituting in the Lagrangian equations (2)), and that we need only retain the first

powers of these quantities. Since hoivever second differential coefficients of U occur

loe must calculate U to the second poicer of the small quantities. By expanding T
and U in powers of these small quantities the amount of algebra in the solution is

generally much shortened, especially when we know beforehand how many powers

we are to retain ; see Art. 200.

To find the radius of curvature we use the formula

3(x"^+,"f^^„^„_^,^„
^gj_
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Now --fe^"+U<i>"^

with similar expressions for y" and y". We therefore have

« r

Also we have by (3) and (4),

{e"<f>^^-<f>"d%

.(9).

<t>"d-) = U^M-U^L .(10).

The equations (8), (9) and (10) determine the radius of curvature p in terms of

the initial values of the accelerations d'\ <p" . These are determined by solving ttie

equations (3) which do not require the Lagrangian equations to be differentiated.

If the point P is so situated that for every motion of the system it can begin to

move only in some one direction the Jacobian of/, F with regard to d, (p is zero.

The first term of the equation (9) is then absent and the determination of the radius

of curvature does not require the previous discovery of d", 0'\

466. Examples of Initial Dflotion. Ex. 1. A smooth plane of massM is freely

moveable about a horizontal axis lying within it and passing through its centre of

gravity, the radius of gyration of the plane about the axis being k. The plane being

inclined at an angle a to the horizon, a sphere of mass m is placed gently on it. If

initially the centre of the sphere be in a vertical through the axis of the plane, and

if h be its initial height above that axis, show that the angle which the initial

direction of motion of the centre makes with the vertical is given by

{Mk'^+ mW) tan = Mk'^ cot a. [Math. Tripos, 1879.

Ex. 2, n rods of lengths a^, a^.-.a^ are jointed together in one straight line

and being at rest have initial angular accelerations Wj , u^ . . . (a^in one plane. If one

end be fixed, prove that the initial radius of curvature of the path of the free end

is 5|^

.

[St John's Coll. 1881.

Ex. 3. BG is a diameter of a sphere, and rods AB, CD are jointed at B and C
each equal in length to BC. A being fixed, the system is held so that ABCD is a

horizontal straight line, and then let fall. If the mass of each rod be equal to

that of the sphere, the initial radius of curvature of the path of D is f||^1?.

[St John's Coll. 1881.

Ex. 4. A mass M rests on a smooth table, a string tied to it passes through a

hole in the table and supports a mass m at the other end. If m be released from

rest in such a position that its polar coordinates are r, when referred to the hole

as origin and the vertical as initial line, prove that initially

{M+m) r" =vig cos d, rQ" = - g sin 0,

{M+m)rr'''= Smg^ sin2^, r^0'"= g^ sin cos {M+ Qm)l{M+7n),

and find the initial radius of curvature of the path. [Coll. Ex. 1896.

The initial radius of curvature follows at once by substituting these values of

r", &c. in the polar formula given in Art. 200.

The Energy/ test of Stability.

467. Stability of equilibrium. The principle of the Con-
servation of Energy may be conveniently used in some cases to

determine whether a system of bodies at rest is in stable or

unstable equilibrium.
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Let the system be in equilibrium in any position, and let Fq be
the potential energy of the forces in this position. Let the system
be displaced into any initial position very near the position of

equilibrium and be started with any very small initial kinetic

energy Ti, and let Fj be the potential energy of the forces in this

position. At any subsequent time let T and F be the kinetic and
potential energies. Then by the principle of energy

T+F=ri+F, (1).

Let F be an absolute minimum in the position of equilibrium,

so that F is greater than Fq for all neighbouring positions. The
initial disturbed position being included amongst these, it follows

that Fj — Fo is a small positive quantity. Now the kinetic energy
T is necessarily a positive quantity, and since F is > Fq, the
equation (1) shows that T is <T^+ F — Vq. Thus throughout the

subsequent motion the vis viva lies between zero and a small

positive quantity, and therefore the motion of the system can
never be great.

Also, since T is necessarily positive, the system can never
deviate so far from the position of equilibrium as to make F
greater than Tj + V^. These two results may be stated thus:

—

If a system he in equilibrium in a position in which the potential

energy of the forces is a minimum, or the work a maximum, for all

displacements, then the system if slightly displaced will never acquire

any large amount of vis viva, and will never deviate far from the

position of equilibrium. The equilibrium is then said to be stable.

It Avill be shown in vol. ii. that this reasoning may in certain cases be extended

to determine whether a given state of motion as well as a given state of equilibrium

is stable. See also the Treatise on the Stability of Motion, Chap, vi., 1877.

468. If the potential energy be an absolute maximum in the

position of equilibrium, F is less than Fo for all neighbouring

positions. By the same reasoning we see that T is always greater

than Tj + Fi — Fo, and the system cannot approach so near the

position of equilibrium as to make F greater than Tj + Fj. So
far therefore as the equation of vis viva is concerned, there is

nothing to prevent the system from departing widely from the

position of equilibrium. To determine this point we must examine
the other equations of motion*.

* This demonstration is twice given by Lagrange in his Mecanique Analytique.

In the form in which it appears in the first part of that work, V is expanded in

powers of the coordinates, which are supposed very small; but in Section vi, of

the second part this expansion is no longer used, and the proof appears almost

exactly as it is given in this treatise up to the asterisk. The demonstration in

the next article is simplified from that of Lagrange by the use of principal co-

ordinates. A proof has also been given by M. Lejeune-Dirichlet in Crelle's Journal,

vol. xxxii., 1846, and in Liouville's Journal, vol. xii., 1847. Another proof is given

in Art. 214 of the author's Statics.
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If any principal oscillation can exist, let the system be placed
at rest in an extreme position of that oscillation, then the system
will describe the complete oscillation and will therefore pass

through the position of equilibrium. But, if T^ be zero, V can
never exceed Vi, and can therefore never become equal to Fq.

Hence the system cannot pass through the position of equilibrium.

It is unnecessary to pursue this line of reasoning further, for

the argument will be made clearer in the next article. /J

469. We may also deduce the test of stability from the equa-
tions which determine the small oscillations of a system about a

position of equilibrium. Let the system be referred to its prin-

cipal coordinates, and let these be 0,
(f),

&c. Then we have

2T = 6'^ +
(f)'^

+
2(U-Uo) = bnO'+h,cl>'+

where bn, 622 » ^c. are constants, and Uo is the value of U in the

position of equilibrium. Taking as a type any one of Lagrange's
equations

ddT_dT^dU
dt dd' d6~ dO'

we have e"-bnO=0,

with similar equations for cj), yfr, &c. If b^ is positive, this equa-

tion gives 6 in terms of real exponentials, and the equilibrium

is unstable for all disturbances which affect 0, except such as

make the coefficient of the term containing the positive exponent
vanish. If 611 is negative, 6 is expressed by a trigonometrical

term, and the equilibrium is stable for all disturbances which
affect 6 only. In this demonstration the values of 6n, 622? &c. are

supposed not to be zero.

If in the position of equilibrium f/" is a maximum for all

possible displacements of the system, we must have b^, 622 j ^c. all

negative. Whatever disturbance is given to the system, it will

oscillate about the position of equilibrium, and that position is

then stable. If C/" is a maximum for some displacements and a

minimum for others, some of the coefficients ^n, b^, &;c. will be
negative and some positive. In this case if the system be dis-

turbed in some directions, it will oscillate about the position of

equilibrium ; if disturbed in other directions, it may deviate more
and more from the position of equilibrium. The equilibrium is

therefore stable for all disturbances in certain directions, and un-

stable for disturbances in other directions. If [/" is a minimum
in the position of equilibrium for all displacements, the coefficients

611, 622, &c. are all positive, and the equilibrium is then unstable

for displacements in all directions. Briefly, we may sum up the

results thus :

—
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The system will oscillate about the position of equilibrium for
all disturbances if the potential energy is a 'minimum for ail dis-

placements. It will oscillate for some disturbances and not for

j

others if the potential energy, though stationary, is neither a maoci-

I mum nor a minimum. It will not oscillate for any disturbance if
the potential energy is a maximum for all displacements.

It appears from this theorem that the stability or instability of
a position of equilibrium depends, not on the inertia of the system,

but only on the force function. The rule is, give the system
a sufficient number of small arbitrary displacements, so that all

possible displacements may be compounded of these. By examining
the work done by the forces in these displacements we can deter-

mine whether the potential energy is a maximum or minimum
or neither.

We have assumed in this proof that when V is expanded in powers of 6, <p, &c.

fthe lowest powers which do not vanish are the second. This is not necessarily

ftrue, for U may be a maximum or minimum when 6, <f),
&c. vanish, provided the

lowest powers which do not vanish are of an even order, and are also such as to keep

lone sign for all values of d, (p, &c. This imperfection does not exist in the proof

given in Art. 467.

Ex. 1. A perfectly free particle is in equilibrium under the attraction of any
inumber of fixed bodies. Show that, if the law of attraction be the inverse square,

ffche equilibrium is unstable. [Earnshaw's Theorem. Camh. Trans. 1839.]

Let be the position of equilibrium, Ox, Oy, Oz any three rectangular axes,

d?V dW d?V
;hen if V be the potential of the bodies, \^ = ^-^ , 622= 3-7 > ^33= -t-» • But, since

(xoo Q/y ciz

sum of these is zero, h^^, &22' ^33 cannot all have the same sign.

Ex. 2. Hence, show that, if any number of particles mutually repelling each

)ther be contained in a vessel, and be in equilibrium, the equilibrium will be

instable unless they all lie on the containing surface. [Sir W. Thomson, now
[Jord Kelvin, Garnb. Math. Journal, 1845. Reprint, viii., p. 100.]

470. The Cavendish Experiment. As an example of the

[node in which the theory of small oscillations may be used as

I means of discovery we have selected the Cavendish Experiment.
The object of this experiment is to compare the mass of the

arth with that of some given body. The plan of effecting this

)y means of a torsion-rod was first suggested by the Rev. John
Siichell. As he died before he had time to enter on the experi-

nents, his plan was taken up by Mr Cavendish, who published

;he result of his labours in the Phil. Trails, for 1798. His
experiments being few in number, it was thought proper to

lave a new determination. Accordingly, in 1837 a grant of £500
vas obtained from the Government to defray the expenses of

he experiments. The theory and the analytical formulae were
upplied by Sir G. Airy, while the arrangement of the plan of

operation and the task of making the experiments were under-

iaken by Mr Baily. Mr Baily made upwards of two thousand

.
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experiments with balls of different weights and sizes, and sus-

pended in a variety of ways, a full account of which is given in the
Memoirs of the Astronomical Society, Vol. xiv. The experiments
were, in general, conducted in the following manner.

471. Two small equal balls are attached to the extremities

of a fine rod called the torsion-rod, and the rod itself is sus-

pended by a string fixed to its middle point G. Two large

spherical masses A, B are fastened on the ends of a plank
which can turn freely about its middle point 0. The point is

vertically under C and so placed that the four centres of gravity

of the four balls are in one horizontal plane.

Firstly, suppose the plank to be placed at right angles to the

torsion-rod, then the rod will take up some position of equilibrium

called the neutral position, in which the string has no torsion.

Let this be represented in the figure by Ca. Now let the masses
A and B be moved round into some position B^A^, making a

not very large angle with the neutral position of the torsion-rod.

The attractions of the masses A and B on the balls will draw the

torsion-rod out of its neutral position into a new position of equi-

librium, in which the attraction is balanced by the torsion of the

string. Let this be represented in the figure by CE^. The angle

of deviation E^Ca, and the time of oscillation of the rod about this

position of equilibrium are observed.

Secondly, replace the plank AB at right angles to the neutral

position of the rod, and move it in the opposite direction until

the masses A and B come into some position A^B^ near the rod

but on the side opposite to B^A^. Then the torsion-rod will

perform oscillations about another position of equilibrium CE2
under the influence of the attraction of the masses and the torsion

of the string. As before the time of oscillation and the deviation

EoCa are observed.

In order to eliminate the errors of observation, this process

is repeated over and over again, and the mean results are taken.
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riie positions B^Ai and A^B^, into which the masses are alternately

out, are as nearly as possible the same throughout all the ex-

Deriments. The neutral position Got of the rod very nearly

Disects the angle between B^Ai and AzB^, but as this neutral

Dosition, possibly owing to changes in the torsion of the string,

s found to undergo slight changes of position, it is not to be

considered in any one experiment coincident with the bisector

)f the angle AfiB^.

Let Cx be any line fixed in space from which the angles may
)c measured. Let b be the angle xGa, which the neutral position

)f the rod makes with Co) ; A and B the angles which the alter-

late positions, B^A^ and A^B^, of the straight line joining the

'('litres of the masses, make with Coo; and let a = ^(A + B). Also

or X be the angle which the torsion-rod makes with Cx at the

,ime t.

Supposing the masses to be in the position ^i, B^, the moment
ihout GO of their attractions on the two balls and on the rod will

)e a function only of the angle between the rod and the line ^i^ii
ct this moment be represented by (J. — x). The whole apparatus

s enclosed in a wooden casing to protect it from any currents

)f air. The attraction of this casing cannot be neglected. As it

nay be different in different positions of the rod, let the moment
)f its attraction about CO be ^jr (x). Also the torsion of the string

s very nearly proportional to the angle through which it has

)een twisted. Let its moment about CO be E {x — h).

If then / be the moment of inertia of the balls and rod about

h(j axis CO, the equation of motion is

Now a — X is a small quantity, let it be represented by f.

Jubstituting for x and expanding by Taylor's theorem in powers

f ^, we get

Let
^.^4>'{A-a)-^-ia)^E^

<i>{A-a)+^{a)-E{a-h)

Then x=e + L^m{nt + L'),

rhere L and L' are two arbitrary constants. We see therefore

lat in the position of equilibrium the angle made by the torsion-

with the axis of x is e, and the time of oscillation about

16 position of equilibrium is 27r/^.

Let us now suppose the masses to be moved into their alternate
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position A^B^] the moment of their attraction on the balls and
rod is now —

<f>
(x — B). The equation of motion is therefore

Let a = x — ^, then, substituting for B its value 2a — A, we find

by the same reasoning as before

^ = e' + iV" sin (nt + JSf'),

where n has the same value as before, and

^,_^ .
-cl>(A-a)+y!r(o.)-E{a-h)^-""^

'K^
•

^
In these expressions, the attraction sjr (a) of the casing, the

coefficient of torsion E and the angle b are all unknown. But
they all disappear together, if we take the difference between
e and e. We then find

<f)(A — a) e — e'

F^=^-i^-(¥y (A).

where T is the time of a complete oscillation of the torsion-rod

about either of the disturbed positions of equilibrium. Thus the

attraction (^{A — a) can be found if the angle e — e between the

two positions of equilibrium and also the time of oscillation about
either can be observed.

472. It is sometimes wrongly objected to the Cavendish
Experiment that the attractions of the balls A and B are supposed

to be great enough to be measured, xuhile the much greater

attractions of surrounding objects, such as the house, (&c., are

neglected. But this is not the case. The attractions of all fixed

bodies are included in that of the casing. These are therefore

not neglected but eliminated from the result. It is to effect this

elimination that we have to observe both e — e and the time of

oscillation. We thus really form two equations, and from these

we eliminate those attractions which we do not want to find.

473. The function (J. — a) is the moment of the attractions

of the masses and the plank on the balls and rod, when the rod

has been placed in a position Cf bisecting the angle A^GB^ be-

tween the alternate positions of the masses. Let M be the mass

of either of the bodies A and B, m that of one of the small balls,

m' that of the rod. Let the attraction of M on m be represented

by fjuMm/D'^, where D is the distance between their centres. If

{p, q) be the coordinates of the centres of A^ referred to Cf as

the axis of x, the moment about C of the attraction of both the

masses on both the balls is

2fiMm\
cq cq

\{(p-cy+q'}^ {(p-\-cy+q''\^
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vvhere c is the distance of the centre of either small ball from the
centre C of motion. Let this be represented by fjuMmP. The
:n()ment of the attractions of the masses on the rod may by
ntegration be found to be fiMm'Q, where Q is a known function

3f the linear dimensions of the apparatus. The attraction of the
plank may also be taken account of. Thus we find

(l>(A-a)- fiM (mP + m'Q).

If r be the radius of either ball, we have

I=2m (c2 + |r2) + im' (c - rf,

^hich may be represented by J = mP' + m'Q', where P' and Q' are

known functions of the linear dimensions of the rod and balls.

[Hence we find by substituting in equation (A)

^ mP + rriQ _e — e /^ttV

^
• mP' + m'Q' ~ ~Y~ ' \T)

Let E be the mass of the earth, R its radius and g the force

!of gravity, then* g = /jbE/R'^. Substituting for /jl, we find

M

_

e-e' /SttV JL_ mP' + m/Q'

E~ 2 '[tJ ' gR'' mP + m'Q"

The ratio mjm' was taken equal to the ratio of the weights of

the ball and rod weighed in vacuo, but it would clearly have been
more accurate to have taken it equal to their ratio when weighed
in air. For, since the masses attract the air as well as the balls,

the pressure of the air on the side of a ball nearest the attracting

mass is greater than that on the furthest side. The difference

of these pressures is equal to the attraction of the mass on the air

displaced by the ball.

474. By this theory the discovery of the mass of the earth

I has been reduced to the determination of two elements, (1) the

I time of oscillation of the torsion-rod, and (2) the angle e — e'

between its two positions of equilibrium when under the influence

of the masses in their alternate positions. To observe these,

a small mirror was attached to the rod at C, with its plane

nearly perpendicular to the rod. A scale was engraved on a ver-

tical plate at a distance of 108 inches from the mirror, and the

image of the scale formed by reflection on the mirror was viewed

in a telescope placed just over the scale. The telescope was
furnished with three vertical wires in its focus. As the torsion-rod

turned on its axis, the image of the scale was seen in the telescope

to move horizontally across the wires, and at any instant the

* In Baily's experiment, a more accurate value of g was used. If e be the

ellipticity of the earth, m the ratio of centrifugal force at the equator to equatorial

E
gravity, we have g = iJ.^{l-\-m~2e- (fm - e) cos^X}, where R is earth's polar radius

and X the latitude of the place.
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number of the scale coincident with the middle wire constituted

the reading. The scale was divided by vertical lines one-thirteenth

of an inch apart and numbered from 20 to 180 to avoid negative

readings. The angle turned through by the rod when the image
of the scale moved through a space corresponding to the interval

of two divisions was therefore -^ . yj^ . J = 73'' '46. But the

division lines were cut diagonally and subdivided decimally by
horizontal lines; so that not only could the tenth of a division

be clearly distinguished, but, after some little practice, the frac-

tional parts of these tenths. The arc of oscillation of the torsion-

rod was so small that the square of its circular measure could be
neglected ; but as it extended over several divisions it is clear

that it could be observed with accuracy. A minute description

of the mode in which the observations were made would not find

a fit place in a treatise on dynamics, we must therefore refer the

reader to Baily's memoir.

In this investigation no notice has been taken of the effect of the resistance of

the air on the arc of vibration. This was, to some extent at least, eliminated by a

peculiar mode of taking the means of the observations. In this way also some
allowance was made for the motion of the neutral position of the torsion-rod.

We have also not considered what relative dimensions should be given to the

different parts of the instrument, consistent with its proper support, so as to obtain

the most accurate result. Such considerations are hardly suited to a general

treatise on dynamics. In the original experiments the attracting masses A and

B were large, and brought near the small balls m and m. As a rapid oscillation of

the rod was inadmissible, the moment of inertia I of the rod and balls was large

and the torsion of the string was small. The size of the instrument was not handy.

It was very important that the whole instrument should be kept at the same
uniform temperature. As this could not be completely accomplished slight air

currents were set up both within and without the wooden casing. Thus the

oscillation of the rod was sometimes irregularly affected and the torsion of the

string altered.

475. The density of water in which the weight of a cubic

inch is 252'725 grains (7000 grains being equal to one pound
avoirdupois) was taken as the unit of density. The final result

of all the experiments was to determine for the mean density

of the earth the value 5"6747.

Many experiments have been made besides those by Cavendish
and Baily, a full account of which is given by Poynting in his

Adams Prize Essay, 1894. We may allude to the results of

Cornu and Bailie (see Gomptes Bendus, 1873 and 1878). They
made several improvements in the apparatus arid found the mean
density to be 5'56. They considered that they had found an error

in Baily's method of taking his means, and that, if this were
corrected, Baily's result would become 5*55. The observations

made by Jolly at Munich and Poynting at Manchester are also

important; th« former gave 5*692 and the latter 5'4934 as the

mean density.
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A great improvement in the mode of conducting the experi-

munt has been made by Boys. It is clear that every diminution
ill the size of the apparatus is an advantage, provided the extent
)t' oscillation remains sufficiently large for accurate measurements.
The apparatus is then more easily kept at one temperature, and
can be made more free from currents of air. Now Boys discovered

a method of making fine quartz wires, which are not only
sufficiently strong to carry the beam, but are also free from some
other defects of ordinary metallic wires. The result of his ex-

periments gave 5"527(), which is considered to be a very near
approximation to the truth. Proceedings Royal Soc. 1889.

476. Three general methods have been employed to determine
the mean density. In the first a balance is used as in the

Cavendish experiment. In the second the mass of the earth is

compared with that of a mountain by observing the deviation

produced in a plumb-line by the attraction of the latter. The
mountain chosen was Schehallien, and the density of the earth

was found to be a little less than five times that of water. See
Fhil. Trans. 1788 and 1811. From some observations near Arthur s

Seat, the mean density of the earth was given by Lieut.-Col.

James of the Ordnance Survey as 5'316. See Phil. Trans. 1856.

In the third method the force of gravity at the bottom of a
mine is compared with that at the surface, by observing the times
of vibration of a pendulum. In this way the mean density of the
earth was found to be 6-566. Airy, Phil. Trans. 1856.

The following summary of results is taken from Poynting's

Essay.

Approximate
date

Experimenter Method Result

1737-40
1774-6
1855
1821
1880
1854
1883
1885

1797-8
1837
1840-1
1852
1870
1889

1879-80
1878-90

1884-

1886-8
1889

Bouguer
Maskelyne and Hutton

James and Clarke
Carlini

Mendenhall
Airy

Von Sterneck
Von Sterneck
Cavendish
Keich
Baily
Eeich

Cornu and Bailie

Boys
Von Jolly

Poynting
( Konig, Kicharz and )

I Krigar Menzel )

Wilsing
Laska

Plumb-line and Pendulum
Plumb-line

Inconclusive
4-5 to 5
5-316

4-39 to 4-95

5-77

6-565
5-77

about 7
5-448
5-49

5-674

5-583

5-56 to 5-50

in progress
5-692

5-493

in progress

5-579

in progress

Mountain Pendulum

Mine Pendulum

Torsion Balance

Common Balance

Pendulum Balance
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EXAMPLES*.

1. A uniform rod of length 2c rests in stable equilibrium with its lower end
at the vertex of a cycloid whose plane is vertical and vertex downwards, and passes

through a small smooth fixed ring situated on the axis at a distance b from the

vertex. Show that, if the equilibrium be slightly disturbed, the rod will perform

small oscillations with its lower end on the arc of the cycloid in the time

/a -fc^ + S (b — c)H
^'"'\/ "—V—rro-^—^— 5 where 2a is the length of the axis of the cycloid.V 3g{b^-4ac)

2. A small smooth ring slides on a circular wire of radius a which is con-

strained to revolve about a vertical axis in its own plane, at a distance c from the

centre of the wire, with a uniform angular velocity u where u}"^ (c ^2 + a)=g ^2;
show that the ring will be in a position of stable relative equilibrium when the

radius of the circular wire passing through it is inclined at an angle 45° to the

horizon ; show also that, if the ring be slightly displaced, it will perform a small

oscillation in a time T where {TI2Tr)^ g{c^8 + a)=aJ2{cj2 + a).

3. A uniform bar of length 2a, suspended by two equal parallel strings each of

length b from two points in the same horizontal line, is turned through a small

angle about the vertical line through the middle point, show that the time of a

small oscillation is 2ir^bk^lga^.

4. Two equal heavy rods, connected by a hinge which allows them to move
in a vertical plane, rotate about a vertical axis through the hinge, and a string

whose length is twice that of either rod is fastened to their extremities and

bears a weight at its middle point. If M, M' be the masses of a rod and the

particle, and 2a the length of a rod, prove that the angular velocity about the

vertical axis when the rods and string form a square is a /—^ •
-

—

^— ;
prove

also that, if the weight be slightly depressed in a vertical direction and the system

left to itself, the time of a small oscillation is 27r . / .^ . rr-z
—

-^rjr, •

5. A ring of weight TT which slides on a rod inclined to the vertical at an angle

a is attached by means of an elastic string to a point in the plane of the rod, so

situated that its least distance from the rod is equal to the natural length of the

string. Prove that, if 6 be the inclination of the string to the rod when in

equilibrium, cot^-cos ^= wcosa, where W/n is the modulus of elasticity of the

string. Also if the ring be slightly displaced the time of a small oscillation will

be 2irsJ{nllg(l - sin^^)}, where I is the natural length of the string.

6. A circular tube of radius a contains an elastic string fastened at its highest

point equal in length to one-eighth of its circumference, and having attached to its

other extremity a heavy particle which hanging vertically Would double its length.

The system revolves about the vertical diameter with an angular velocity sjgja.

Find the position of relative equilibrium, and prove that, if the particle be slightly

27r ,^fir la ta + ^ika t
disturbed, the time of a small oscillation is t t \/ ~- l^^^- 4:ou.j

\/7r + 4 V 9

7. A heavy uniform rod AB has its lower extremity A fixed to a vertical

axis, and an elastic string connects B to another point C in the axis such that

AG=a, AB= asJ2; the wholie is made to revolve round AC with such angular

velocity that the string is double its natural length and horizontal when the system

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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is in relative equilibrium, and then left to itself. If the rod be slightly disturbed

in a vertical plane, prove that the time of a small oscillation is 2ir,J^al21g^ the

weight of the rod being sufficient to stretch the string to twice its length. Art. 452.

8. Three equal elastic strings AB, BG, GA surround a circular arc, the ends

being fixed at ^. At J5 and G two equal particles of mass m are fastened. If I be

the natural length of each string supposed always stretched, and \ the modulus of

elasticity, show that if the equilibrium be disturbed the particles will be at equal

distances from A after intervals irj^/mllX. Art. 454.

9. A particle of mass M is placed near the centre of a smooth circular

horizontal table of radius a, strings are attached to the particle and pass over n

smooth pulleys which are placed at equal intervals round the circumference of the

circle ; to the othpr end of each of these strings a particle of mass M is attached

;

show that the time of a small oscillation of the system is 27r f ) .

\ n gj

10. Two discs slide in a circular tube of uniform bore containing air, exactly

fitting the tube. The two discs are placed initially so that the line joining their

centres passes through the centre of the tube, and the air in the tube is initially of

its natural density. One disc is projected so that the initial velocity of its centre

is a small quantity. If the inertia of the air be neglected, prove that the point

ou the axis of the tube equidistant from the centres of the discs moves uniformly

and that the time of an oscillation of each disc is 27r^iHa7r/4P, where M is the

mass of each disc, a the radius of the axis of tube, and P the pressure of air on

the disc in its natural state.

11. A uniform beam of mass 31 and length 2a can turn round a fixed horizontal

axis ctt one end ; to the other end of the beam a string of length I is attached and
at the other end of the string a particle of mass m. If, during a small oscillation

of the system, the inclination of the string to the vertical is always twice that of the

beam, then M {Bl -a) = 6/;i {I + a). Art. 458.

12. A conical surface of semivertical angle a is fixed with its axis inclined at

an angle 8 to the vertical, and a smooth right cone of semivertical angle /3 is placed

within it so that the vertices coincide. Show that time of a small oscillation

= 27r;y/ (sin (a-/3)cosec ^a/^r), where a is the distance of the centre of oscillation of

the cone from the vertex.

13. A number of bodies, the particles of which attract each other with forces

varying as the distance, are capable of motion on certain curves and surfaces.

I

Prove that, if Ay B, C be the moments of inertia of the system about three axes

1 mutually at right angles through its centre of gravity, the positions of stable

I
equilibrium will be found by making A + B + G a minimum. Art. 469.

14. A particle is in motion within a triangle ^SC, and is attracted perpendicu-

larly to the sides with forces each equal to /x times the perpendicular distance.

Show that the motion is expressed by two terms of the form Psin {«^(\(u) + a},

where (\ - 1) (X - 2) + 2 cos A cos B cos G= 0. Show that the roots of this quadratic

are real and positive.

Examine the case of an equilateral triangle, and in that case verify the above

iLSult independently.

15. The force between two small masses attracting according to the law of the

inverse square of the distance is equal, at distance a, to a very small fraction

n of the weight of either. They are suspended by two strings of length I from two

points situated in a horizontal plane, at a distance apart equal to a, and are set to

perform small vibrations in the same vertical plane; prove that the motion of

each is compounded of two harmonic motions whose periods are very nearly as

1 : l + 2nlla.

R. D.
'
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CHAPTEE X.

ON SOME SPECIAL PROBLEMS.

Oscillations of a Rocking Body in three dimensions.

477. A heavy body oscillates in three dimensions with one

degree of freedom on a fixed rough surface of any form in such a
manner that there is no rotation about the common normal. Find
the motion.

478. The Relative Indicatrix. Let be the point of

contact when the heavy body is in equilibrium. Let the common
normal be the axis of z, and let the other two axes be at right

angles in the common tangent plane. The equations to the

portions of the surfaces in the neighbourhood of may be written

in the forms z = ^{ax- + 2bxy + cy^) + &c.

z' = J(aV + 2b'xy + cY) + &c.

Let an ordinate move round the origin so that the portion z — z

between the surfaces is constant and equal to any indefinitely

small quantity A, This ordinate traces out an evanescent conic

on the plane of xy whose equation is

(a - a') x^-\-2{b- b') xy-\-{c- c') 3/^ = 2A.

Any conic similar and similarly situated to this, lying in the

tangent plane and having its centre at 0, is called the Relative

Indicatrix of the two surfaces.

Let OR be any radius vector of this indicatrix, then the

difference of the curvatures of the two sections made by a

normal plane zOR (or their sum, if they are measured in oppo-

site directions) varies inversely as the square of OR. This of

course follows from the definition of the conic by a well-known

argument in solid geometry. Thus, let (r, z){r, z') be the co-

ordinates of two points on the two circles of curvature at the

same distance from the axis of z. We have ultimately 2pz = r'^

and 2p'z' = r\ Also z — z' = A, hence, eliminating z and /, we see

that the difference of the curvatures varies inversely as r\

Let OR be a tangent to the arc of rolling determined by the

geometrical conditions of the question. Let p, p be the radii of

I
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curvature of the normal sections through OR, taken positively

when the curvatures are in opposite directions, and let - = - H

—

,

.

s P P
Then s may be called the radius of relative curvature.

The three following propositions are of use in dynamics.

479. Prop. The Instantaneous Axis. Let 01 and Oi/

be two conjugate diameters of the relative indicatrix, then, if Oy
be a tangent to the arc of rolling, 01 is the instantaneous axis,

and, if 6 be the indefinitely small angle turned round the in-

stantaneous axis, the arc a of rolling is given by (t — Bs sin yOI.

To prove this, measure in the plane yz along the surfaces two lengths OP and
OP' each equal to <x. Then in the limit P'P is parallel to the normal Oz. Let it

cut the plane of X2j in M. Draw another ordinate Q'QN indefinitely near to P'PM
so that PP'=QQ', then MN is an elementary arc of that relative indicatrix which

passes through M, and is therefore parallel to 01 the conjugate diameter of OM.
Also PQP'Q' is a parallelogram.

The planes OPQ, OP'Q' are ultimately tangent planes at P and P', and must
intersect in a straight line OJ parallel to PQ or P'Q'. If then we turn the body

round OJ, the tangent planes at P and P' will be brought into coincidence and the

one body will roll on the other. Thus OJ is the instantaneous axis.

Now, since MN is the projection of PQ or P'Q' on the plane of xy, it follows

that 01, a parallel to MN, is the projection of OJ, a parallel to PQ or P'Q'. Also

the parallels PQ and P'Q', being tangents to the surfaces, make indefinitely small

angles with the plane of xy, hence OJ makes an equal indefinitely small angle

with 01. If be this small angle and d the angle of rotation about OJ, the

nidtion of the body is represented by rotations ^sin0 about Oz and dcos<p about

('[. Since 6 is indefinitely small, the former is of the second order and is to

he neglected. The latter reduces to 6.

To prove the last part of the proposition, we may again resolve this latter

rotation into a rotation 6 cos yOI about Oy and a rotation 6 sin yOI about Ox.

The former does not affect the arc of rolling along Oy, the latter obviously gives

a = sd sin y 01.

480. Prop. The Cylinder of Stability. Measure a length

s sin^ yOI along the common normal Ojz and describe a circular

c\ Under having this length as a diameter of the base, the axis

being parallel to 01. If the centre of gravity of the body be
inside this cylinder, the equilibrium is stable: if outside and
ibove the plane of xy, the equilibrium is unstable. The cylinder

may therefore be called the cylinder of stability.

These results follow from the second expression for the moment
A' gravity about 01 found in the next proposition.

481. Prop. The time of Oscillation. Let G be the

centre of gravity and K the radius of gyration of the body about

31, then the length L of the simple equivalent pendulum is

(iven by lO ^ ^ ^^^ ^^^ ^.^^ ^^^ _ ^^ ^i^^QQj^

I
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If OG produced cut the cylinder of stability in F, then

^=GV.^m'GOL

We deduce from this that the time of oscillation of the body

is the same as if the fixed surface were plane, and the curvatures

of the upper body at the point of contact were altered so that

the Relative Indicatrix remained the same as before.

482. These results may be obtained by taking moments about the instantaneous

axis, see Art. 448. The general course of reasoning may be indicated as follows.

In equilibrium O is the point of contact and OG is vertical; as the body rolls

on the surface, say in the direction y'P, let P be the point of contact at the

time t and let 0', G' be the positions in space occupied by the points and G
of the body. These points are not marked in the figure, but O and 0' will obviously

lie indefinitely close to each other between y' and P, so that 00' is perpendicular

to Py', while G' will move from G a little to the right, as seen fro.m any point

in PP. Draw PW vertical, and PF parallel and equal to O'G'. If PI' be the

instantaneous axis at the time t, 6 is the angle between the planes WPI' and FPF.

To find the moment of the weight about PF we resolve gravity parallel and

perpendicular to PF. The

former component has no

moment about PF, the latter

is g sin WPF. Let this latter

act parallel to some straight

line KP. The moment re-

quired is the product of re-

solvedgravity into the shortest

distance between the line of

action of this force and the

straight line PF. This short-

est distance is equal to the

sum of the projections (with

their proper signs) of PO',

O'G' on a straight line per-

pendicular to both KP and
PF. Let this straight line be PH. To find these projections we shall use a little

spherical trigonometry. Let the figure represent the spherical triangles formed by
the arcs on a sphere subtending the various angles at the centre P. Also Py' is a

tangent to PO' the arc of rolling, and Pz' is normal to the surface at P. The
projection of PO' on PH is cr cos y'PB = a cos y'PN cos NPH= <t sin y'PF cos KPz'.

The projection of O'G' is the same as the projection of PF and this is

=PF cos HPF= - PF Bin WPF= - OG . 6 sin WPF.

The differential equation is therefore (since (T= ds sin y'PF)

K^d= -dg{s. sin2 y'PF . sin WPF . cos KPz' - OG . sin^ WPF\.

We now replace sin WPF . cos KPz' by its equivalent cos WPz'. In the small

terms containing the factor 6 we may remove the accents, and replace P and W by

O and G. We immediately obtain one of the results.

To obtain the other, we write the equations of moments in the form

K^= - dg sin2 WPF \ s sin2 y'PF
cos KPz'

cosKPV
-OG)
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]>ut, if D be the diameter of the cylinder of stability drawn with its axis parallel to

/'/', and if PW cut the cylinder in V, we have PV.cosKPW=D cosKPz'.

Substituting in the equation, the expression in brackets takes the form PV - OG,
which is ultimately equal to GV. We thus obtain the second result.

We might also find the periods by the method of vis viva.

Oscillations of Cones in three dimensions.

488. Oscillations of Cones to the first order. A heavy

cone of any form oscillates on a fixed rough conical surface, the

vertices being coincident. It is required to find the time of a small

oscillation.

The motion of a cone about its vertex regarded as a fixed point

is conveniently discussed by the help of spherical trigonometry.

Let be the common vertex, G the centre of gravity of the

moving cone, OG = h. With centre 0,

and radius equal to OG, describe a

\ /^ sphere ; it is on this sphere that lue

,-^"" '-p^ shall suppose our spherical triangles to

\ <r\ / be constructed. The figure represents

, .V U/
. only these triangles and is not marked.

^\^ Let 01 be the instantaneous axis of the

/^•^-,____ moving cone, i.e. the common generator

/ r \ along which the two cones touch, and let

^ \ it cut the sphere in I. Let OTf be a

vertical drawn upwards to cut the same
sphere in W. Let the arcs WI = 2,

GI = r. In the position of equilibrium the three straight lines

Wy OG, 01 are in the same vertical plane, and they are so

represented in the figure.

Let n be the inclination of the vertical plane GOI to the

normal plane to the two cones along 01. Let p, p be the semi-

angles of the two right circular osculating cones of contact along

0/, taken positively when the curvatures are in opposite directions.

In the figure their axes cut the sphere in G and D.

IfK be the radius of gyration of the moving cone about 0/,
the length L of the simple equivalent pendulum is given by

K"^ . , , sin p sin p'

j^ = sm {z — r) cos n ——-, -. — sin r sm z.
hL sm (/^ + p )

The dynamical principle used in obtaining this result is that

of taking moments about the instantaneous axis, Art. 448. If G'

be the position of the centre of gravity at the time t, and 6 the

angle between the planes GOI, G'OI, we havem = M (1),

where M is the moment of g acting at G' about the instantaneous

axis at the time t.
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If OP be a neighbouring generator of the fixed cone and the

angle POI be a, the moment M' about OP of g acting at G' is a

function of 6 and a. We therefore have to the first order of small

quantities M' = A(T + Bd (2),

where A and B depend on the form of the cone. 1^

Finally, if OP be the instantaneous axis at the time t, we

have M' = M and o- sin (/o -|- p') = ^ sin /3 sin /?' (3).

Eliminating either cr or ^ from these equations the time of

oscillation can be deduced.

The relations (2) and (3) are established in an elementary

manner in Arts. 484 and 485. The steps in the investigation

correspond to those used in the oscillation of cylinders (Art. 441),

the chief difference being that the straight lines used in the

figure for cylinders are here replaced by spherical arcs. The
proof of the relation (3) presents no difficulty, but in the general

case when both the rolling and the fixed cone are of any forms the

figure required to obtain the relation (2) is rather complicated.

In particular cases, such as when the fixed surface is plane or the

rolling cone is one of revolution, there is considerable simplifica-

tion, the extent of which is pointed out in some of the examples
in Art. 486. In these the proof, as adapted to the special case

under consideration, is again briefly sketched.

Another method. By considering the parts of M' due to

and a separately, we may arrive at their values without re-

quiring any figure more complicated than that already drawn in

this Article. The proof is as follows.

Suppose (1) that o-^O, then M' is the moment round 01 of g acting at G'

parallel to the vertical WO. Since the body is turned round 01 through an angle

6, the arc GG'= hd sin GI. Resolving g parallel and perpendicular to 01, the

latter component is g sin WI and its moment round 01 is ^rsin WI. GG'. Sub-

stituting for the spherical arcs WI and GI their values z and r, the moment
becomes - ghd sin r . sin z.

Suppose (2) that ^= 0, then M' is the moment round the neighbouring generator

OP of g acting at G parallel to WO. Resolving g along and perpendicular to GO,

the latter component is g sin WG, and acts at G along a tangent to the spherical

arc GI. To find its moment round OP we resolve it perpendicular to the plane

OGP and multiply the component by h sin GP. The required moment is therefore

the product of g sin WG, sin IGP and ^ sin GP. Since <rcos7i and IGP .sin GP
both express the perpendicular distance of P from the arc GI, the required moment
becomes gha sin {z - r) cos n, where z-r has been written for WG.

The complete value of M is therefore

M=gh {o- cos w sin {z-r) -6 sin r sin 2}.

484. As the heavy cone rolls on the surface, the point on the sphere which is at

1 in equilibrium takes the position I', and P is the new point of contact. Let the

arc IG assume the position I'G', and let the centre C of the osculating cone move

to €'. Let o- = IP be the arc rolled over, and let 6 be the angle turned round by
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tlie cone. Since this angle is ultimately the same as CPC, we have CC = 6 sin p.

Also CC cosec (p + p') and cr cosec p' are each equal to the angle IDP. We thus

find(r = ^
sm p sm p

485. The vertical OPT cuts the sphere in W. To find the moment of the weight

about OP we must resolve gravity parallel and perpendicular to OP. The former

component has no moment, and the latter is g sin WP. Let this latter act parallel

to some straight line KO. The moment required is the product of resolved gravity

into the projection of OG' on a straight line OH, which is perpendicular to both OK
and OP. Thus the spherical triangle HKP has all its sides right angles. In

equilibrium G lies in the vertical plane WOI, and as the cone rolls G moves to G',

so that the arc GG' is perpendicular to TFi", and equal to ^sin r. Let this arc cut

WP in M. The projection required is h cos HG'= -h.MG' since HM is a right

angle. Since PI makes with PH an angle which is ultimately equal to w, we have

GM sinWG sin(2-r) ,^. , , rru ^ • ^ • .v,— = -.—f-,-f
= : ~ ultimately. The moment required, urging the cone

a- cos w sin IF/ sin 2
•' ^ > © &

back to its position of equilibrium, is gh sin z {GM - GG'), which on substitution

becomes M=gh {a cos n sin {z-r)-d sin r sin z}.

Equating this moment with the sign changed to K^d, the result to be proved

follows immediately.

We may obtain this equation by the analytical method given in Art. 509. We
there replace the geometry here used by a process of differentiation, which may be

extended to any higher degree of approximation.

486. Examples. Ex. 1. If the upper body be a right cone of semi-angle p,

and if it be on the top of any conical surface, we have n=0 and r=p. The preceding

expression then takes the form
K^
hL

sm {z + p) sin^ p

sin {p + p')

Ex. 2. A heavy right cone of angle 2p and altitude a, suspended by its vertex

from a fixed point in a rough vertical wall, is oscillating, prove that the length of

the equivalent pendulum is \a sec p (1 +5 cos^ p).

Let the cone when in equilibrium touch the plane along the vertical Oz. At the

time «, let the generator ON be the line of contact, where zON=(r. Let OA be the

axis. Resolving gravity along and perpendicular to the line ON, and taking
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moments about the instantaneous axis ON, we have K'^d= -g sin a- . ^a sin p.

Now, if the cone turn round ON through an angle Mt, the centre A of' the base

advances a space a sin p . 6dt, hence, if ^If be a perpendicular on ON, H advances
an equal space. But it does advance a space OH . d<j, i.e. a cos pd(T. We therefore

have 6 tan p= &. Substituting this value of 6 in the above equation and quoting

the value of K^ from Art. 17, Ex. 7, the length of the equivalent pendulum is

found without difficulty.

Ex. 3. A right cone of angle 2p and altitude a oscillates on a perfectly rough
plane inclined to the vertical at an angle z', the length of the equivalent pendulum
is iasec/)see2'(l + 5cos2p). [Resolve gravity into g cos z' acting down the plane

and a perpendicular component which can be neglected. Then proceed as in the

last question.]

Ex. 4. A right cone of angle 2/> and altitude a is divided by a plane through the

axis. One of the halves rests in equilibrium with its axis along a generator of a

fixed right cone of angle 2p', the vertices being coincident, prove that the length L
of the equivalent pendulum is given by

fn Q.1C* 2 ,i2atan2p .
, al sin{p'-\-z)

{97r2 + 16 tan^ p]i———^ = Stt sm z tan p' - 4 tan p— ^-'^--J
^ '^^ 5L r r

cosp'

where z is the inclination of the line of contact to the vertical measured upwards.

487. Condition of Stability of Cones to the first order.

To determine the condition of stability when a heavy cone rests in

equilibrium on a perfectly rough cone fixed in space.

It is evident that we must have the length L of the equivalent

pendulum, found in Art. 483, equal to a positive quantity. This

Ifeads to the following construction, which is represented in the

figure of Art. 483. Measure along the common normal CI to the

cones a length IS = s, such that cot s = cot p + cot p. From S
draw an arc SR perpendicular to IGW, then

cos 71 = cot s . tan III.

Then L is positive and the equilibrium is stable if the centre of

gravity of the moving cone be either below the common generator

of the two cones, or above the generator at an angle r such that

cot r > cot -s + cot IRj

provided IR is less than a right angle.

When the vertex is very distant the cones become cylinders.

In this case, if the arc 2 become a quadrant, the condition of

stability is reduced to r < IR. This agrees with the condition

given in Art. 442.

Large Tautochronous Motions.

488. When the oscillations of a system are not small, the

equation of motion cannot always be reduced to a linear form,

and no general rule can be given for the solution. But the oscil-

lation may still be tautochronous, and it is sometimes important

to ascertain whether this is the case. Various rules to determine

this question are given in the following Articles.
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When a particle oscillates on a given smooth curve either

n a vacuum or in a medium whose resistance varies as the
velocity we know that the oscillation is tautochronous about
she position of equilibrium if the tangential force P = m^s where s

s the length of the arc measured from the position of equilibrium

ind 7n is a constant, Art. 434. If therefore any rectifiable curve

s given, the proper force to produce a tautochronous motion
3an at once be assigned. Thus a catenary is a tautochronous

3urve for a force acting along the ordinate equal to m^y, because

:he resolved part along the tangent is obviously ni^s. The eqid-

mgular spiral is tautochronous for a central force fir tending to

3he pole, because the resolved part along the tangent being m^5,

vvhere iii^ = fi cos^ a, the time of arrival at the pole is the same
br all arcs. In the same way the epicycloid and hypocycloid

ire also tautochronous curves for a central force tending from
)r to the centre of the fixed circle and varying as the dis-

ance, because since r^ = As^-\-B, the resolved part along the

angent, viz. jurdr/ds, varies as s. In all these cases the time
)f arrival at the position of equilibrium is the least positive root

)f the equation tan nt — — u/k (Art. 434) where 2kv is the re-

iistance and n^ -\- k^= m^. The whole time from one position of

nomentary rest to the next is Tr/n.

d^x Idx ^

489. If the equation of motion he
;7/2

~ -^
( 77/

' ^ )

'

uhere F is a homogeneous function of the first degree, then, in what-
ever position the system is placed at rest, the time of ai^riving at the

msition determ,ined by x = is the same.

(1
dx\

- -tt] ' Let X

md f be the coordinates of two systems starting from rest in two
lifferent positions, and let x = a, f = Ka initially. It is easy to

.ec that the differential equation of one system is changed into

hat of the other by writing f = kx. If therefore the motion of

)iie system is given by x = (f){t. A, B), that of the other is given

)y ^ = K(l>(t, A', B'). To determine the arbitrary constants A, B
md A', B', we have exactly the same conditions, viz. that, when ^ = 0,

b = a and dcfi/dt = 0. Since only one motion can follow from a

ingle set of initial conditions, we have A' — A, and B' = B.

ience throughout the motion f = kx, and therefore x and f
anish together. It follows that the motions of the two systems
re perfectly similar, and the times equal.

This result may be obtained also by integrating the differential

qnation. If we put px= dx/dt, we find, after eliminating x, that

he variables p and t can be separated, showing that ^ is a

unction of t + B. Hence by an easy integration x = A(f) {t + B).

/Vhen t = 0, dxjdt = 0, and therefore ^' (B) = 0. Thus B is known
-nd X vanishes when </> (^ + 5) = 0, whatever be the value of A.
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It must be noticed that if the force be a homogeneous function of the velocity

and X, the motion is tautochronous only in a certain sense. It may happen that

the "system arrives at the position determined by x= only after an infinite time,

or the time of arrival may be imaginary. Thus, suppose the homogeneous function

to be ni^x, where m^ is positive, then the system starting from rest moves continually

away from the position a; = 0. The value of x is evidently represented by an

exponential function of x which never ceases to increase with the time. It is

therefore necessary in applying the rule to ascertain whether the time given by the

equation <p (t + B) = is real or not.

We may in general determine this from the known circumstances of each par-

ticular case. The two following general conditions will guide us in our decision.

If the time before arrival at the position a; = is to be real and finite, and the same

from all initial positions, it is clear that the position x= Omust be one of equilibrium.

For, if not, place the system at rest indefinitely close to that position, then the

time of arrival will be zero, unless the acceleration be also zero. Further, the

position of arrival must be a position of stable equilibrium for all displacements

;

or at least for all displacements on that side of the position of equilibrium on which

the motion is to take place.

490. Lagrange's rule. If the equation of motion he

dt'~[dt) f{a^)^ \dt'^^''^]'

where F is a homogeneous function of the first degree, and f{x) is

any function of x, show that, in tuhatever position the system is

placed, the time of arriving at the position determined by /(«) =
is the same.

This is Lagrange's general expression for a force which causes a tautochronous

motion. The formula was given by him in the Berlin Memoirs for 1765 and

1770, and in other places. Another very complicated demonstration was given by

D'Alembert, requiring variations as well as differentiations. Lagrange seems to

have believed that his expression for a tautochronous force was both necessary and

sufficient. But it has been pointed out by M, Fontaine and M. Bertrand that

though sufficient it is not necessary. At the same time the latter reduced the

demonstration to a few simple principles. A more general expression than

Lagrange's has been lately given by Brioschi, but it does not appear to contain

any cases of tautochronous motion not already given by Lagrange's formula.

Lagrange's result may be arrived at by the following reasoning.

The motion from rest is tautochronous with regard to the point

fl? = 0, if the equation of motion be -^ =a)Fl-
-^-

J . Put « = <^ (y),

we easily find , d'y „ fdyV (<f>
dy^

where
(f>

stands for
<f> (y) and accents as usual denote differential

coefficients. Let c/)/^' =f(y\ substituting we have

df~f\dtj f\dt) "^-^
\fdt^

where / has been written for f{y). The last two terms of this

expression form a homogeneous function of/ and dyjdt of the first
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degree, and therefore Lagrange's formula has been proved. This
demonstration is due to Bertrand. Liouville's Journ. Vol. xii. 1847.

The motion begins from rest with any iuitial value of x and
ends when x = 0. Hence, writing x = <j> (y), we see that in the

second equation the motion begins with dy/dt = and with any
initial value of y, and terminates when c^ (y) = 0. Now dx/dt does

nut in general vanish when x = 0, since the system arrives with
some velocity at the position of equilibrium. But since

dx ,,, ^dy

<j)' (y) does not vanish when ^ = 0. It follows therefore, since

<t>
— (t>'-f(y), that the motion terminates when /(^z) = 0.

491. Effect of a resisting medium. If the motion is

tautochronous according to Lagrange's formula in a vacuum, the

motion is also tautochronous in a medium whose resistance varies

as the velocity. The only effect of such a resistance is to introduce

an additional term, viz. 2kv, of the first degree into the arbitrary

function F. This theorem is due to Lagrange.

If the resistance is 2kv + /«V, we write Lagrange's equation in

the form

d^x fix) , , V'' „ ,, .

Putting the coefficient of v"^ equal to k, we find by integration

that f{x) = Ce'''^ + A/K. If x is measured from the position of

equilibrium, at which by Lagrange's theorem f{x) = 0, we must
have A= — kG. The result is that for this law of resistance, the

motion is tautochronous if the impressed force is P = G (e"'^ — I).

vFhis result agrees with those given by Euler and Laplace.

492. We can give an easy independent proof of this theorem. For the sake of

simplicity let the system be a particle moving from rest towards a point A of equi-

librium on a smooth given curve under the action of a tangential force P. The

equation of motion is, ii — =v. tt - k'v^ + 2kv = - P.
at at

jThis equation can be written in the form — (e"y) + 2k (e'*y) = - Pe'*,

provided -f=- k'v, i.e. u= - k's. Put e^ds = dio, .'. -^-j + 2k -t~ + P^""'* = 0.

The time of arrival at the point w = will be independent of the arc if we put

!Pe-«'«= m2ip, Art. 434. Now io= - — e-'^'^ + C, and if s is measured from the

Iposition at which w = 0, we have k'C = 1. We therefore have P= —r
(«'<'* - 1) which

is the same result as before. Also the time of arriving at the position io = is

given by the least positive root of the equation tan nt= -nJK where n^= m'^- k\ If

> m^ the particle arrives at the position io = after an infinite time. Art. 434.

Laplace remarks that the expression for the force P is independent of the

joefficient k of that part of the resistance which varies as the velocity, while the
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time of arrival at the position of equilibrium is independent of the coefl&cient k' of

that part of the resistance which varies as the square of the velocity, Mecanique

Cileste, Vol. i., page 38.

Ex. 1. Find the smooth curve such that the motion of a heavy particle in a

medium whose resistance is 2kv-\-k'v'^ may be tautochronous. Since gravity is the

7/i ft?/ Ill

only force we put P—— («"'* ~^)—9^.'y ''- 9y = ~2 (^"'^ " ''''^)'

Ex. 2. Find also the curve when the impressed force tends to the origin and is

equal to fir^.

493. Motion on a rough cycloid. A heavy particle slides

from rest on a rough cycloid placed with its axis vertical, in a
rnedium whose resistance varies as the velocity, show that the motion

is tautochronous.

Let be the lowest point of the cycloid, P the particle, OP — Sy.

so that the arc is measured from in the direction opposite to

that of the motion. Let the normal at P make an angle -xjr with

the vertical, let p be the radius of curvature at P, and a the diameter

of the generating circle. Then, by known properties of the cycloid,

s = 2a sin sjr, p=2a cos yjr. Let yu, be the coefficient of friction, g
the accelerating force of gravity, and let the mass be unity. Then,

if R be the pressure on the particle measured positively inwards

and v = ds/dt, we have

-r. = fiR — gsin-yfr— 2kv, - = R — g cos -^^ (1).
at p

Eliminating R, the equation of motion becomes

^_^^,2+2/cv + -^sin(.|r-e)=0 (2),
dt p cos €

'^ ^

where tan e = /z. This may be written

-r. (e"v) + 2k (e''v) + -^ e« sin (^/r - e) = 0,
az cos €

provided 37 = — /"'-
> *-^- u= — fJ^'^- Put e'^'^ds = dw

;

az p
d^w ^ dw q , • / , \ .V

Now w =je~^'^ 2a cos yjrdylr = 2a cose e"'*''' sin (\/r — e).

The equation therefore reduces to

d^w ^ dw a ^

The motion is therefore tautochronous, Art. 434. At what-

ever point of the cycloid the particle is placed at rest, it arrives

at the point A determined by w = 0, i.e. -v^ = e, in the same time.

The point A, at which the tautochronous motion terminates, is

clearly an extreme position of equilibrium in which the limiting

friction just balances gravity.
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The time of arrival at A is given by the least positive root of

the equation tan nt = — n/tc, where n^ + k.^ = gj^a cos'-' e ; the whole
time from one position of momentary rest to the next being tt/ti-.

So long as the particle is moving in the same direction the

constant fx retains the same sign, Art. 159. The motion is there-

fore given by
g-Mv^ sin (^/^^ - e) = Ae-"^ sin {nt + B\

where, as before, n^ + fc^ = gj2acos^ € and A, B are constants.

When the particle arrives at the next position of rest, it will

begin to return or will remain there at rest according as the value

of -v/r at that point is greater or less than the angle of friction.

We may also deduce the tautochronism of the motion from Lagrange's theorem.

Proceeding as in Art. 491 and equating the coefficient of v'^ to /x//), we find a value

"t f{s) which makes the Lagrangian equation become the same as that of the

particle on the cycloid.

494. Historical Summary. That a smooth cycloid is tautochronous in vacuo for

a heavy particle was first proved by Huygens in his Horologium Oscillatorium, 1673.

Newton extended this to the case in which the resistance is 2kv, and also proved

that a smooth epicycloid is tautochronous for a central force varying as the distance.

That the oscillations on a cycloid are tautochronous when the curve is rough has

been deduced by Bertrand from Lagrange's formula, Liouville, Vol. xiii., 1848. He
ascribes the proposition to Necker, who published it in the Memoires des savants

etrangers, Vol. iv., 1763. Euler practically determined the force which would make
a smooth curve tautochronous when the resistance is k'v'^, Mechanica, 1736. This

result was afterwards extended by Laplace to the case in which the resistance is

2kv + k'v'^, Mecanique Celeste, Tome i., page 36. Puiseux has a memoir on smooth

tautochronous curves in vacuo, and also for heavy bodies when the resistance is

kV, Liouville, Vol. ix., 1844. He remarks that he has avoided the use of series,

such as that employed by Poisson in his Mecanique (see Art. 197). He discusses

the tautochrone in vacuo when the force is central and varies as the distance and

shows that the curve is an epicycloid, a hypocycloid or a certain spiral. Haton de

la Goupilli^re proves that the epicycloid when rough is also tautochronous and

points out briefly that this fact is not affected by a resistance 2kv, Liouville, Vol. xiii.

Darboux in a note to the Mecanique de Despeyrous, 1884, shows that when friction

is taken account of the only tautochronous curves are those discussed by Puiseux.

495. Motion on any rough ctirve. A particle, starting from rest, moves on a

rough curve of given form in a medium whose resistance is k'v^, under the action of

forces which depend only on the position of the

particle. Prove that the necessary condition that

the time of arriving at the position of equilibrium

should be independent of the arc described is

where P=G-fjiH is the excess of the tangential

force G over the part fiH of the friction, and m is a "q

constant. Find also the time of transit.

Let A be the point at which the tautochronous motion terminates,M the position

of the particle at any time t, AM=s, so that s is measured from A in the direction

opposite to that of motion. Let the tangent at M make an angle ^ with the axis
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of X, and let ^ and s increase together. Let the tangential and normal components

of the force be G and B. ; the tangential component G acting towards A, and the

normal component H acting outwards, i.e. opposite to the direction in which p is

measured. We shall suppose p to be positive throughout the arc. The equations of

motion are therefore

-=R-H, v~=^fjiE-G + K'v^ (1).
P «s

Since the particle starts from rest, we see that R and H are initially equal and thus

have the same sign. We shall suppose that H is positive throughout the motion,

so that the impressed force urges the particle outwards. It follows that R also is

positive throughout the motion. The friction continues therefore to be represented

by fxR, without any discontinuous changes in the sign of fi, such as would happen if

R were to change sign xcithout a corresponding change in the direction of the friction.

(See Art. 159.) Eliminating R we find

vf^=f^-^+K'v^-{G-^H) (2).

Let P=G-/ji,H, so that P is the whole impressed force urging the particle

along the tangent towards the point A . We may prove that P must be positive

throughout the motion until the particle reaches A. If P be zero at any point B,

then, placing the particle at rest at B, it will remain there in equilibrium, and

therefore the times of reaching A from all points will not be the same. We see also

by the same reasoning that the point A must be one at which P is zero. (See

Art. 489.) Writing dsjd^ for p, the equation of motion becomes

~-2(f. + K'p)v^=-2pP,

.: vh-2fi^l^-2K's= c^- I 2pPe-2fi^-2K'sdxly,

where a is the angle the tangent at A makes with the axis of x. As x// is greater

than a throughout the motion the constant of integration, viz. c^, must be positive.

We notice that the integral on the right-hand side is independent of the position

of the starting point of the particle and depends only on the intrinsic equation of

the curve and the point A. Let us represent this integral by z\ and take z as the

coordinate of the particle. We have z = c when the particle is starting from rest,

and z = when it arrives at the point A determined by
\f/
= a.

The intrinsic equation of the curve being given, we can imagine ^ and s to be

expressed as functions of z. Putting then e-t'-'i'-K-'s ds = 4> {z) dz, the time T of

transit from z = c to « = is easily seen to be

[z) dz

: ^{c^-z'^)

To find the form of the function which makes this result independent of the

arc we equate to zero its differential coefficient with regard to c. Putting 2 = c^ we
have

<t>'{ck)m

jov/{l-a' • dc jo x/(i-a •

This integral cannot be zero for all values of c unless 0'(c^) = O. If it were not

zero we could by taking c small enough make 0'^c^) keep one sign from ^= to

^= 1 ; thus every term of the integral would have the same sign and the sum could

not be zero. Writing then (2) = l/m, we see that the time of transit is r=7r/2m.

Putting tt= - [jLxp- k's, for the sake of brevity, we have to find P from the two

dz f^
equations me"=;^, 2/ pPe^''dxp= z'^.
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Integrating the first from ;^= a to \p, i.e. 2 = to z and substituting in the second

have {w|e"ds}2= 2jPe2'*dj?. Differentiating and reducing, this leads towe

-/: V#, ••. mV=^-(M + 'c'p)P.

Since P vanishes when ^=a, we verify the theorem that the point at which the

tautochronous motion terminates is a position of equilibrium ; Art. 489.

Ex. Show that this law of force is included in the Lagrangian expression for a

tautochronous force.

Comparing the Lagrangian equation as written in Art. 491 with (2) of this-

article, term for term, we find an expression for /(s), i.e. - P, which agrees with

that given above.

By deducing the condition of tautochronism from Lagrange's expression we
prove that it is sufficient, the mode of proof adopted above shows that the condition

is also necessary.

496. Ex. 1. Euler's theorem. A particle moves on a smooth curve under the

action of a tangential force P which is some function of the distance s of the particle

from the position A of equilibrium, and the time of arrival at A from rest in any

position is independent of the arc. Prove that if the motion take place in vacuo,

P=Cs; and if in a medium whose resistance is k'v^, P= C (e" '* - 1) . This should be

proved by the method of Art. 495, not deduced as a particular case from the general

result.

Ex. 2. A heavy uniform string is placed within a thin smooth cycloidal tube

with its base horizontal. Prove that the time of oscillation is the same for all arcs

and is independent of the length of the string.

497. Determine how the time of arrival at the position A of equilibrium in

Art. 495 would be modified if the resistance were changed to 2kv + k'v^.

The equation of motion (2) of Art. 495 now becomes 37= At — + k'v^ - Ikv - P.
at p

As in Art. 493 this may be written in the form — {e^v) + 2k {e^v) + e^'P= 0,

providied u= - fi\p- k's. Put e^'-ds = die, .: -r-^ + 2«- —- + e'^P= 0.

The time of arrival at the point A , determined by iv = 0, becomes independent of the

arc if the last term is equated to m~ic. We then have P= m^e-^je'^ds, which is the

same value as P as before. The time of arrival at the position of equilibrium is now
given by the least positive root of tannT= -w/k where n^= m^- k^, the time from

one position of rest to the next being tt/w, Art. 434.

498. Epicycloids d'c. Supposing the curve to be rough, the resistance to be

2kv, the force central and equal to Xr, and the tautochronic period to be given,

prove that the differential equation of the curve is p= ip, where i{l-\-m^l\) = l + p?,

and X is positive when the force is repulsive. The constant m is a function of the

period whose value is given in Art. 497; when the resistance is zero the tauto-

chronic period is 7r/2m. Trace also the curves included in this equation.

In this case G= -\dpjd\J/, H=\p; see the figure at the beginning of Art. 495.

Since k' = 0, the condition of tautochronism takes the simpler form m^p= dPjd-^ - /xP.

Substituting for P its value G - /xH, we arrive at the given result.

To trace the curves p= ip, we notice that-= l-^

—

-ttito in the epicycloid in

which a and h are the radii of the fixed and rolling circles respectively and that in.

the hypocycloid h is negative.
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If we sketch the curve whose ordinate is i and abscissa b we see at once
that there are two asymptotes defined by / = 1 and b= - ^a. As b increases from
- 00 to -a, i varies from 1 to ; as & increases from - a to 0, i is negative being

CO when b= -^a; as b increases from to oo , i varies from to 1. Thus i may
have any negative value and any positive value less than unity.

(1) If i has any negative value, b is negative and lies between - a and 0.

Since i (1 + wi-'/X) = l + ij.^it follows that m^j\ should lie between - oo and - 1. The
curve is therefore a hypocycloid and the central force is attractive.

(2) If i is positive and less than unity, b may have any positive value or any
negative value between - oo and - a. This requires that m^/X should lie between
p.- and 00 . The curve is therefore either an epicycloid or a hypocycloid and the

central force is repulsive.

(3) If i is positive and greater than unity, the curve takes other forms.

Putting i-l = a^, its differential equation becomes--^ =a2p. By rotating the axis

of X round the origin through an appropriate angle, the integral may be reduced to

one of the forms

Since in any curve the projection of the radius vector on the tangent is equal to

dpldxp, we have

r2 =2)2 + {dpld^l/y\ cot iyp-e) = dpjpdxp.

"We can therefore express the polar coordinates r, 6 in terms of
\f/

as an auxiliary

angle. Tracing the curves we find two kinds of spirals according as we take the

upper or lower signs, together with an equiangular spiral whose angle /3 is given by

sin2^= l//.

Since the two kinds of spirals do not pass through the origin (for this would

require both p= and dpjd\p= 0), the point of equilibrium at which the tautochro-

nous motion is to terminate is found by making tan = 1/yu where (p is the acute

angle which the radius vector makes with the tangent. In the equiangular spiral

the point of equilibrium is the origin for the central force vanishes at that point.

In the first kind of spiral the angle 0, i.e. yjy~d, varies from ^tt when ^= to

tan~i 1/a when
\f/

is infinite, and in the second kind <p varies from zero to tan~i 1/a

for the same values of xp. In the equiangular spiral <p is constant and equal to

tan~i 1/a. Hence the first kind of spiral or the second will have a point of

equilibrium, and be the tautochrone, according as At<or>a; the arc to be described

being on that side of the position of equilibrium in which tan0<l//;t. The
equiangular spiral will also be a tautochrone, the arc terminating at the centre

of force, provided fx<a.

We deduce from the given value of i that fi^ - a^ — im'^l\ ; hence m^/X is positive

or negative, i.e. the central force is repulsive or attractive, according as ;tt>a or

lx<aL. Since t> 1 we must have in the former case [x'^>vi^j\.

We have therefore the following cases, (1) force attractive; if m'^j\< -1 the

curve is a hypocycloid, if m^/X > - 1 but < the curve is the first spiral or the

equiangular spiral according to the position of the point at which the motion is to

terminate; (2) force repulsive, i.e. 7n'^j\>0, the curve is an epi- or hypocycloid if

m^/X lies between fi^ and oo , and is the second spiral if m^/X lies between and jjr.

499. Ex. 1. A system having one degree of freedom is defined by 2T=3P6"^,

U=f{d). Prove that the motion is tautochronous if U=C {jMdd}^. [Put Mdd= ds,

and use Art. 496.] [Appell.
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Ex. 2. A system having two degrees of freedom is defined by

where A, B, C are given functions of 6, 0. Investigate the constraint which must
be introduced into the system that the motion may be tautochronous. [Assume

<p = F(e) and use Ex. 1.] [Appell, Comptes Rendus, 1892.

Oscillations of Cylinders and Cones to the second order.

500. Condition of Stability of Cylinders to the higher orders. When
a heavy cylinder rests in equilibrium on one side of a fixed rough cylinder as

in Art. 442, the condition of stability is that the centre of gravity should lie within

a certain circle called the circle of stability. If the centre of gravity lie on the
boundary of this circle the equilibrium is called neutral, but it is generally either

stable or unstable, a higher degree of approximation, however, being required

to distinguish the two. We may reach any degree of approximation by the

following easy process, which amounts to the continued differentiation of a certain

quantity until loe arrive at a result which is not zero. The sign of this result

distinguishes between the stability and instability of the equilibrium. The magnitude
f the result, joined to some other elements, enables us to form the equation of motion.

501. In equilibrium the centre of gravity is in the vertical through the point

of contact. Let the body be turned round through

;iny angle 6, so that G in the figure is the position

of the centre of gravity, and I the point of contact.

Let IV be vertical. Let GID be the common normal

to the two cylinders, G and D being the centres of

curvature of their transverse sections. Let p=GI,

p — BI, and let - = - + -j , so that z is the radius of
Z p D '

•'

relative curvature.

Let IG = r, the angles GIG= n, GIV=<p, and let

IP= ds. Then we have the four following sub-

sidiary equations
dr . dn cosn 1— = sm w, — =

,

ds ds r p

d<p _1 cos n ds _
ds ~ z r ' dd~

Since Gl is the radius vector of the upper curve referred to an origin G fixed

relatively to it, and ^tt - n is the angle made by this radius vector with the tangent

at I, the first of these subsidiary equations is evident. To obtain the second we

notice that G is the centre of curvature, so that the distance GC is constant, as well

as the radius of curvature, when I moves a short distance ds along the arc. Now

G C2= 7-2 -i-/92-2pr cosn,

therefore = (r - jo cos n) dr + pr sin ndn.

Substituting for dr its value from the first subsidiary equation, this immediately

gives the second. To obtain the third equation we notice that + w is the angle

made by the normal DI to the lower curve, which is fixed in space, with a straight

line also fixed in space. Hence -^ + -— = - , whence the third equation follows
ds ds p'

from the second. The fourth equation has been proved in Art. 441 ; the proof

R. D. 27
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may be summed up as follows. If GP, DP' be the two normals which are in a

straight line when the body has turned through an angle dd^ then dd = PCI+P'DI,

which gives dd= ds (- + -,]=— .

\P P J ^

502. In equilibrium the centre of gravity of the body must be vertically over

the point of support. Hence = 0. In any other position of the body the value

...,., . d<b d^cp s"^ ,

of IS given by the series T ^"^ '1~2 t~~9 + *^-

If in this series the first coefficient which does not vanish be positive and of

an odd order, it is clear that the line IG moves to the same side of the vertical as

that to which the body is moved. The equilibrium is therefore unstable for

displacements on either side of the position of equilibrium. If the coefficient be

negative the equilibrium is stable. On the other hand, if the term be of an even

order it does not change sign with s, the equilibrium is therefore stable for a

displacement on one side and unstable for one on the other side.

The first differential coefficient is given by the third subsidiary equation. The

second differential coefficient is found by differentiating this subsidiary equation

and substituting for dnjds and drjds from the others. The third differential

coefficient may be found by repeating the process. In this way we may find any

differential coefficient which may be required.

503. If the first differential coefficient dcpjds is not zero, the equilibrium is

stable or unstable according as its sign is negative or positive. This leads to the

condition that r must be respectively less or greater than z cos 7i, which agrees with

the rule given in Art. 442.

If—= 0, we have r= 2 cos n, so that the centre of gravity lies on the circumference
ds

of the circle of stability (Art. 442). Differentiating we have

d^(f) d /1\ 2 8inncos?i sinn ,_.

d^^ds\zj
"^

r2 Tf ^ ''

Substituting for r and z, we have

T (- + - )+*an?i(-+ -) (- + -)
ds \p p'J \p p J \p pjds^ ds \p p'J \p

If this be not zero, the equilibrium is stable for displacements on one side of the

position of equilibrium and unstable for displacements on the other.

13 J.

If —?= also, we differentiate (1) again. After some reduction we find
ds^

d^^_d^/l\ 1/1 2\ tann d n\ Stan^n /l 2

d?~d?\^)'^'^'\p'^J') ^z ds\p) z'^
\p'^

P'

The equilibrium is stable or unstable according as this expression is negative or

positive.

If the transverse section be a circle or a straight line these expressions admit of

great simplification.

504. Ex. 1. A heavy body rests in neutral equilibrium on a rough plane

inclined to the horizon at an angle n. Show that, unless dplds = i&nn, the

equilibrium is stable for displacements on the one side and unstable for displace-

ments on the other. But, if this equality hold, the equilibrium is stable or

unstable according as dPpjds^ is positive or negative. Here ds is measured along

the arc in the direction down the plane.
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Show also that these conditions imply that the equilibrium is stable or unstable

according as the centre of the conic of closest contact to the upper body is without

or within the circle of stability.

Ex. 2. If a convex spherical surface rest on the summit of a fixed convex

si)herical surface in neutral equilibrium, the equilibrium is really unstable. But,

if the lower surface have its concavity upwards, the equilibrium is stable or unstable

according as its radius is greater or less than twice that of the upper surface, and is

really neutral if its radius is equal to twice that of the upper surface.

The moveable spherical surface in this example must of course be weighted

so that its centre of gravity is at such an altitude above the point of support that

the equilibrium is neutral to a first approximation. Thus, when the radius of the

lower surface is twice its radius, its centre of gravity lies on its surface, i.e. at a

distance twice its radius from the point of contact. In this case the path of the

centre of gravity as the inner sphere rolls is a horizontal straight line, so that the

equilibrium is strictly neutral. The centre of gravity is outside or within the upper

Mvface according as the radius of the lower surface is less or greater than twice its

dius, and when the lower surface is plane the centre of gravity lies at the centre.

!u this last case also the equilibrium is really neutral.

505. Oscillations of Cylinders to the higher orders. To form to any degree

of approximation the general equation of motio7i of a cylinder oscillating about a

position of equilibrium.

Following the same notation as before and taking the figure of Art. 501, the

equation of vis viva is {k"^ + r'^) &-= C + 2U,

where U is the force function and k the radius of gyration of the body about its

centre of gravity. Differentiating this with regard to 6, as in Art. 448, we have

,,o o^;.- dr .^ dU

The right-hand side of this equation is by Art. 340 the moment of the forces about

the instantaneous axis, and is therefore in our case equal to gr sin (/>. Substituting

dr
for -r- from the subsidiary equations of Art. 501, the equation of motion is therefore

dd
{k^ + r^) 6 + rz sin n^^= gr sin 0.

The method of proceeding is the same as that in Art. 502. We expand each

coefficient by Taylor's theorem in powers of 6, which is to be so chosen as to vanish

in the position of equilibrium. To do this we require the successive differentials of

these coefficients to any order expressed in terms of the initial values only of
(f>,

n,

and r. The first differentials are given in the subsidiary equations of Art. 501. To
find the others we continually differentiate these subsidiary equations, until we

have obtained as many differential coefficients as we require.

506. To form the equation to the first order. Let the initial or equilibrium

values of n and r be a and h. The equation is therefore

{h^ + k'^) e = gr sin <p.

We have to find r sin (p to the first power of 6. Now

d , . , dr . dd) . . ^
, ^ /I cosn\— {rsm0) = — sm0+ r -^ cos (/> = z sm n sin (p + rz cos

<f>
I —j,

by substituting from the subsidiary equations. This by reduction becomes

— (r sin 0) =r cos - 2 cos (0 - n).

27—2
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In equilibrium G lies in the vertical through the point of contact, hence the initial

value of <p is zero. The equation of motion is therefore

{h^ + k'^)d={h- z cos a) gd,

which is the same as that given in Art. 441.

507. To form the equation to the second order.

We have already found the first differential coefficient of r sin 0, we must

differentiate this again and retain only the terms which do not vanish when = 0.

„r -, d^ , . ,. „ f
cZ 1 sin 2a sin a)

We have -—-^{rsm<p) = z^ -^2; cos a— - + — V .

dd^^ ^'
[

dsz h p ]

The equation of motion to the second order is therefore

(fc2+ h^+ 2hz sin a.e)d + hz sin a^^

d 1 sin 2a sin a) 6^

P

By dividing by the coefficient of 6 this may be reduced to the form

X o^ -.oAc „„ n zcosa-h ,„ /i2sina

_ „,„ . z^
f

d 1
,
sin 2a sin a]

Supposing a not to be zero, we find as the solution

e = Asm{at + B)+^-^^^A^ + ^^^\^cos2{at + B),

where A and B are two undetermined constants, and the first term represents the

first approximation. Thus it appears that the first approximation is substantially

correct unless a be small, that is, unless the equilibrium is nearly neutral. The

effect of the small terms is to make the extent of the oscillation on the lower side

of the position of equilibrium slightly greater than that on the upper side.

508. Oscillations of Cones to tlie higher orders. To form the general

equation of motion of a heavy cone rolling on a perfectly rough fixed cone.

Let us follow the same line of argument with the same notation as in Art. 483.

We have however one point of difference. Since the moving cone is not in

equilibrium its centre of gravity is not in the vertical plane WO I. As before

let the arcs IG = r, IW=z, and the angles GIC= n, WIC=\p.

Let Q be the angular velocity of the moving cone about its instantaneous axis 01.

Then, by Art. 448. K^| + io^'=i (1),

where L is the moment of gravity about 01.

As the cone rolls, the point I moves along the intersection of the fixed cone with

the sphere. Let IP= ds be the arc described in a time dt. It will be convenient to

take s as the coordinate by which the position of the cone is determined.

By the same reasoning as in Art. 484 we find ^ =~—-.—
. (2).

dt sm p . sm p

We have now to find the moment of gravity about 01. We again use the same

argument as in Art. 485. Resolving gravity along the perpendicular to 01,

the former component has no moment, and the latter is g sin z. Let this latter

component act parallel to some straight line KO, then KWI is an arc in a vertical
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plane. The moment required is then the product of resolved gravity into the pro-

jection of OG on OH, where H is the pole of the arc KWI. Thus the moment
is gh sin z cos HG. To find cos HG
produce HG to cut KWI in M. Then,

in the right-angled triangle GIM, we have

sin GM=sin GI sin GIM. The moment
L is therefore

L= -ghsinr sinz sin {n-xj/) (3).

"When the forms of the cones are known,

we can express K, r, z, n and \{/ in terms S.^-:'.

of s or any other coordinate we may
choose. The equation of motion will then

be known. The determination may be

effected by the help of the four following

subsidiary equations

dr . dz
-r- = sm n, -^
ds ds

dn

= sin^

ds

dxf^

ds

= cotr cosn-cot/3

cotzcos\l/ + cotp'

.(4).

The proof of these is left to the reader. They may be obtained by the same
reasoning as in the case of the cylinder, with only such modifications as are made
necessary by using spherical instead of plane triangles.

509. To find to any degree of approximation the equation of motion of a right

cone oscillating about a position of equilibrium.

Since the cone is a right cone, we have K^ constant. The equation of motion is

therefore lO— = L, where 12 and L have the values given in equations (2) and (3)

of Art. 508.

,+ ...,

We notice that L = (and therefore n= \p) in the position of equilibrium. Let

the coordinate s be so chosen that it also vanishes in this position. We have

therefore now to expand fi and L in powers of s. To effect this we use Taylor's

theorem, thus ^ = (§) ^ + (S) 17

where the bracket implies that s is to be made equal to zero after the differentiations

have been performed. Now these differentiations may all be performed without

any difiiculty, by using the expression for L given in (3) and continually substituting

for— , — , &c. their values given in the subsidiary equations (4). We may treat i2

in the same way.

The formation of the equation of motion is thus reduced to the differentiation

of a known expression and the substitution of known functions.

We may use this method to obtain the equation of motion to the first power.

d
Thus we have

dt
gh~{Qinr sin z sin (n - ^) } s.
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Substituting for and retaining on the right-hand side only those terms which
do not vanish when i//= w we obtain

K^ dh f . / x sin p sin p' , . )

-T" -j-^= - \ sin(z-r)cosw -^—9 Vv-sinr sin^; Vs.
gh dt^

I
^ ^ sin(p + p')

J
'

which gives the same result as in Art. 483.

If the cone is not a right cone, we may express K"^ in terms of r and n and
proceed in the same way.

510. Ex. A heavy right cone rests in neutral equilibrium on the summit of

another right cone which is fixed in space, the vertices being coincident. Show
that the equation of motion is

K^ dh sin p sin p' sin (r - 2;) sin (p - r) , ^ „ ^ ^ . s^

—r :?:q = - -^—7 tt— • — {cot 2 + 2 cot r - cot p} - .

gh dt^ sm (p + p) smrsmp ' '^^ 6



NOTES.

Art. 39. nsoment dt Inertia of a tetrahedrbn. Mr Arthur Berry has given

the following interesting proof of the generalization of the moment of inertia of

a tetrahedron to the corresponding figure in space of n dimensions. See Rendiconti

del Circolo Matematico di Palermo, tome xix. 1905.

Let ^1, ^2--^n+i ^6 s"c^ homogeneous coordinates in a space E^ of n dimen-

sions that ^1+ ... +^„+i = l, and let the interior of a simplex /S„^j be defined by the

inequalities ^i>0 &c. ^„4i>0. Let also i/j ... Vn+i ^6 the distances of the corners

of the simplex from a space i^„_i.

The distance of a point from E^_^ is therefore 2/i^i+ ... +2/n+i^n+i ^^^ *^®

moment of inertia is i'i^= J(yili+ ... +y,i4-i^n+i)^^^' where dv is an element of

volume. In consequence of the symmetry of this expression it is equal to

a (i/i2 + . . . + 2/\+i) + 26 (i/i2/2 +...+yrys+...+ yr^n+i)>

where a= j^-i^dv, b = j^i^2^v. But with rectangular coordinates Xi^...x^,

dv = dx^...dx^,

and because each a; is a linear function of n of the variables li...|n+i, say ?i...|„,

we have
a=Cjj...^,H^,...dU, b=Cjj...^,^^d^,...d^^,

where C depends solely on the relations between the two systems of coordinates

X and ^ and the integrals are to be taken for all positive values of the variables

^i...^n s"ch that ?i+...+^„<l. In the same way the volume F=(7jJ...d^i...d^„

with the same limits. If we write

<P(r,s)=jj...^,%^d^,...d^^,

a 0(2,0) b 0(1,1)
then

(0, 0)

'

F (0, 0)

TJ r,- •
T,i fwv, ^ / ^

r(7' + l)r(g + l)
By Dinchlet's theorem (r, s) =

p^^^g^^_^^) :

a _r(3)r(7i + l)_ 2 & _ r(n+l)
•• V~ r(w + 3) (w+l)(n + 2)' V V{n + S) (w+ l)(w+ 2)'

•*• ^"^
{n+l){n+ 2)

^^1^ + • • • + ^'«+l + ^1^2 +...+yrys+--+ Vr^n-hlV-

It is evident that the same method can be applied to the more general integral

jX'^Y^Z*...dv where X, Y, Z are the distances of any point of the simplex S^^.-^ from

several spaces -E^_i, E\_-^, &c.

Art. 44. Tlie fovae equimoxuental Points of a Body. It is shown in Art. 44

that four particles of equal mass can be found which are equimomental to any

body, and a construction, by using a tetrahedron, is given for their positions.

We may however deduce from Art. 42, Ex. 3, another construction, by using an

ellipsoid.

The argument in Art. 42 is briefly as follows. Let the Legendre's ellipsoid

at the centre of gravity of the body be constructed, then (as explained in Art. 29)
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this ellipsoid is equimomental to the body. But this ellipsoid is also equi-

SM 1
momental to four equal particles each of mass — -^ properly placed and a fifth

particle (required to make up the whole mass of the body) placed at the centre of

gravity 0. If we now put the arbitrary quantity 11^= 315, the mass of the fifth

particle is zero.

To find the four equimomental points of a body, we construct an ellipsoid

similar to the equimomental ellipsoid at the centre of gravity 0, but having its

dimensions reduced in the ratio 1 : s/djo. The required points are any four on

this ellipsoid such that their eccentric lines make equal angles with each other,

or, which is the same thing, they are at the four corners of the tetrahedron of

maximum volume inscribed in the ellipsoid.

When the body is known, the equimomental ellipsoid can be deduced from its

definition in Art. 29 and the four particles can then be properly placed. Conversely,

when the positions of the four particles are known, say ABCD, the equimomental

ellipsoid at their centre of gravity is similar to the ellipsoid circumscribing

the tetrahedron ABCD with its centre at the centre of gravity but has the linear

dimensions increased in the ratio \/3/5 : 1. As in Art. 43, the equimomental

ellipsoid is also similar to the inscribed ellipsoid touching each face in its centre of

gravity but has the linear dimensions increased in the ratio 1 : ^15. It is also

similar to the ellipsoid touching each edge at its middle point, but has the linear

dimensions increased in the ratio 1 : ;^5.

The semi-axes of the inscribed ellipsoid are determined in Art. 46 by a cubic

whose coefficients are functions of the faces and edges of the tetrahedron. The

positions of the axes are also geometrically determined. Thence the principal

moments of inertia follow easily enough.

We cannot reduce the number of equimomental points to fewer than four unless

there is some plane such that the moment of inertia of the body with regard to it is

zero. This plane is of course the plane containing the equimomental points.

When the body is a lamina lying in the plane xy, the equimomental ellipsoid

becomes a thin lens or disc bounded by the ellipse

Sma;2 ^my^~ M'
When the linear dimensions of this ellipsoid are reduced in the ratio 1 : \/3/5, we
replace the 5 on the right side by 3. One particle may be conveniently placed at

the extremity C of the axis of Z of the reduced lens and therefore ultimately lies at

the centre of gravity 0. The other three will then lie on an elliptic section parallel

to the plane of xy, cutting CO produced in a point N such that the centre of gravity

of all the four points is at 0. Clearly ON=l OC, and the elliptic section is similar

to the principal section of xy but has its linear dimensions reduced in the ratio

3 : 2^/2.

The lamina is now equimomental to four particles. If we wish to eliminate

the one at the centre of gravity, we must increase the masses of each of the

remaining three from |M to ^ ilf and therefore decrease their distances from the

centre of gravity in the ratio 2 : ^3. The three particles will then lie on an ellipse

which is obtained by reducing the linear dimensions of the ellipse bounding the

reduced lens in the ratio compounded of the two above ratios, i.e. in the ratio

^3 : ^2. The ellipse on which the three particles lie is therefore

Z2 72 ^ 2

2mx2 + Zmy^ ~M '

which is the result otherwise obtained in Art. 44.
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Art. 45. nxoments with higher powers. To find an integral such as jjy^dxdy,
fyn+l

taken throughout the area of a closed curve, we integrate - I
~—^ ^^ round the

perimeter in the anti-clock direction. Let the curve be any rectilinear polygon, let

the coordinates of its corners A^, A^, &c. be {x-{ij-^, (^22/2) ^^- ^^^ ^^^ ^^ successive

sides A1A2, A^A^ &c. make angles ^j, i/zg, &c. with the axis of x. We then have

for the side A-^A^

j^m'^^-n + l j^ "^y-H^- n + 2 '

Treating all the sides in the same way, we find that for any plane polygonal area

//y''^'^^y=j^;::^^)^^^^^

Collect the terms according to the suffixes of y and write for cot
\f/i

&c. their

values in terms of the coordinates of the corners, we then have

([yndxdy=-X
^ yC ^

J^iZ^-^Z^l

If we write Ag, A3, &c, for the areas of the triangles A^A^A^, A^A^A^, &g. this

is obviously the same as

//
»'-«-

(irniiirs) '(
..-'ija.'-,,,

"^

For a triangle, whose area is A, this becomes

JJ^ ^ {n + l){n + 2)\{y,-y,)(y^-y^) {y^-y^Ky^-y,) (l/i-i/aKl/i-ys))
^*

If w be a positive integer this reduces (by an easy division) to

jjy^dxdy= A.H^ (4),

where H^ is the arithmetic mean of the different homogeneous products of the ordi-

nates
?/i , y^, y^ of the three corners.

If the triangle is in space, we want Jz^dc where z is the ordinate of any element

d(x of the area. Let the plane of the triangle cut the plane of xy in some straight

line C^ and let rj be the distance of da from C^. If i be the inclination of the plane

: ^77 to the plane of xy^ we have 2 = 7; sin i.- Hence

; ^ j (7i+i)(w+2)

,. n+2

(5),

(7l+l)(w + 2) (972-'?l)(%-'73)

2A ^ 2 "+2

~(w+l)(7i + 2) (;S2 - ^1) (^2 - %)

where z-^, z^, z^ are the ordinates of the corners and the summation contains three

terms.

We may apply this method to a tetrahedron also. We have

f f f f r^^+i - 2'"+i

/ I / z^dxdydz^ ± I I
—

^^^-^
— dxdy,

where any ordinate cuts the boundary at altitudes z, z' . Since dx dy= da- cos i

where i is the angle the outward normal makes with the positive direction of the

iaxis of z, this gives (if dV=dxdydz)

[ zr^dV=^, [.

J ^ +V
^"+1 da cos i (6),

where the integration on the right-hand side extends over the whole boundary as in

f Green's theorem. The integral (6) is given for each face by (5); taking all the
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faces we find that jz'^dV is equal to the sum of twelve terms (three for each face) of

the form

J (n + l){n+ 2){n + S) {z,-z,){z,- z,)
^'^'

where 2Pj3= A cos i=\x-^-X2, x^-x^l represents

12/1-2/2. 2/3-2/2!

the projection on the plane of xy of the area of the face A-^A^A^, and the product is-

to be taken positively or negatively according to the sign of cos i. In this summa-
tion there are as many terms containing

^^a""^^ as there are faces which meet at the

corner ^3- Collect these three terms and reduce them to a common denominator^

the numerator is then

^2)|'^l-^2. ^3-^2| + (%-^l)k4-^2' ^l-^2| + (2l-^2) 1^3-^2' ^4-^21"]

12/1-2/2,2/3-2/2! 1 2/4 -2/2' 2/1 -2/2 I
1 2/3-2/2, 2/4 -2/2 IJ'

This expression is the determinant which is equal to six times the volume V
of the tetrahedron with the sign changed. We therefore have

r(^4-

/
zndv= ^'^'^- y y Z2 .

(n + l)(n + 2)(w + 3) (^2 - ^i) (^2 - ^3) (^2 - ^4) ^
''

where the summation contains 4 terms.

When w is a positive integer, this reduces by a simple division to

jz-dV=V.H, (9),

where H^ is the arithmetic mean of the different homogeneous products of the

ordinates z-^Z2Z^z^ of the four corners^

To find the integral for a quadrilateral area A^^A^A^A^ we add together the

results for the two triangles A-^A^A^, A-^A^A^. After noticing that the ratios of the

areas of these triangles to that of the whole quadrilateral are z^ - z' to z^ - z^ and
z' - z^ to 04 - z^ we find that for a quadrilateral of area A

] (w+l)(n + 2) i(2i-22)(2i-^3)(^;i-04) (%-2i)(02-%)(^2-^4) )'
where there are four terms within the bracket, and z' is the ordinate of the inter-

section of the diagonals. When n is an integer this reduces to the simple form

given in the text.

For two tetrahedra joined together whose united volume is F, we find in the

same way

/,«^K=
..1_-2,,3.F ^ z,^^^iz,-z')

(n + 1) (w + 2) (n + 3) [z^ - z^) {z^ - z^) {z^ - z^ {z^ - z,)

which again reduces to the simple form given in the text when n is integral.

We may deduce from these results the value of j{ax + hyy^da where a, h are any
two constants. Thus if for a triangle we have

jy''d(T=f{y^,y^, 7/3),

we find by turning the coordinate axes through an angle a, the origin being

unaltered,

j{ax + bij)^d<T=f{ax^ + hy^, ax^ + hy^, ax^ + by^),

where (x^yi), [x^y^i^ (^32/3) ^^e the coordinates of the angular points, anda/6= tana.

By expanding the two sides of this equation in powers of h and equating like powers,

we may find ^xhp^^da- when n is an integer.

Art. 286. Four attracting particles. Four particles, whose masses are

m, m', m", in'", mutually attracting each other, are so projected in one plane, that

the quadrilateral formed by joining their positions at any instant remains similar

to its original form.
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Let the distances between mm', m'm'\ m"m"\ m"'m be a, b, c, d, and let the

diagonals jnm", m'm'" be /, g. Let the mutual attraction of m, m' be vim'ja*^, and

for the sake of brevity let A = \ja'^'^^, £ = 1/6"+^, &c. In the standard figure we
Vail suppose that each particle is outside the triangle formed by the other three.

Let the distances of the several particles from the centre of gravity O be
/

', r", /". By proceeding as in Art. 286, we find that the acceleration of each

(II tide tends towards 0. These accelerations are - (Prldt^ + n^r, &c., and since

tliese are proportional to r, r', &c. we shall represent them by pr, pr' , &c. Thus

when the particles describe circleSjjp = 7i2, when they start from rest and describe

straight lines, p= -d:^rjrdt'^. For the sake of brevity we shall presently put

Since is the centre of gravity, the acceleration of m may (by Leibnitz's

theorem) be resolved into the three components Pm'a, Pm"f, Pm"'d acting along

the straight lines a, /, d. The accelerating attractions of the three particles

m', m", m'", act along the same straight lines and are equal to m'Aa, m"Ff, vi"'I)d.

By D'Alembert's principle the particle m is in equilibrium under the action of the
•':

;ces m' {A - P) a, m" {F-P)f, m"'{D - P) d. Hence, again using Leibnitz's theorem,

centre of gravity of three particles, whose masses are proportional to m'{A -P),

hi"{F -P), m"'{D-P) placed at the corners occupied by m', m", m'" is at the corner

occupied by the fourth particle m.

Let us now take moments for these three particles about the side joining m, m'".

H Since the perpendicular distances of m', m" from this side are proportional to the

Hi tas of the triangle mm'm'" , mm"m"' , we have

m' {A-P)A {m") + m" {F-P)A {m') = 0,

\vliere A {m') stands for the area of the triangle formed by joining the particles when

)it is excluded. The other equation for the motion of m may be formed by taking

moments about either of the sides joining 7n to m', or m to 7u". In this way we

form the following eight equations for the four particles :

m' {A-P) _ m" (F-P) _ m'" (D - P) .^.

A(m') ~ -A(m") ~ A(m'") ^
^'

m{A-P) m"{B-P) m"'{G-P) ,^>^ ~ — ~
\^)yA (m) A (m") - A (m'")

\{F-P) _ m' {B - P) _
- A (m) ~ A (m') ""

m{D-P) _m'{G-P) m" {C - P)

m{F-P) _ m' [B - P) _ _ m'"{C-P) ,

-A(m) ~ A(m') ~ ~ A (m'") ^
''

A(m) -A(m') A (m")
^^''

As the two resolutions for the four particles taken as one system and the

equation of moments give identities, these eight equations are equivalent to five

independent conditions. From these we may deduce the ratios of the four masses

when the form of the quadrilateral is given. They also determine P and give

a relation between the sides of the quadrilateral, which must exist if the motion is

possible. Eliminating the ratios of the masses we find

BD-FG _ AC-FG _ BD-AC
~B +D-F-G~A + C-F-G~B+D-A-G ^ ''

Any two of these values of P give

FG{A + G-B-D) + {F+G){BD-AG) + AG{B +D)-BD{A + q = (6).

This condition may also be written

{B - F) {A - G) {G - D)=={G - F) {D - G) {B - A),

or in another form obtained by interchanging B and D.
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Besides (6) we have the known geometrical relation which must exist between

the lengths of the sides and diagonals of any quadrilateral.

By adding or subtracting the equations (1) to (4) taken two together we
eliminate P and deduce the ratios of the masses. We find, for the ratios of

adjacent masses,

m{D-F) _ m' {B~G) vi' {A - G) _ m" {G - F) m'" [G - G) _ m {A -F)
A{m) ~ A{m') ' A (m') ~ A (m") ' °'' A{m'") ~ A (m)

'"^''

and for the ratios of opposite masses

m{A-D) _ m" {B - G) m' {A - B) _ m'" {D - G
)

A(m) ~ A(m") ' A (m') ~ A (m'")
^''

If the quadrilateral is such that each of the four particles is outside the triangle

formed by the other three, the areas A(m), A{m') &c. in the equations (1) to (4)

are all positive. We then see by glancing at these equations that, if the masses are

positive, the numerical value of P {i.e. ifij'Lm) must separate those of F, G from

A,B, G, D. Since both diagonals cannot be less than every side, it follows that,

if the law of attraction is an inverse power, each of the quantities A, B, G, D must
be greater than both F and G. It also follows immediately from (8) that the

greatest and least sides of the quadrilateral are opposite to each other and that

each diagonal is longer than any side.

For example, it is evident that the particles could not lie at the corners of

a parallelogram unless the four sides are equal and each angle greater than 60°.

Also by equations (1) to (4) the masses at opposite corners are equal.

The results (6) and (7) were given as an example in the text of the third

edition (1877) of this treatise (Art. 282, Ex. 2), but were omitted in the sixth

edition to make room for examples then considered to be more interesting. They
were obtained by reducing one of the four particles to rest.

There are two memoirs dated 1895, 1897 by A. G. Wythoff on the dynamical

stability of a system of four mutually attracting particles. For the results we
refer the reader to the Nieuw Archief Voor Wiskunde. A reference is made to

a paper by C. Krediet in the same Journal, where several interesting propositions

on the equilibrium of the four attracting particles are arrived at. This paper the

author of this book has not seen.

In volume XXXV. of the Quarterly Journal of Mathematics (Oct. 1903) there is

a memoir by Prof. E. 0. Lovett on the positions and small oscillations of an

infinitesimal satellite acted on by three masses which move in steady motion with

special reference to the case in which the three masses are equal.

The Phil. Mag. for March 1904 contains an investigation by Prof. J. J. Thomson
of the stability and periods of oscillation of a number of corpuscles arranged at

equal intervals around the circumference of a circle, with an application to the

structure of the Atom.

If the mutually attracting particles start from rest, as described in Art, 285, the

sum of the resolved parts of the momenta m-^^v^, m^v^, &c. in any direction, and the

sum of the moments of the momenta about any straight line are zero. Since these

are the necessary and sufficient conditions of equilibrium of a system of forces,

we may apply to the system of moving particles any of the theorems proved in

"Statics" for systems of four, five, &c. forces in equilibrium. Thus if four

particles start from rest the invariant of the momenta of any two is equal to that

of the other two, and therefore by a known theorem the ratios of the four momenta
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particles meet, the invariant of the other two vanishes and therefore the lines of

motion of wzg, m^ must intersect or be parallel.

If five particles start from rest their five lines of motion can at every instant be

cut by two straight lines. If there are six particles their lines of motion are in

involution. In this way we may obtain numerous curious and interesting, though
nnf very useful, theorems.

Art. 399. The Proof of I^agrange's Equations. The proof of Lagrange's

equations in Arts. 397 to 399 a may be arranged somewhat differently by usmg as a

lemma an extension of the theorem given in the first example of the last article

named.

Lemma. Let L be any function of the variables x, y, &c., x', y', &c. and t. If

we express x, y, &g., as functions of any independent variables 6, <p, &c. and t,

then will

d dL dL _ f d dL dL\ dx / d dL dL\dy
Jtdd^~'M~\dtd^'~~dx)dd'^\dtd^'~'dy)dd'^

°
^

''

To prove this, we let x=f{t, 6, </>, &g.) (1),

with similar expressions for y, z, &c. .: x'=ff+fQd' + &c (2),

where the &c. refers to the other variables <p, \p, &c. and suffixes denote partial

differential coefficients.

Since d enters into the expression L through both x, y, &c., and x', y', &c.,

while 6' enters only through x', y', &c. , we have the partial differential coefficients

dL dL dx dL dx' ^ dL dL dx'

d0=d^de^dFld'^'^'- dd'^dx'W^^'' ^^^•

By differentiating (2) we see that -777/ ~-^^~tj^ • Hence
do da

f d dL dL\dx . dL [ d . dx'\ .d dL dL f d dL dL\ dx
_ ^ ,

dL f d ^ dx'

dtdd' ~ de

^ince ~fQ=fQf+f000' + &c.= -^ by (2) the terms with -—-, &c. vanish. The
(zz (tu dx

lemma has therefore been proved without assuming that the relations between the

variables x, y, &c., and 6, 0, &c., are independent of t.

To apply the lemma to prove Lagrange's equations we put L= T+U, where

2T='Em{x'^ + y'^ + z'^),

and X, y, z are the coordinates of the particle m.

„r 1-, J- 1 d dL dL ^ f ,, dU\dx . ,.,We therefore have -r ^nr, 77t=2w a; --5- -— +&c (4).
dt dd dd \ dxj dd '

The right-hand side of this equation (after multiplication by 5^) is the virtual

moment of all the forces m
(
a;" = -z—

J
for a displacement W, the corresponding dis-

placements of X, y, &c., being found by differentiating the equation (1) with regard

to d, t not varying. But, by D'Alembert's principle, these forces are in equilibrium,

and the sum of their virtual moments is zero for any displacement consistent with

the geometrical equations which hold at the time t. The right-hand side of the

equation (4) is therefore zero. The Lagrangian equation has thus been estab-

lished.

By writing T for jL in (4) we have —
-j^r,

-
-j^ = ^mx" ^^ + &c (5).

dt da da da
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Since the right-hand side (after multiplication by 86) is the virtual moment of

the effective forces mx", &c., it follows that the Lagrangian expression on the left-

hand side [after multiplication by 8d) also represents the virtual moment of the

effective forces of the system for a displacement 56.

dT dx
In the same way writing T for L in (3) we have j—, = Sma;' -r- + &c.

d6 d6

The left-hand side {after multiplication by 36) therefore represents the sum of

the virtual moments of the momenta of the several particles of the system for a

displacement 66.

The fundamental equation (A) has been deduced from the principles of the

differential calculus without reference to any mechanical theorem. If we put

L = T+U, it asserts that the sum of the virtual moments of the effective and

impressed forces for a displacement 5^ has the same value in whatever coordinates

these forces may be expressed.

Art. 410. Historical Notes. De Morgan's memoir on the method of solving

partial differential equations by reciprocation is in vol. viii. of the Cambridge Phil.

Trans. 1848. He adds in a postscript that, on turning over all the notes of

M. Chasles' Apergu Historique...des Methodes de Geometric, he finds his method

fully described at note xxx, p. 376, under the head sur les courbes et surfaces

reciproque.

Art. 462. The author is informed by Prof. Klein that the first theorem men-

tioned in this article (viz. that terms of the form {At + B) sin pt are absent from the

Lagrangian solution) was given by Weierstrass in the Transactions of the Berlin

Academy 1858, Theorem on the homogeneous function of the second degree with an

application to the theory of small oscillations. An additional paper appeared in

1868. Prof. Klein has also sent three references to the works of Eeye on moments
of inertia. These are in the Journals of Schlomilch 1869, Crelle or Borchardt 1870,

and the Journal of German Engineers xix. These dates are more recent than those

of English writers on the same subject.
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Absent coordinates, 422.

Airy. On DAlembert's principle, 69. On magnetism, 97. On the standard of

length, 108. On anemometers, 127. On the seconds pendulum, 461. The
Cavendish experiment, 470.

AxEMokETER. Eelation between the velocity of the wind and the anemometer,

126. Eobinson's, Airy's and Stokes' experiments, 128 ; various theorems,

129. Whewell's anemometer, 129. Anemometers in mines, 129.

Angular momentum. Defined, 77. A fundamental theorem in dynamics, 78.

Analytical formula in two dimensions, 134 ; standard example, 147.

Formulae in three dimensions, 262 ; working rule, 265. Method of

using equimomental points, 266. Expressed in the six components of

motion, 267.

The whole momentum generated is equal to the whole force, 283.

Examples, a central force, 284 ; three particles, 285, &c.

Application to sudden changes of motion, 288, &c. ; to gradual changes,

299; to impulses in three dimensions, 306, &c. Examples, page 269.

Generalized definition and measure, 402.

Ai'PELL. Interprets imaginary time, 374. On Carnot's theorem, 381. General

equations of motion, 430. On tautochronous curves, 499.

Areal coordinates. Equations of motion of a particle deduced from Lagrange's

equations, page 343, Ex. 6. Moment of inertia of an elliptic disc in areal

coordinates, 17, Ex. 11.

Baily. The length of the seconds pendulum, 104, 105. The Cavendish experi-

ment, 470.

Ball, Sir E. The cylindroid, 246, Ex. 4. Eelative vis viva of the solar system,

424.

Ballistic pendulum. Various constructions, 121. Improved in France, 124.

Superseded by the chronograph of Bashforth, 121. Haughton's experiments

on rifle bullets, 122.

Bashforth, The chronograph, 121.

Beghin and Eousseau. Lagrange's equations for impulses, 401.

Bernoulli. Conservation of rotation, 80. Principle of vis viva, 352.

Berry. Moment of inertia of a tetrahedron in space of n dimensions, page 423.

Bertrand. Vis viva generated by impulses, 310, Ex. 7 ; 388. Improves the

proof of Newton's principle of similitude, 367. On models, 369. Improves

the proof of Lagrange's expression for a tautochronous force, 490. A
rough cycloid is tautochronous with a resistance 2/cy, 494.

Bessel. Length of the seconds pendulum, 105, 107, Ex. 2.

Billiard balls. Some examples, 326. The theory is continued in Vol. n.
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BiNET. Defines moment of inertia with regard to a plane, 3. On spherical

points, 55, Ex. 3. Arrangement of principal axes, 56, note.

Bonnet, 0. Theorem on vis viva, 139a., Ex. 2.

Boys. The Cavendish experiment, 475.

Bridge. Work of bending a bridge or rod, 349. Example of the principle of

similitude, 370.

Carnot. General theorems on impacts and explosions, 378, &c.

Carriage. Motion on a rough plane, 165.

Cauchy. Discovers the momental ellipsoid, 19. Theorem on vis viva, 139 a,

Ex. 1. Explains Savart's theorem, 372.

^ Cavendish experiment. Used to find the density of the earth, 470. List of

other methods, 475, 476.

Cayley. On the special problems of dynamics, 19, 117. Keport to the B. Assoc.

of 1857, 73. Theorem on displacement, 246, Ex. 7.

Central axis of a displacement (1) infinitesimal, 240; (2) finite, geometrical

method, 225; analytical, 281. Moments about the central axis, 448.

Central force. Angular momentum constant, 284. An attracted sphere moves

round on a horizontal plane, 269, Ex. 3, 4, 5. A particle passes through

a centre of force, 286 b, Ex. 2.

Centre op oscillation. Used to find centre of pressure, 47. Also to find the

time of oscillation, 92. Centres of oscillation and suspension are convertible,

92. Centre of percussion, 120.

Centre op pressure. (1) of an area whose equimomental points are known, 47.

Case of a triangle for homogeneous and heterogeneous fluid, 47. (2) of

an area when the principal point of the intersection and the centre of

oscillation are known, 47. (3) when the moments of inertia are known,

47; locus of centre of pressure in space and in the area, Ex. 3; pressures

due to rotating fluid, Ex. 5.

Centrifugal forces. A body moves in a plane, the equivalent force and couple,

450, note. A body turns about an axis, 114. A body moves about a fixed

point, the centrifugal couple and the position of its axis, 260.

Characteristic. Of a body with a fixed axis, 90. Two bodies having the same

characteristics move alike, 149. A body replaced by equivalent points,

149, 76. Various examples, 149.

Of a displacement, definition and Chasles' theorems, 247.

Chasles. Theorem on the finite displacement of a body, 219. Characteristic

and focus, 247.

Chree. On the theory of the Eobinson anemometer, 129.

Circle. Moment of inertia of arc, 7, 9, Ex. 1 ; of area, 8. Circle of stability,

also called circle of inflexions in pure geometry, 442. Used to find (1)

radius of curvature of a roulette, (2) stability of a rocking stone, (3) time

of oscillation, 442. Generalizations, 443, 444.

Clausius. Theory of stationary motion, 375. .J
Clocks. Eegulation of, 93, Ex. 8. Various books, 94, note.

*

Components op motion. Defined, 238. Transformed to a screw, 240; to con-

jugate rotations, 246, Ex. 5.

Cone. Moment of inertia, 17, Ex. 7 ; oblique cone equimomental to five points,

42, Ex. 4. Equimomental cone, 32.

Oscillations of a heavy conical surface on a rough cone, 483; of a

right cone on a right cone, against a wall, on an inclined plane, 486.

Oscillations of cones when in neutral equilibrium to higher degrees of

approximation, 509. Cone on a smooth cone, page 401, Ex. 12.

1
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Conservative system. Defined, the work is independent of the path, 337.

CoNSTBAiNT. Principle of least : Gauss' measure, 390. A system moves as nearly

as possible in accordance with free motion, 393. Analytical example, 394.

See also geometrical constraints.

Coordinates. Of a body in a plane and in space defined, 73. Degrees of

freedom, 395. Generalized coordinates, 396. Absent or speed coordinates,

422. Euler's angular coordinates, 256. Principal moments of inertia used

as coordinates, 64, Ex. 2.

CoRioLis. Impact of billiard balls, &c. The direction of friction is unaltered,

186, 326, Ex. 3. See also Vol. ii.

Coulomb. Laws of friction, 155. Rigidity of cords, 167.

Couple. The friction couple, 164. Its indirect action, 162. The work of a

couple, 348. The angular velocity couple, 234.

Cricket Ball, 197, Ex. 2. 312, Ex. 2.

Cycloid. The cycloid is tautochronous when rough and with a resistance 2kv, 493.

Cylinder. Principal moments of inertia, 17, Ex. 8.

Oscillation of a cylinder on a fixed cylinder, 441. Two circular

cylinders on a plane, 462, Ex. 2.

The cylinder of stability, 480; used to determine the stability of a

rocking body in three dimensions, 481.

Cylindroid. Definition and theorems, 246, Ex. 4.

D'Alembert. General principle in dynamics, 66. This principle replaces Huygens'

postulate, 92 note. Closes the controversy on the force of a body in motion,

322, note.

D'Alembert's principle. Explained, 67 and 68. Airy's view, 69. Example, 71.

Two systems of fundamental equations, 72; both typically expressed, 78.

Method of using the principle, 83.

Darboux. On rough tautochronous curves, 494.

Darwin. Secular effects of tidal friction, page 315, Ex. 19, 20.

De Morgan. Method of solving differential equations by reciprocation, 410, note.

Determinant. Rule to write down the determinant of small oscillations, 456.

Equal roots finite and zero, 462. Several difficulties alluded to and post-

poned to Vol. II., 457.

Differentiation. Applied to find moments of inertia when the surface of the

body is homogeneous, 10.

Differential equations. Solution when the geometrical equations are linear,

135. Peculiarities of the reactions, 136. Applications to initial motions,

199, 463.

Solution by vis viva, 138, 350. The reactions disappear, 138, 141, 362.

Integrals found when the forces have (1) no component, (2) no moment
for a fixed straight line, 132, 133, (3) when some coordinates are absent

from the Lagrangian function, 422. Liouville's integrals, 407, Ex. 4.

Solution of the differential equations for small oscillations, (1) with one

degree, 434, 436; (2) with n degrees of freedom, 456.

Application of reciprocation, 410, note.

Dimensions. Method of using the theory to predict a formula, 373.

fDisc. Motion on a rough ground, 430 i, j.

I Discontinuity (1) due to friction, 158, 159; examples, 162, 166 &c., 496; (2) due

to the separation of bodies, 136 ; examples, 146 &c. ; (3) due to impulses,

168 &c., 288 (fee.

I Dissipation function. Represents half the rate of the loss of energy, 427.

Dot notation. Explained, 70.

R. D. 28
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Du BuAT. On the air dragged by a pendulum, 105.

Earnshaw. Theorem on the instability of a free particle, 469, Ex. 1.

Earthquake. Lyell's observations on an obelisk rotated by the shock, with

Mallet's theory, page 63. Seismometers and foci of earthquakes, 175.

Ellipse. Moment of inertia about the axes, 8, 9; confocal strata, 11, Ex. 2;

about a diameter, 17, Ex. 1 ; a tangent, 17, Ex. 2, 6. Moment of inertia,

(1) when referred to any Cartesian axes, 17, Ex, 10. (2) To areal co-

ordinates, 17, Ex. 11. (3) When geometrically defined, 18, Ex. 1, 2.

Momental ellipsoid of an ellipse, 21, Ex. 1; ellipsoid of gyration, 28, Ex. 1.

Four equimomental particles, 38, Ex. 8. Three, 44.

Ellipsoid. Moment of inertia, 9; similar strata, 11, Ex. 1; about a diametral

plane, 17, Ex. 3. Moments of the nth order, 9, Ex. 7. Equimomental
points, 38, Ex. 9.

Momental ellipsoid of any body, 19. Not every ellipsoid can be a

momental ellipsoid, 22. Of a rod, 21, Ex. 3; of a material ellipsoid, 21,

Ex. 3; of a triangle, 37, 38, Ex. 1, 2, 42, Ex. 2. General equation at any

point pgr, 25, Ex. 1.

Ellipsoid of gyration. General equation, 26 and 28, Ex. 3.

Elliptic coordinates. Applied to moments of inertia, 9, Ex. 4, 64, Ex. 2.

Expression for the vis viva of a particle, 365, Ex. 4. Motion of a particle

on an ellipsoid found, 407, Ex. 6. Equations of motion of a particle in a

plane under two central forces, page 358, Ex. 8.

Energy. Explained, 359, 360. The sum of the potential and kinetic energies is

constant, 359. Energy of the accelerations, 430.

Epicycloids are tautochronous with a central force Xr and a resistance 2kv, 498.

Equal roots. These in Lagrange's determinant do not give terms {At + B)8inpty

except when they are zero, 462.

Equimomental bodies. Fundamental theorem, 34. Used to shorten integrations,

36; to find centres of pressure, 47; to calculate effective forces, 76; to find

angular momentum, 266.

Four equal particles equimomental to a body and three to an area can be

found, 44, also see note at the end of the volume. These are not always

conveniently situated, 36. They can be replaced by five particles the mass

of one being arbitrary, 42, Ex. 3.

Equimomental points of a triangle, 35; parallelogram, 38, Ex. 6; quad-

rilateral, 38, Ex. 7; elliptic area, 38, Ex. 8; ellipsoid, 38, Ex. 9, and 42,

Ex. 3; sphere, 38, Ex. 10; tetrahedron, 39; oblique cone, 42, Ex. 4; uniaxal

body, 266.

Equimomental ellipsoid of any body, 29; of a triangle, 27; of a tetra-

hedron, 43.

Equimomental surface, 65. Equimomental cone, 32.

Equimomental points with higher powers than the second, 45.

EuLER. Defines moments of inertia, 3. Conservation of translation and rotation,

80. On the ballistic pendulum, 121. Geometrical construction for a finite

displacement of a body, 215. Solves dynamical problems before D'Alembert,

68. General equations of motion, 252, 406, 416. Geometrical equations,

256. Law for a tautochronous force with a resistance 2kv + k'v^, 491,496.

Euler's equations. Dynamical, 252; geometrical, 256. Elementary proof, 252;

deduced from Lagrange's equations, 407; from Hamilton's equations, 416,

Ex. 2. Euler's coordinates, 256.

EwiNG. On the transition from statical to dynamical friction, 155.

Experiment. Moments of inertia &c. found by observing the time of oscillation,



INDEX. 435

The numbers refer to the articles.

97. Weber on that of a magnet, 97, Ex. Haughton on that of a riiie, 122.

How the time is observed, 103. Newton on elastic bodies, 179. Morin on
frictional impulses, 182. On friction, 155, &c. Froude on resistance, 371.

Savart on musical notes, 372. On the seconds pendulum, Kater, 100; Bessel,

107; Airy and Poisson, 461. On the velocity of wind, Airy, Stokes, &c., 128.

The Cavendish experiment, 470.

Fkrgusson. On anemometer comparisons, 129.

Fi:rrers on Lagrange's equations, 430 note.

Fixed axis. The fundamental theorem, 88, 89. Ex. of a man walking round a

horizontal circle, 91.

Pressure on the axis, (1) symmetrical body, 110; (2) unsymmetrical, 112.

Short method of finding the pressure when the axis has a principal point,

114. Pressure on an inclined axis, 114, Ex. 6.

Fixtures. A straight line is suddenly fixed in a moving body, 288, 290, 291. A
point is fixed, 295. Diametral planes of the instantaneous axis before and
after are parallel, 297; this gives another method of solution, page 270,

Ex. 8.

Sudden obligatory motions, 292-7. Fixture of a tube containing fluid,

page 271, Ex. 17. Lagrange's equations applied to fixtures, 403.

Flammarion. Depth of the foci of earthquakes, 175.

Fleeming Jenkin. On the transition from statical to dynamical friction, 155.

Focus of inertia defined, 52; how used to find principal moments and axes, 53.

Position in an ellipse, 55.

Of a displacement defined and Chasles' theorems, 247.

Forces. Effective forces defined, 67. Forces of restitution and resistance, 433.

Centrifugal forces of a body with a fixed axis, 450 note; a fixed point, 260.

Force function, see Work.

Four attracting particles. Steady motion, page 427.

Freedom. Degrees of freedom defined, 395.

Frequency of an oscillation defined, 434.

Friction. Laws of friction forces, 154; friction couples, 164. Discontinuity, 158,

159. Indeterminate motion, 160. How the friction couple indirectly affects

the motion of translation, 163.

Examples, 161, 166. Friction of a disc on a plane, page 181, Ex. 23.

Impulsive friction, 181
;
general problem of friction at the impact of two

bodies, 187—198, 315—331, 389.

Froude. Theorem on ship models, 371.

Galton. Friction with great velocities, 155.

Gauss. Principle of least constraint, 392, 430 e.

Geometrical constraints. Equation to express the contact of two bodies, 137.

Number of equations is equal to that of the reactions, 135. Kestriction on
the geometrical equations when vis viva is used, 351. Vis viva is lost when
new constraints are introduced, 379, 388.

:
Gradual changes. Their effects on the motion are deduced from the principles of

linear and angular momentum, 283. Examples, contraction of the earth,

&c., 299; others on page 269. Effect on vis viva, 365, Ex. 2. Effects of the

coiling and uncoiling of a chain on its motion, 300.

Graham. The compensated pendulum, 94.

GuYON. Explains how a falling cat turns round, 287, Ex. 3.

Hamilton's equations. Transformation of Lagrange's equations, 414. Examples,

416. Another name for generalized coordinates, 73. Equation of motion

of a particle under a central force, page 358, Ex. 9.
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Harmonic oscillation defined, 437.

Haughton. The velocity of rifle bullets, 122. The column seismometer, 175.

Heaviside. The survey of India and pendulum observations, 105.

Hemisphere. Moment of inertia, 5 ; small oscillations, 440.

HoLDiTCH. Formula for the time of oscillation of a body, 447.

HoLONOMous SYSTEM defined, 396. See also 430 note, three methods.

Horse power. Defined, 342. Examples of a steamer, tricycle, &c., 342.

HuYGENS. His dynamical postulate, 68. On the pendulum, 92. A smooth cycloid

is tautochronous in vacuo, 494.

Imaginary time. The principle of similitude leads to an interpretation, 374.

Impulse. How measured, 84. Finite forces neglected, 85 ; except the impulse

is infinitesimal, 300. General equations for impulses of a system, 86.

Impulses in two dimensions, 169 ; examples of a falling reel, 170, 180

;

a jumping sphere, 170, &c.

Obligatory motions, 171 ; seized discs, 171 a. Earthquake impulses,

174—5.

Standard example, a falling rhombus, 176, 176 a, 408 ; others, 177.

A body impinges on an obstacle, 174, Ex. 1, 178, page 181, Ex. 22. Elastic

bodies, Newton's theory, 179, 183. Elastic impulse deduced from inelastic, 404.

Impulsive friction, Morin's experiment, 182. Impact of two bodies,

history, 186 ; the general problem in two dimensions, 187—198. Graphic

solution by using the representative point, 193. Problems on a fives ball,

a cricket ball, &c., 197.

Infinitesimal impacts, 300. Work of an impulse, 172, 192, 308 a, 346.

Impulses in three dimensions, 306. The equations are independent, 307.

Geometrical representations, 310. Vis viva generated is a maximum, 310,

Ex. 7. Motion of any point, 313.

The general problem of the impact of two bodies in three dimensions,

elastic, inelastic, smooth, or rough, 315—331. Graphic solution by the use

of a representative point, 324. Examples of billiard balls and other bodies,

326. Vis viva is lost by the impact, 378, 388, 389.

Example of problems solved by (1) Carnot's Principle, 381; (2) Bertrand's,

388 a, Ex. 1, 4; (3) Kelvin's, 388 a, Ex. 2, 3.

Solution by Lagrange's equations, 401. If the coordinates are properly

chosen T only is wanted, the calculation of U being unnecessary, 408, 403.

Independence of translation and rotation. Two dynamical theorems, 79; ex-

plained, 81, 82.

Indeterminate forces, 112 ; motion, 160. Indeterminate multipliers applied to

Lagrange's equations, 400, 429, 430 note. See also Vol. ii.

Indicatrix. The relative indicatrix defiued, 478. Used to find the instantaneous

axis of a rocking body, 479. The time of oscillation is unaltered if the

iudicatrix remains the same, 481.

Inertia. Problem on a body without inertia, page 179, Ex. 9.

Initial motion. A body acted on by an impulsive couple, 118. Various problems,

119. System of rods, 201, Ex. 2.

Does a body begin to roll or slide ? 158, 166, page 182, Ex. 29.

Kule to find initial reactions when a support is broken, 199, also page 182,

Ex. 26, 30. Application of Lagrange's equations, 463.

Initial radius of curvature in Cartesians and polars, 200, 212, Ex. 3, 4;

in generalized coordinates, 464, 465.

Kule to find the higher initial differential coefficients, 200, 465. Various

examples, 201—2, page 182, Ex. 27, 28, 32, 466.
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An initial motion from rest is such that the work done is positive, 363.

Moments about the instantaneous axis, two dimensions, 205 ; three, 448.

Integrations shortened by using moments of inertia, 18; and equimomental

points, 36.

Invariable plane. Dynamical plane defined, 301. Distinguished from the

astronomical plane, 303.

Invariants of moments of inertia, (1) in a plane, A + B, AB-F^, D'^ + E^, 5 and 18,

Ex. 3
; (2) in space, 20.

Of geometrical motion, 241 ; invariant of any number of angular

velocities, Ex. 2 ; of two screws, Ex. 3.

Inversion applied to moments of inertia, 46.

Jacobi. Theorem on a free system of attracting particles, 286 &.

Jacobians. Applied to moments of inertia, 9, Ex. 4, 5.

Jolly. On the density of the earth, 476.

JouRDAiN on the equations of mechanics, 430 note.

JuLLiEN. On the principal point of an edge of a tetrahedron, 51, Ex. 6.

Coordinates of a point at which the principal moments are given, 64,

Ex. 2.

Kateb, Length of the seconds pendulum, 100, &c.

Kelvin. A theorem of his on attractions applied to moments of inertia, 46. On
principal axes, 56. Defines a conservative system, 337. See Work of an

impulse. On obligatory motions, 387. Equilibrium of repelling particles

contained in a vessel, 469, Ex. 2.

Kinetic potential defined, 399.

Kinetic theory of gases. The pressure is one-third of the vis viva of a unit

of volume, 376.

Lagrange. Steady motion of three particles, 286. Vis viva generated by an

impulse, 310, Ex. 7, 388. General equations, 395, &c. Law of a tauto-

chronous force, 490.

Lagrange's equations. Investigated, 395; another proof, page 429 note. Take

the same form for all coordinates, 399 a, Ex. 1. Are independent, 399, Ex. 3.

The limitation that the geometrical equations do not contain differential

coefficients, 396 and 429. Three methods, 430 note.

Extension to impulsive forces, 401.

Applied to small oscillations, 453. Rule to write the determinant, 456.

Difficulties, 457. Equal roots, 462.

Applied to initial motions, 463.

Lamb, H. Reciprocal theorems, 417 note.

Laplace. The knife edges of a peuduluui, 107, Ex. 1. Two special cases of the

motion of three particles, 286. The invariable plane of the solar system, 304,

305. Law for a tautochronous force with resistance 2kv + k'v'\ 491 ; the force

is independent of k and the time of k', 492.

Legendre. His ellipsoid, 29. It is equimomental to the body, 29. The reciprocal

ellipsoid, 30. Used to find equimomental points, 42, Ex. 3. Note page 423.

Leibnitz. On the force of a body in motion, 332 note.

LiouviLLE. Integrals of Lagrange's equations, 407. Change of the independent

variable t, 431a.

Living things. Examples on the motion of a man standing on a smooth or

rough plane, page 62. A man walks round a horizontal wheel, 91. An
insect climbs the inside of a cylinder, page 182, Ex. 34. How a man can

turn round without external forces, 287. A falling cat, Ex. 3. Jumping

beans, Ex. 4. The frog in a bucket, Ex. 5. How a person can swing

28—3
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himself, Ex. 6. Fly walks on a sheet of paper, 299, Ex. 4. Insect on a

constrained rod, page 270, Ex. 13; on a circular wire, Ex. 11, 12; on a

revolving disc, Ex. 14.

Mallet. On earthquakes, 174, Ex. 3, 4, 175, page 63, Ex. 12.

Mabey. Photographs of a falling cat, 287, Ex. 3.

Membrane. Work of stretching, with examples, 347; also a soap-bubble.

Meteoric dust. How it affects the angular velocity of the Earth, 299, Ex. 6.

Milne. Treatise on earthquakes, 175 and page 63.

Models. Bertrand's remarks, 369. Example of a bridge, 370, Ex. 3. Froude's

rule to discover the resistance to a ship by using a model, 371.

Modification. See Eeciprocation, 418.

Moment of forces. Equation of motion about a moving point, 131. Moment
about the instantaneous axis in small oscillations, 205, 448; about the

central axis, 448.

Moments of inertia. Of nth order. Triangular plate, 6 ; sphere, 9, Ex. 6

;

ellipsoid, 9, Ex. 7 ; ellipsoidal shell, 9, Ex. 8. Value of jz''^da for a triangle,

quadrilateral, tetrahedron, double tetrahedron, generally placed, 45. Note

page 425. Equimomental points for cubic moments, 45.

In space of n dimensions, moment of inertia &c. of a sphere, 9, Ex. 9,

tetrahedron, note page 423.

MoRiN. On the laws of friction, 155. Motion of a carriage, 165. Fundamental

experiment on impulsive friction, 181.

Moving axes. See also Kelative motion. Cartesian equations in two dimensions,

211 ; oblique, 212, Ex. 1, 2. Kadius of curvature of a path in space, 212,

Ex. 3, 4. Cartesian equations in three dimensions, 251 ; leading to Euler's

equations, 252. The theory is continued in Vol. ii.

Newton. Third law of motion, 80. Experiments on elastic bodies, 179. Tauto-

chronism of a smooth cycloid with a resistance 2kv, 494.

Niven. Applies Lagrange's equations to impulses, 402.

Non-conservative forces. How Lagrange's equations can be used, 426, 427.

Obligatoby motions, see Fixtures.

Oscillation. See Table of Contents. Free and forced, 433 ; of the second order,

450, 457, 500 ; see also Vol. ii.

Principle of the co-existence of small oscillations, 460.

Principal oscillations, their physical peculiarities, 461.

Oscillation of a body suspended (1) by a string, 458, Ex. 1, 2 ; (2) by

another body, Ex. 3, 9 ; of n heavy particles suspended by a string, 461,

Ex. 1 ; disappearance of an oscillation, 461 ; of a body with one point on a

revolving line whose motion is (1) given, 450; (2) not given, 452; of a guided

body, 445.

Oscillation of a rocking cylinder on a rough cylinder, 441 ; of a cone on a

cone, 483 ; any body on any body in three dimensions, 481 ; cases of neutral

equilibrium, 500, &c. Oscillations including the higher powers of small

quantities, 505, 508, &c.

Painleve. Eemarks on imaginary time, 374.

Parabola, Moment of inertia, 9, Ex. 2. Motion after a normal blow, 309.

Oscillations of a heavy rod whose ends move in a vertical parabola, 445, Ex. 2.

Parallel axes, Theorem. For moments of inertia, 13 ; important extension to

other cases, 14.

Parallelogram. Equimomental points, 38, Ex. 6. Momental ellipse, 42, Ex. 1.

Parallelogram of angular velocities, 232. See also Khombus.

Pendulum. See Centre of oscillation, Seconds and Ballistic pendulum. Equivalent
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pendulum of a body, 92. Minimum time of oscillation, 92. Problems, 93.

Graham's compensation, 94. Effect of buoyancy of the air, 95 ; Eobinson's

compensation, 96, Ex. 3. Resistance of the air, 105. References, 105.

Effect of a cavity filled with fluid, 148 ; of a loose suspension or a detached

portion, 458, Ex. 9. Example of an equivalent pendulum in three dimen-

sions, 405.

Pekcussion. Centre of : coincides with the centre of oscillation, 120.

Permanent axes. Their relation to principal axes, 117.

Phillips. Impact of rough bodies, 186, 326, Ex. 4, 5.

PoiNSOT. Analogy between geometrical motion and statics, 235. On the percussion

of bodies, 178. On Laplace's invariable plane, 304.

PoissoN. On spherical points, 55, Ex. 3. Time of oscillation, fixed axis, 122.

Laws of impulsive friction, 181. Method of solving impulses, 186. Remark
on the restriction on the geometrical equations in vis viva, 351. On the

seconds pendulum, 461.

Polar ice. How when melting it affects the Earth's rotation, 299, Ex. 4, 5.

Potential energy. Explained, 358. Potential energy of the solar system, 344,

Ex. 3. Examples, 361.

PoYNTiNG. The density of the Earth, 476.

Pressure. On a fixed axis, symmetrical, 110 ; unsymmetrical, 112. Simplification

when the axis has a principal point, 114. On a fixed point, 255.

Principal axes and moments. Defined, 16. Elementary theorems, 23. Max-min
property, 23. There are three principal axes at every point, 24. Cubic

equation to find the principal moments at any point pqr, first form, 25,

Ex. 2; second, 65; cubic for a tetrahedron, 43, Ex. 1.

Principal point of a straight line (1) when taken as an axis of refer-

ence, 48 ; (2) when the body is referred to its principal axes at the centre

of gravity, 60 ; when the body is a lamina, 61, Ex. 2. Principal point

of the side of a triangle, 51, Ex. 5 ; of the edge of a tetrahedron, 61,

Ex. 6. Principal point of a plane, 61, Ex. 3.

Geometrical relations of principal axes (1) to three confocals, (2) to

any one, 56, 59. Locus of a point (1) when a principal axis is given in

direction, 51, Ex. 4 ; (2) when two principal moments are equal, 62

;

(3) when one principal moment is given, 63 ; (4) other loci, 65.

Principal coordinates. Defined, 459 ; also called harmonic, normal or simple

coordinates. The Lagrangian function contains no products, 459. When
can the motion be such that one coordinate can alone vary? 460, 461.

Example of finding principal coordinates, 461. See also Vol. ii.

Prism. A regular polygonal prism rolls down an inclined plane, 298, Ex. 3,

366, Ex. 10.

Projections. AppHed to find the moment of inertia of a homoeoid, 9, Ex. 8.

Projections of equimomental bodies are equimomental, 41. Projection of

the momental ellipse of a plane area, 41.

PuiSEUx. Smooth tautochronic curves in vacuo ; also for a resistance k'v^

when the force is gravity; the curve p= ip, 494.

Quadrilateral. Equimomental to six particles, 38, Ex. 7.

Radius or curvature. Initial motions, Cartesian and polar, 200. Generalized

coordinates, 464.

Of a path in space referred to moving axes, 212, Ex. 3, 4.

Railway trains. Effect on the Earth's angular velocity, 299, Ex. 3, page 63,

Ex. 11.

Raindrop. Falls in the air and increases in volume, 300, Ex. 8.
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Kayleigh. Dissipation function, 427. Frequency of an oscillation, 434.

RECiPBOCAii THEOREM. Rajleigh, 417.

Reciprocation. Defined, 410. Applied to solve differential equations, 410, note.

Reciprocal function of the vis viva (1) of a body, (2) of a system, 413.

Analogy to reciprocation in pure geometry, 416 a.

Modified function, defined, 418 ; with one function we can form the

dynamical equations by the Lagrangian rule for some coordinates and by

the Hamiltonian rule for the others, 420. General expression for the modi-

tied function, 421. Simplification when some coordinates are absent, 422.

Reference table of moments of inertia, 8.

Relative motion. See Moving axes. Fundamental theorem, 204 ; examples, 208,

page 182, Ex. 31, &g. Impulsive forces, 207. A sphere rolls on a rough

moving curve, 209 ; will it go round ? 210. Rule to find the relative

motion of a particle on a moving curve in three dimensions, 213. Vis

viva, 385.

Representative point. Used in solving problems on impact by a graphic

method, 193, 321. See also Equimomental points. Other uses in Vol. ii.

Reynolds, Osborne. On rolling friction, 155.

Rhombus. Falls in a vertical plane, elementary solution with similar examples,

176, page 180, Ex. 18, 19, &c. Solution with Lagrange's equations, 408.

Moves on a smooth table, 388a, Ex. 2. page 314, Ex. 12.

Rigidity of cords. Measured by {a+hT)lr, 167.

Robins. The ballistic pendulum, 121.

Robinson. Compensation of the pendulum by the use of a barometer, 96. The

anemometer, 126.

Rod. Momental ellipsoid, 21, Ex. 2. Ellipsoid of gyration, 28, Ex. 2.

Examples of motion, 146, 147 ; with friction, 166, Ex. 6. One end

constrained, 161, Ex. 2. Systems of rods, impulses, 177, 388; initiaJ

motion, 201, Ex. 2, 417. Various examples, pages 178, 315, &c. Oscilla-

tions of a rod in a containing vessel of revolution, 445; in a paraboloid,

445. On a three-cusped hypocycloid and other cases, 447. Application of

Lagrange's equations, 408, Ex. 2, 3, page 342, Ex. 2, 3, 5, 7.

Work of bending, \vith examples, 349.

RoDRiGUES. Theorem to compound finite rotations, 271. Expression for the

velocity of a point due to a finite rotation, 280&. Two theorems, 228,

Ex. 1, 2.

Rotation. A finite displacement resolved into a translation and a rotation, 214

—

219. Base defined, 219. Effects of a change of base on the components

of translation and rotation, 220. Central axis and screw, 225. Theorems,

228. Rodrigues' and Sylvester's theorems on compounding rotations, 271,

274. Conjugate rotations, 277. Composition of screws, geometrical, 278

;

analytical, 280a. Effect of a finite rotation on the coordinates of a point,

280 ; of two screws, 281.

Infinitesimal rotations, parallelogram law, 232. Rotations correspond

to forces, translations to couples, 235. Velocity of any point, 238. In-

variant, 241. Transformation of the components of motion into screws,

240 ; conjugate rotations, 237, 246, Ex. 5 ; and conversely.

Savart. Theorem on the notes sounded by similar vessels, 372.

Screw. Defined, 226. Every displacement is represented by a screw in one

way, 227. Determination of the screw equivalent to a given motion, 240.

Composition &c. of screws, 245a.

Seconds pendulum. Used to find g, 98. Eater's construction, 100; various
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corrections, 104 ; especially for resistance of the air, 105. Repsold's

pendulum, 106. Bessel's method of finding g, 107, Ex. 2. Laplace

on knife edges, Ex. 1. Two small corrections noticed by Airy and
Poisson, 461, Ex. 2.

See. Present position of the invariable plane, 304.

Segner. On principal axes of inertia, 117.

Separation. Conditions, 136. Rule when the first method of solution applies, 136.

Separation after impact, 179, 193. Examples of separation, 145, 174,

page 181, Ex. 22, &c.

Shear. See Stress, 150.

Similar bodies. Geometrical and dynamical similarity distinguished, 116.

Similitude. Principle of, explained and proved, 367. Examples of a pendulum
and Kepler's law, 370. Froude, 371. Savart's theorem on musical notes,

372. Analytical and imaginary similitude, 374.

Six constants. Theorem. Used to find moments of inertia, 15, Defines a

body, 73, 149.

Slesser. On moving axes, 251.

Snell. On anemometers in mines, 129.

Soap-bubble. Work found, 347.

Solar system. Special cases, 286. Angular momentum, 286a, Ex. 3, Present

position of the invariable plane, 304. Work of collecting from infinite

distances, 344, Ex. 3. Vis viva relative to the centre of gravity, 424.

Modified function, 425.

Space of n dimensions. Moments of inertia, &c. of an ellipsoid, 9, Ex. 9.

Tetrahedron, page 423.

Sphere. Moments of inertia, 8 ; nth. order, 9, Ex. 6. Equimomental points,

38, Ex. 10.

Motion on an inclined plane, 144; with jumps, 170, Ex. 2; on another

sphere, 145. On a curve, in a tunnel from Loudon to Paris, &c., 145.

Rectilinear motion on a rough plane, 162 ; why it comes to rest, 163 ; other

examples, 166. Sphere jumps over an obstacle, 174. A fives ball and
cricket ball, &c. , 197. Sphere rolls on a rough moving curve, 209 ; will

it go round? 210. Motion of a billiard ball on a rough plane in three

dimensions, 269 ;
problems on balls, 269. How a suspended body would

move if the Earth's rotation were stopped, 298. Sphere on a plane re-

volving about a horizontal axis, page 314, Ex. 8. Motion on an inclined

plane by Hamilton's method, 416, Ex. 3.

Spherical points. Condition of their existence, 55, Ex. 3. Position in a hemi-

spherical surface, Ex. 4.

Stability. Of a heavy body in two dimensions determined by the circle of stability,

442, 443. Extension to apparently neutral equilibrium, 501.

Of a heavy body in three dimensions determined by the cylinder of

stability, 480. Of a cone on a fixed rough cone, 487 ; with extensions to

neutral equilibrium, 508.

Of a single free particle, 469, Ex. 1 ; of a system of mutually attracting

particles, Ex. 2.

A system is stable when the principal oscillations are stable, 460. The

energy test, 467 ; this test depends on U not T, 469. Bodies attracting as

the distance are in stable equilibrium when A-\-B + C\9,q, minimum, page 401,

Ex. 13.

Standards of length. Rater's measure, 102. Parliamentary commission, 108.

French methods, 108.
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Stationary motion. Explained ; the mean vis viva is equal to the virial, 375.

Stockwell. The position of the invariable plane of the solar system in

1850, 305.

Stokes, Sir G. On gravity at the surface of the Earth, 104. The resistance

of the air to a pendulum, 105. Experiments and theorems on the anemo-

meter, 128.

Stress. How measured in a rod, 150. Stress in a rotating wire, 151, 152, Ex. 4 ;

in a circular wire and others, 152.

String. Motion on a fixed circle, on a cardioid, 145, Ex. 10, 11. Motion of

coiling and uncoiling chains, 300, 145, Ex. 12. The theory is continued

in Vol. II.

Sylvester. Theorem to compound finite rotations, 274.

Tautochronous motions. The force to make any rectifiable curve tautochronous

in vacuo or with a resistance 2kv, 488. Lagrange's general rule for a

tautochronous force, 490. Resisting medium, 491.

Case of a rough cycloid, 493. The tautochronous force for a curve

p—f{\p) with resistance 2kv + k'v^, 495. Effect of this law of resistance on

the time, 497.

If the force is central, viz. Xr, and the resistance is 2,kv, the curve is

p=:ip. Discussion of these curves and division into classes, 498. Appell's

theorems, 499.

Tendency to break. See Stress, 150.

Terrestrial magnetism. Example of Gauss and Weber's method of finding the

force in absolute measure, 97.

Tetrahedron. Moment of inertia, 39. The equimomental points, 39 ; th« same

for cubic motions of inertia, 45, Ex. 2. Equimomental ellipsoid, 43 ; cubic

equation giving the principal moments, 43, Ex. 1 ;
geometrical construction

for principal axes, 43, Ex. 2.

Three particles. Sun, Earth and Moon moving round (1) in a straight line,

(2) at the corners of an equilateral triangle, 286. Jacobi's theorem on the

law of the inverse cube, 286. If the particles start from rest, will they meet ?

285, 286, Ex. 2, 5. Oscillations of three equal attracting particles constrained

to move on straight lines or circles, 458, Ex. 7, 8. Four particles. Note

page 426.

Time. Change of the independent variable t, 431. Imaginary time, 374.

Top. Oscillations of a nearly vertical top, 268. The motion of a top is given

in Vol. II.

TowNSEND. On principal axes, 56, 61, Ex. 4 and 5.

Transformation or axes. Used to shorten integrations, 18. Equivalent to a

rotation, axis found, 217.

Triangle. Moment of inertia, 6, 35. Equimomental points for ordinary and

cubic moments of inertia, 35, 45, Ex. 1. Momental ellipsoid at centre

of gravity, 37 ; momental ellipse at a corner and middle point of a side, 38,

Ex. 1, 2. Quadratic for principal moments and construction for the axes,

38, Ex. 3, 4, 5. Analytical construction, 51, Ex. 1.

Rodrigues' and Sylvester's spherical triangle, 271, 274.

Motion of a triangle deduced from its equivalent points, 149.

See Areal coordinates, Three particles, Solar system, &c.

Tricycle. Example on a tricycle, 342.

Uniaxial body. Formulae for angular momentum represented by equivalent points,

266; applied to the oscillations of a top, and other bodies, 268. Its vis

viva, 365, Ex. 1.
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Vector. General theorem, leading to moving axes, 250.

ViEiLLE. A generalization of Lagrange's equation, 399.

ViRiAL. Defined, 375. Virial of (1) two attracting particles, (2) internal,

(3) external forces, 376.

Virtual work. Applied to finite forces, 350, 357. Applied to impulses, 382 ; with

a notation, 383. In generalized coordinates, of (1) the momenta of a system,

397 ; (2) the effective forces, 398. How used when the geometrical equations

in Lagrange's method contain differential coefficients, 429.

Vis viva. Two proofs of the principle in two dimensions, 138. Analytical formula

with converse theorems, 139. Standard example, 147. Eemarks on the

principle, 141—3.

General proofs deduced from virtual work, 350 ; from Lagrange's equa-

tions, 407 ; from Hamilton's equations, 416, Ex. 1. Kestriction on the

geometrical equations, 351. List of forces which may be omitted, 362.

General expressions for vis viva in terms of the components of motion,

363 ; in Euler's coordinates, 365 ; in elliptic coordinates, 365, Ex. 4 ; of a

changing body similar to itself, 365, Ex. 2.

Examples on the principle, 366, page 313, &c. Applied to find small

oscillations, 447.

Effect of an impulse, 172, 346. Vis viva is lost by the impact of two

bodies, but not necessarily by a given blow, 173, 378, 388, Ex. 5. With a

given blow the vis viva is a maximum, 388 ; with an obligatory motion the

relative vis viva is a minimum, 386.

Walton. Axes of reluctance, 119, Ex. 4. The frog problem, 287, Ex. 5.

Watch balance. Time of oscillation, 109 ; various compensations, 109&.

Whittaker. Keport on Three Bodies referred to, 286 note.

Work. Defined in two dimensions, 140 ; in three, 342. The work function, 339.

Force and couple are dUjds and dUjdd, 340. Units of work, 342; horse

power, 342. Work of gravity, 140, 342 ; elastic string, 343 ; collecting a

body, 344 ; mutual work, 344 ; a gas, 345 ; an impulse, 346 ; a membrane,

347 ; a couple, 348 ; bending a rod or bridge, 349.
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